[go: up one dir, main page]

JPH0583282B2 - - Google Patents

Info

Publication number
JPH0583282B2
JPH0583282B2 JP60289279A JP28927985A JPH0583282B2 JP H0583282 B2 JPH0583282 B2 JP H0583282B2 JP 60289279 A JP60289279 A JP 60289279A JP 28927985 A JP28927985 A JP 28927985A JP H0583282 B2 JPH0583282 B2 JP H0583282B2
Authority
JP
Japan
Prior art keywords
flocculant
liquid
aluminum
weight
polyamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60289279A
Other languages
Japanese (ja)
Other versions
JPS62149311A (en
Inventor
Makoto Nakatsu
Tomofumi Matsumoto
Hironobu Nihei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP28927985A priority Critical patent/JPS62149311A/en
Publication of JPS62149311A publication Critical patent/JPS62149311A/en
Publication of JPH0583282B2 publication Critical patent/JPH0583282B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、ワンパツクの状態で保存安定性に優
れており、しかも凝集剤としての除濁効果、脱色
効果、リンイオンの補集効果等の水質汚濁成分の
凝集効果に優れた無機及び有機併用型の液体凝集
剤組成物に関する。 (従来の技術) 従来、硫酸第二鉄と硫酸アルミニウムとを一定
の組成比で含有する複合無機凝集剤は、用水中の
水質汚濁成分等の凝集沈降効果が迅速に得られる
という点に優れていることが知られている(例え
ば特公昭39−19422号公報)。 また、最近に至つて、特公昭60−2885号公報に
は、貯蔵安定性と水質汚濁成分の凝集効果との組
合せに優れた液体無機凝集剤組成物として、
SO3,Fe2O3及びAl2O3の3成分組成比が一定の
範囲内にあり、しかもFe2O3及びAl2O3の合計重
量%濃度が4乃至15%の範囲にある液体無機凝集
剤組成物が提案されており、この液体無機凝集剤
は非イオン系、アニオン系、カチオン系或いは両
性系の高分子凝集剤の組合せで使用し得ることも
記載されている。 (発明が解決すべき問題点) 液体無機凝集剤とカチオン高分子凝集剤(以下
単にカチオン系凝集剤という)とを、各種用水、
廃水或いは汚泥等の凝集処理に用いると確かに優
れた水質汚濁成分の凝集沈降効果が得られるが、
これら両成分を使用に便利なワンパツク液体凝集
剤の形にする場合には両性分の相互作用によりカ
チオン系凝集剤が変質して、カチオン系凝集剤を
用いることの利点が失われ、また液体凝集剤の貯
蔵安定性が損なわれるという問題がある。 このような傾向は、SO3−Fe2O3−Al2O3系の
液体無機凝集剤で顕著であるが、液のPHの低いポ
リ塩化アルミニウム系液体無機凝集剤においても
同様に認められる。 従つて、本発明の目的は、液体無機凝集剤中に
カチオン系凝集剤が予じめ配合された液体凝集剤
として存在し、無機凝集剤とカチオン系凝集剤と
の併用効果が配合初期と同じように維持されるワ
ンパツケージタイプの液体凝集剤を提供するにあ
る。 本発明の他の目的は、保存安定性と水質汚濁成
分の凝集効果とに優れた無機−有機カチオン系の
複合液体凝集剤を提供するにある。 (問題点を解決するための手段) 本発明者等は、種々のカチオン系凝集剤の内で
も、ジメチルアミンとエピクロルヒドリンの縮重
合体から成るポリアミン系凝集剤を選択し、この
ポリアミン系凝集剤をアルミ系又はアルミ鉄系の
液体無機凝集剤に配合すると、貯蔵安定性に優れ
たワンパツケージタイプの液体凝集剤が得られる
と共に、この複合液体凝集剤では無機凝集剤及び
カチオン系凝集剤の作用効果が、安定にしかも長
期にわたつて持続されることを見出した。 即ち、本発明によれば、アルミ系又はアルミ−
鉄系の液体無機凝集剤に、ジメチルアミンとエピ
クロルヒドリンの縮重合体を主体とし反復単位当
り主鎖中に少なくとも1個の窒素原子及び側鎖に
少なくとも1個の水酸基を有するポリアミン系凝
集剤をAl2O3重量又はAl2O3−Fe2O3の合計重量
に対して固形分としてAl2O3又はAl2O3−Fe2
O3/ポリアミン系凝集剤の重量比が40/60乃至
98/2の範囲を満足する量で配合したことを特徴
とする液体凝集剤組成物が提供される。 本発明の最も好適な態様では、上記アルミ−鉄
系の液体無機凝集剤として3成分組成で表わし
て、SO3,Fe2O3及びAl2O3を下記式 (i) Cが12以下のとき S≧0.25F+72.0 S≦100−4/3C(Aが2.5より小のとき) F≧4/3C−2.5 (Aが2.5乃至4.1+3/5Cのとき) S≦98.4−29/15C (Aが4.1+3/5Cより大のとき) A≧0.5 F≧2 (ii) Cが12を越えるとき S≧−0.25F+75.5 S≦84(Aが2.5より小のとき) F≧13.5(Aが2.5乃至11.3のとき) S≦75.2(Aが11.3より大のとき) A≧0.5 F≧2 [式中、S,F及びAは上記3成分の合計量当
りのSO3,Fe2O3及びAl2O3モル%を夫々表わし、
Cは溶液中のFe2O3及びAl2O3の合計重量%濃度
を表わす。] を満足する量で含有し且つFe2O3及びAl2O3の合
計重量%濃度Cが4乃至15%の範囲にある液体無
機凝集剤を使用する。 本発明の他の好適な態様では、アルミ系の液体
無機凝集剤として、Al2O3重量濃度が5乃至15重
量%の範囲内にあるポリ塩化アルミニウム凝集剤
を使用する。 (作用) アルミニウム系或いはアルミニウム−鉄系の液
体の無機凝集剤は被処理物中に含有される種々の
水質汚濁成分を補集し、フロツクを形成するとい
う利点を有しているが、形成されるフロツクの粒
径が概して小さく、またフロツクの強度も概して
低いことが欠点である。一方、カチオン系凝集剤
を併用すると、その帯電電荷により大きくしかも
緻密なフロツクを形成し、このフロツクは水の分
離が容易で剪断等にも耐える比較的大きな強度を
有するという利点が構成される。 しかしながら、これらの無機凝集剤と通常のカ
チオン系凝集剤とは概してなじみが悪く、安定な
液体を維持しようとすれば無機凝集剤のAl2O3
はAl2O3−Fe2O3等に対し高々5重量%以下のカ
チオン系凝集剤の添加が可能であるにすぎず、実
際の組合せ使用に必要な15重量%以上ものカチオ
ン系凝集剤を配合すると、液自体が凝固したり或
いは沈殿を生ずるのを避け得ない。 また、後述する例に示す通り、通常のカチオン
系凝集剤を無機凝集剤に配合すると、時間の経過
と共にカチオン系凝集剤に特有の上記作用効果が
失われる傾向が認められる。これはカチオン系凝
集剤と無機凝集剤との間に好ましくない反応が生
じているためと思われる。このことは、カチオン
系凝集剤の溶解時にはイオン類を含まない水の使
用が推奨されていることからも首肯し得るところ
であろう。 しかるに、本発明で用いるポリアミン系凝集剤
は、ジメチルアミンとエピクロルヒドリン縮重合
体を主体とし反復単位当り主鎖中に少なくとも1
個の窒素原子と側鎖に少なくとも1個の水酸基と
を共に有しており、性質においてカチオン性とノ
ニオン性とを有する化学構成上の特徴を有する。
本発明の液体凝集剤において、ポリアミン系凝集
剤を高濃度でしかも安定に液状で存在させ得るの
は、このような水酸基の存在により液中での安定
性が高められていること及び水酸基の存在がカチ
オン系凝集剤と無機凝集剤との望ましくない反応
を抑制するように作用することに関連するものと
認められる。 (発明の好適実施態様の説明) ポリアミン系凝集剤 本発明に用いるポリアミン系凝集剤は、ジメチ
ルアミンとエピクロルヒドリンの縮重合体を主体
とする。この縮重合体は反復単位当り主鎖中に少
なくとも1個の窒素原子及び側鎖に少なくとも1
個の水酸基を有する。 本発明においては、この縮重合体の作用を妨げ
ない範囲において下記一般式
(Industrial Application Field) The present invention has excellent storage stability in the form of a one-pack, and also has excellent agglomerating effects on water polluting components such as turbidity removal effect, decolorization effect, and phosphorus ion scavenging effect as a flocculant. The present invention relates to an inorganic and organic liquid flocculant composition. (Prior art) Conventionally, a composite inorganic flocculant containing ferric sulfate and aluminum sulfate at a certain composition ratio has the advantage of rapidly achieving a flocculating and settling effect on water polluting components in water. (For example, Japanese Patent Publication No. 39-19422). In addition, recently, Japanese Patent Publication No. 60-2885 describes a liquid inorganic flocculant composition that has an excellent combination of storage stability and flocculating effect on water polluting components.
A liquid in which the three-component composition ratio of SO 3 , Fe 2 O 3 and Al 2 O 3 is within a certain range, and the total weight % concentration of Fe 2 O 3 and Al 2 O 3 is in the range of 4 to 15%. Inorganic flocculant compositions have been proposed and it has also been described that the liquid inorganic flocculants can be used in combination with nonionic, anionic, cationic or amphoteric polymeric flocculants. (Problems to be Solved by the Invention) Liquid inorganic flocculants and cationic polymer flocculants (hereinafter simply referred to as cationic flocculants) are used in various types of water,
When used for coagulation treatment of wastewater or sludge, etc., it is true that excellent coagulation and sedimentation effects of water pollution components can be obtained, but
If these two components are combined into a convenient one-pack liquid flocculant, the cationic flocculant will be altered due to the interaction of the amphoteric components, and the advantages of using the cationic flocculant will be lost. There is a problem that the storage stability of the agent is impaired. This tendency is remarkable in SO3 - Fe2O3 - Al2O3 - based liquid inorganic flocculants, but it is also observed in polyaluminum chloride-based liquid inorganic flocculants whose liquid pH is low . Therefore, the object of the present invention is to provide a liquid flocculant in which a cationic flocculant is pre-blended in a liquid inorganic flocculant, so that the combined effect of the inorganic flocculant and cationic flocculant is the same as that at the initial stage of blending. The objective is to provide a one-package type liquid flocculant that is maintained in a similar manner. Another object of the present invention is to provide an inorganic-organic cationic composite liquid flocculant having excellent storage stability and flocculating effect on water polluting components. (Means for Solving the Problems) Among various cationic flocculants, the present inventors selected a polyamine flocculant consisting of a condensation polymer of dimethylamine and epichlorohydrin, and When mixed with an aluminum-based or aluminum-iron-based liquid inorganic flocculant, a one-package type liquid flocculant with excellent storage stability can be obtained, and this composite liquid flocculant has the effects of the inorganic flocculant and the cationic flocculant. was found to be stable and sustained over a long period of time. That is, according to the present invention, aluminum-based or aluminum
Adding Al to the iron-based liquid inorganic flocculant is a polyamine flocculant that is mainly composed of a condensation polymer of dimethylamine and epichlorohydrin and has at least one nitrogen atom in the main chain and at least one hydroxyl group in the side chain per repeating unit. Al 2 O 3 or Al 2 O 3 −Fe 2 as solid content based on the total weight of 2 O 3 weight or Al 2 O 3 − Fe 2 O 3
The weight ratio of O 3 /polyamine flocculant is 40/60 to
There is provided a liquid flocculant composition characterized in that it is blended in an amount satisfying the range of 98/2. In the most preferred embodiment of the present invention, the aluminum-iron based liquid inorganic flocculant is represented by a three-component composition, and SO 3 , Fe 2 O 3 and Al 2 O 3 are combined in the following formula (i) where C is 12 or less. When S≧0.25F+72.0 S≦100-4/3C (when A is less than 2.5) F≧4/3C-2.5 (when A is between 2.5 and 4.1+3/5C) S≦98.4-29/15C ( (When A is greater than 4.1+3/5C) A≧0.5 F≧2 (ii) When C is greater than 12 S≧−0.25F+75.5 S≦84 (When A is less than 2.5) F≧13.5 (A is 2.5 to 11.3) S≦75.2 (when A is greater than 11.3) A≧0.5 F≧2 [In the formula, S, F and A are SO 3 , Fe 2 O 3 per total amount of the above three components and 3 mol% of Al 2 O, respectively;
C represents the total weight percent concentration of Fe 2 O 3 and Al 2 O 3 in the solution. A liquid inorganic flocculant containing a satisfactory amount of Fe 2 O 3 and Al 2 O 3 and having a total weight % concentration C of Fe 2 O 3 and Al 2 O 3 in the range of 4 to 15% is used. In another preferred embodiment of the present invention, a polyaluminum chloride flocculant having an Al 2 O 3 weight concentration in the range of 5 to 15% by weight is used as the aluminum-based liquid inorganic flocculant. (Function) Aluminum-based or aluminum-iron-based liquid inorganic flocculants have the advantage of collecting various water polluting components contained in the material to be treated and forming flocs. The disadvantage is that the grain size of the flocs is generally small and the strength of the flocs is generally low. On the other hand, when a cationic flocculant is used in combination, a large and dense floc is formed due to its electrical charge, and this floc has the advantage of being easy to separate water and having relatively high strength to withstand shearing and the like. However, these inorganic flocculants and ordinary cationic flocculants are generally not compatible, and in order to maintain a stable liquid, it is necessary to use inorganic flocculants such as Al 2 O 3 or Al 2 O 3 −Fe 2 O 3 . However, it is only possible to add 5% by weight or less of a cationic flocculant, and if the cationic flocculant exceeds 15% by weight, which is required for actual combination use, the liquid itself will coagulate or precipitate. It is inevitable that it will occur. Furthermore, as shown in the examples below, when a normal cationic flocculant is blended with an inorganic flocculant, there is a tendency for the above-mentioned effects peculiar to the cationic flocculant to be lost over time. This seems to be due to an unfavorable reaction occurring between the cationic flocculant and the inorganic flocculant. This can be supported by the fact that it is recommended to use water that does not contain ions when dissolving cationic flocculants. However, the polyamine-based flocculant used in the present invention is mainly composed of dimethylamine and epichlorohydrin condensation polymer, and has at least one polyamine in the main chain per repeating unit.
It has both nitrogen atoms and at least one hydroxyl group in the side chain, and is characterized by a chemical composition that is cationic and nonionic in nature.
In the liquid flocculant of the present invention, the reason why the polyamine flocculant can exist stably in liquid form at high concentration is that the stability in the liquid is enhanced by the presence of such hydroxyl groups and the presence of hydroxyl groups. It is recognized that this is related to the effect of suppressing undesirable reactions between the cationic flocculant and the inorganic flocculant. (Description of preferred embodiments of the invention) Polyamine flocculant The polyamine flocculant used in the present invention is mainly a condensation polymer of dimethylamine and epichlorohydrin. The condensation polymer has at least one nitrogen atom in the main chain and at least one nitrogen atom in the side chain per repeating unit.
It has hydroxyl groups. In the present invention, the following general formula is used within a range that does not impede the action of this condensation polymer.

【化】 式中Rは2価の炭化水素基であり、mはゼロ又
は1であり、nは150以上の数である、 で表わされポリアミン系凝集剤を一部併用するこ
とができる。このポリアミンは、アンモニア又は
ジアミンとエピハロヒドリンとを反応させること
により容易に得られる。2価の基、Rとしてはエ
チレン基、テトラメチレン基、ヘキサメチレン基
等の炭素数2乃至6のアルキレン基、シクロヘキ
シレン基等のシクロアルキレン基、フエニレン
基、キシリレン基等のアリーレン基等を挙げるこ
とができる。 用いるポリアミン系凝集剤の分子量(数平均分
子量)は2万乃至90万の範囲にあるのが望まし
く、これらは一般に水溶液の形で、液体無機凝集
剤に配合する。 無機液体凝集剤 アルミ又はアルミ−鉄系の液体無機凝集剤の任
意のものが使用される。 これらの液体無機凝集剤の内、貯蔵安定性及び
水質汚濁成分の凝集成分の凝集効果に優れたもの
として、3成分組成比でSO3(S),Fe2O3(F)及
びAl2O3(A)が前記各式で規制され、且つFe2O3
及びAl2O3の合計重量%濃度Cが4乃至15%の範
囲にある液体無機凝集剤を挙げることができる。 この液体無機凝集剤は、硫酸第二鉄及び硫酸ア
ルミニウムを前述したモル組成及びFe2O3及び
Al2O3の合計重量%(R2R3濃度)となるように水
に溶解し、これらを攪拌することによつて容易に
調整することができる。勿論、この際必要あれ
ば、カルシウム系中和剤を用いて硫酸根を石膏の
形で取除くか、或は遊離硫酸を添加することによ
つてSO3モル比を所定の範囲に調節し得ることは
当然である。また、酸性白土等の各種粘土類やボ
ーキサイトを硫酸で抽出して得られる鉄とアルミ
ニウム分とを含む硫酸塩溶液について、各種成分
のモル比の調節及び濃縮等の操作を行つて、液体
凝集剤を得ることもできる。 この液体無機凝集剤の詳細は前述した特公昭60
−2885号公報に述べられているのでこれらを参照
されたい。 この液体無機凝集剤の他の好適な例として、
Al2O3重量濃度が5乃至15重量%の範囲内にある
ポリ塩化アルミニウム(塩基性塩化アルミニウ
ム)凝集剤を挙げることができる。この塩基性塩
化アルミニウム凝集剤は、一般に式 Al2(OH)x・Cly(SO4z 式中x,y及びZは、 x+y+2z=6, xは2.7乃至5の数 zは0乃至0.65の数 を満足する数である。 で表される組成を有する。 塩基性塩化アルミニウム凝集剤の製法は、これ
に限定されないが、好適には、可溶性アルミニウ
ム塩を炭酸アルカリを含む水性媒体中で反応中の
PHが6.5乃至9.8となるように中和してCO2/Al2O3
のモル比が0.1以上の無定形炭酸根含有アルミニ
ウム水酸化物を生成させる工程と、この無定形炭
酸根含有アルミニウム水酸化物を塩酸或いは塩酸
−硫酸の混酸に溶解させることにより製造するこ
とができる。この製法及び凝集剤の性能の詳細
は、特公昭60−8973号公報に記載されているの
で、これを参照されたい。 複合液体凝集剤 本発明においては、液体無機凝集剤のAl2O3
量(アルミ系の場合)或いはAl2O3−Fe2O3の合
計重量(アルミ−鉄計の場合)に対してポリアミ
ン系凝集剤を固形分としてAl2O3又はAl2O3−Fe2
O3/ポリアミン係凝集剤の重量比が40/60乃至
98/2の範囲を満足する量で配合することが重要
である。好ましくはこの重量比が50/50の95/5
の範囲を満足するように用いる。ポリアミン系凝
集剤の配合量が、上記範囲よりも低い場合には、
カチオン係凝集剤を併用することにより、フロツ
クの径を増大させ且つフロツクを緻密化させると
いう利点が失われる傾向があり、また上記範囲を
越えても本発明範囲内にある場合に比して性能上
格別の利点はなく、経済的には高価となつて不利
となり、また液の粘度も増加するという不利があ
る。 液体無機凝集剤にポリアミン系凝集剤を配合す
る場合に、留意すべき格別の問題はなく、両者が
均密となる混合攪拌条件を採用すればよい。 本発明による複合液体凝集剤は、所謂タンクロ
ーリ、タンク車等により取扱の容易な液体の形で
需要家に供給でき、輸送の際加わる振動や衝撃に
よつても、一切の沈殿物やフロツク形成すること
がなく、気温の変化の激しい条件下に長期間にわ
たつて放置した場合でさえ、沈殿やフロツクを形
成することがなく、優れた流動性が維持され、作
業性に際立つて優れている。 また、本発明の複合液体凝集剤は、各種用水、
廃水或いは汚泥等に、ワンパツケージ凝集剤とし
て一挙に添加して、水質汚濁成分の凝集沈降に遊
離に使用でき、処理操作が至つて簡便化し得るこ
とが顕著な利点である。 本発明の複合液体凝集剤の使用量は、被処理水
(原水)中の水質汚濁成分の含有量によつてもか
なり相違するが、R2O3(Al2O3重量又はAl2O3
Fe2O3の合計重量)として用水の場合の10乃至
200ppmから汚泥の場合の0.01の0.5%迄変化させ
得る。 この複合凝集剤を使用すると、驚くべきことに
ポリアミン系凝集剤の性能が、無機系凝集剤中で
の長期保存時においても実質上そのまま保存され
ており、緻密で粒径が大であり、その結果として
処理水との分離が極めて容易な凝集フロツク形成
が可能となる。廃水や汚泥の処理では、リン分の
固定除去、色度、濁度、COD等の除去が従来の
液体凝集剤のそれに比して顕著に優れており、ま
た河川水の処理に当つては、リンイオン除去は勿
論のこと、アニオン系界面活性剤の除去も容易で
ある。 (発明の作用効果) 本発明によれば、ジメチルアミンとエピクロル
ヒドリンの縮重合体を主体とし反復単位当り主鎖
中に少なくとも1個の窒素原子と側鎖に少なくと
も1個の水酸基とを有するポリアミン系凝集剤を
アルミ系又はアルミ−鉄系無機凝集剤に配合する
ことにより、ワンパツケージの複合有機−無機液
体凝集剤を提供することが可能となつた。この液
体凝集剤は、貯蔵安定性に優れているのは勿論の
こと、両者の協同による複合凝集効果は長期にわ
たつて安定に持続されている。 (実施例) 本発明を次の例で説明する。 実施例1及び比較例1 液体無機凝集剤と液体カチオン系凝集剤とを混
合させたワンパツケージの複合液体凝集剤を調製
しその貯蔵安定性を調べた。 まず液体無機凝集剤(以後LAと記す)として、
特公昭60−2885号公報に記載する方法で調製した
含鉄硫酸アルミニウムのLA(試料番号FA−1及
びFA−2)、特開昭60−14911号公報に記載する
方法で調製した塩基性含鉄硫酸アルミニウムの
LA(試料番号BFA−1)、特公昭60−8973号公報
に記載する方法で調製した塩基性塩化アルミニウ
ムのLA(試料番号BP−1)、Al2O3濃度8.0%の硫
酸アルミニウムのLA(試料番号A−1)及びAl2
O3濃度10%のポリ塩化アルミニウムのLA(試料
番号P−1)をそれぞれ調製した。 これらの液体無機凝集剤の性状第1表に示す。
embedded image In the formula, R is a divalent hydrocarbon group, m is zero or 1, and n is a number of 150 or more. This polyamine is easily obtained by reacting ammonia or diamine with epihalohydrin. Examples of the divalent group R include alkylene groups having 2 to 6 carbon atoms such as ethylene group, tetramethylene group, and hexamethylene group, cycloalkylene groups such as cyclohexylene group, and arylene groups such as phenylene group and xylylene group. be able to. The molecular weight (number average molecular weight) of the polyamine flocculant used is preferably in the range of 20,000 to 900,000, and these are generally blended into the liquid inorganic flocculant in the form of an aqueous solution. Inorganic Liquid Flocculant Any aluminum or aluminum-iron based liquid inorganic flocculant may be used. Among these liquid inorganic flocculants, those with excellent storage stability and flocculating effect on flocculating components of water pollution components are known to have a three-component composition ratio of SO 3 (S), Fe 2 O 3 (F), and Al 2 O. 3 (A) is regulated by the above formulas, and Fe 2 O 3
and a liquid inorganic flocculant having a total weight % concentration C of Al 2 O 3 in the range from 4 to 15%. This liquid inorganic flocculant has the above-mentioned molar composition of ferric sulfate and aluminum sulfate and Fe 2 O 3 and
The total weight % of Al 2 O 3 (R 2 R 3 concentration) can be easily adjusted by dissolving in water and stirring them. Of course, at this time, if necessary, the SO 3 molar ratio can be adjusted within a predetermined range by removing the sulfate radical in the form of gypsum using a calcium-based neutralizer or by adding free sulfuric acid. Of course. In addition, a sulfate solution containing iron and aluminum obtained by extracting various clays such as acid clay and bauxite with sulfuric acid is used as a liquid flocculant by adjusting the molar ratio of various components and concentrating it. You can also get The details of this liquid inorganic flocculant can be found in
Please refer to Publication No.-2885. Other suitable examples of this liquid inorganic flocculant include:
Mention may be made of polyaluminum chloride (basic aluminum chloride) flocculants whose Al 2 O 3 weight concentration is in the range from 5 to 15% by weight. This basic aluminum chloride flocculant generally has the formula Al 2 ( OH ) is a number that satisfies the number of . It has the composition represented by. The method for producing the basic aluminum chloride flocculant is preferably, but not limited to, a process in which a soluble aluminum salt is reacted in an aqueous medium containing an alkali carbonate.
Neutralize to pH 6.5 to 9.8 and CO 2 /Al 2 O 3
It can be produced by producing an amorphous carbonate group-containing aluminum hydroxide with a molar ratio of 0.1 or more, and dissolving this amorphous carbonate group-containing aluminum hydroxide in hydrochloric acid or a mixed acid of hydrochloric acid and sulfuric acid. . Details of this production method and the performance of the flocculant are described in Japanese Patent Publication No. 8973/1983, so please refer to it. Composite liquid flocculant In the present invention , polyamine Al 2 O 3 or Al 2 O 3 −Fe 2 with solid content of flocculant
The weight ratio of O 3 /polyamine flocculant is 40/60 to
It is important to mix in an amount that satisfies the 98/2 range. Preferably, this weight ratio is 95/5 of 50/50.
be used so as to satisfy the range of If the amount of polyamine flocculant is lower than the above range,
By using a cationic flocculant in combination, the advantages of increasing the floc diameter and making the floc denser tend to be lost, and even if the above range is exceeded, the performance is lower than that within the range of the present invention. There is no particular advantage, and it is economically disadvantageous because it is expensive, and it also has the disadvantage that the viscosity of the liquid increases. When blending a polyamine flocculant with a liquid inorganic flocculant, there are no particular problems to be noted, and it is sufficient to adopt mixing and stirring conditions under which both are homogeneous. The composite liquid flocculant according to the present invention can be supplied to consumers in the form of a liquid that is easy to handle by so-called tank trucks, tank cars, etc., and does not form any precipitates or flocs even when subjected to vibrations and shocks during transportation. It does not form precipitates or flocs even when left for long periods of time under conditions of rapid temperature changes, maintains excellent fluidity, and has outstanding workability. In addition, the composite liquid flocculant of the present invention can be used for various types of water,
It has a remarkable advantage that it can be added to wastewater or sludge all at once as a one-package flocculant and used freely for flocculation and sedimentation of water polluting components, which greatly simplifies treatment operations. The amount of the composite liquid flocculant of the present invention to be used varies considerably depending on the content of water polluting components in the water to be treated (raw water), but the amount of R2O3 ( Al2O3 weight or Al2O3 weight )
10 to 10 for water use (total weight of Fe 2 O 3 )
It can vary from 200ppm to 0.01 to 0.5% for sludge. When this composite flocculant is used, surprisingly, the performance of the polyamine flocculant is virtually preserved even during long-term storage in an inorganic flocculant; As a result, it becomes possible to form agglomerated flocs that are extremely easy to separate from treated water. In the treatment of wastewater and sludge, it is significantly superior in fixation and removal of phosphorus, color, turbidity, COD, etc. compared to conventional liquid flocculants, and in the treatment of river water, It is easy to remove not only phosphorus ions but also anionic surfactants. (Effects of the Invention) According to the present invention, a polyamine based on a condensation polymer of dimethylamine and epichlorohydrin and having at least one nitrogen atom in the main chain and at least one hydroxyl group in the side chain per repeating unit. By blending a flocculant with an aluminum-based or aluminum-iron-based inorganic flocculant, it has become possible to provide a composite organic-inorganic liquid flocculant in one package. This liquid flocculant not only has excellent storage stability, but also has a combined flocculation effect that is maintained stably over a long period of time. (Example) The present invention will be explained with the following example. Example 1 and Comparative Example 1 A one-package composite liquid flocculant was prepared by mixing a liquid inorganic flocculant and a liquid cationic flocculant, and its storage stability was investigated. First, as a liquid inorganic flocculant (hereinafter referred to as LA),
LA of iron-containing aluminum sulfate prepared by the method described in Japanese Patent Publication No. 60-2885 (sample numbers FA-1 and FA-2), basic iron-containing sulfuric acid prepared by the method described in JP-A-60-14911 aluminum
LA (sample number BFA-1), LA of basic aluminum chloride prepared by the method described in Japanese Patent Publication No. 60-8973 (sample number BP-1), LA of aluminum sulfate with an Al 2 O 3 concentration of 8.0% ( Sample number A-1) and Al 2
LA of polyaluminum chloride (sample number P-1) with an O 3 concentration of 10% was prepared. The properties of these liquid inorganic flocculants are shown in Table 1.

【表】 上記各液体無機凝集剤(LA)に対し、ジメチ
ルアミンとエピクロルヒドリンとの縮重合体であ
り、比重1.16,PH3.5、粘度4520cps(25℃)、固形
分50重量%のポリアミン系高分子凝集剤ポリアミ
ン#907(試料番号PA−1)を、各LAのR2O3
に対し、固形分として第2表の配合割合(重量
比)で混合し、得られた夫々の液体組成物300ml
を合成樹脂性の半透明の密封可能な円筒容器(内
容積約500ml)に採り室温に6ケ月間放置し、そ
の間1ケ月毎に析出物の有無を肉眼で観察し貯蔵
安定性を調べた。 貯蔵安定性の評価は次の3段階に行つた。 ○ 6ケ月間を通して、全く析出物を生じない場
合、貯蔵安定性であり。 △ 3ケ月間経過後に析出物を生じた場合、貯蔵
安定性ややあり。 × 1ケ月経過の中で析出物を生じた場合、貯蔵
安定性全つたくなし。 また○印の液状組成物については、同時に粘度
(cps)を測定した。それらの結果を第2表に示し
た。 また比較例としてA社製のカチオン系LBでPH
4、粘度2800cps,固形分50%のポリエチレンイ
ミン(試料番号PE−1)について同様にして貯
蔵安定性を検討した。それらの結果を第2表に表
示した。 以上の結果から特にポリアミン系のカチオンの
高分子凝集剤がLA/LB比の広い範囲にわたつて
無機−有機複合のワンパツケージの液体凝集剤と
して長期にわたつて貯蔵安定性を示すことがわか
つた。 従つて、従来において両者を併用するとカチオ
ン系凝集剤が変質し、貯蔵安定性が損なわれ、実
用的なワンパツケージ型が得られなかつたことか
らすれば本実施例に用いたポリアミンは極めて好
適な組合せであることがよく理解される。 更には液状組成物の粘度からするとLA/LB比
として40/60乃至98/2、作業性、コスト等の実
用性からすると50/50の95/5、特に好ましくは
80/20乃至95/5の組成で用いれば良い。
[Table] For each of the above liquid inorganic flocculants (LA), it is a polyamine-based high-condensation polymer of dimethylamine and epichlorohydrin, with a specific gravity of 1.16, PH of 3.5, viscosity of 4520 cps (at 25°C), and solid content of 50% by weight. Molecular coagulant polyamine #907 (sample number PA-1) was mixed with the R 2 O 3 amount of each LA at the mixing ratio (weight ratio) shown in Table 2 as a solid content, and the resulting liquid compositions were as follows: 300ml
The sample was placed in a semi-transparent sealable cylindrical container made of synthetic resin (inner volume: approximately 500 ml) and left at room temperature for 6 months, during which time the presence or absence of precipitates was visually observed every month to examine storage stability. Evaluation of storage stability was carried out in the following three stages. ○ If no precipitates are formed for 6 months, it is storage stable. △ If precipitates are formed after 3 months, storage stability is somewhat poor. × If a precipitate is formed within 1 month, the storage stability is not good at all. In addition, for the liquid compositions marked with ○, the viscosity (cps) was measured at the same time. The results are shown in Table 2. In addition, as a comparative example, cationic LB manufactured by Company A was used to
4. The storage stability of polyethyleneimine (sample number PE-1) with a viscosity of 2800 cps and a solid content of 50% was examined in the same manner. The results are shown in Table 2. From the above results, it was found that polyamine-based cationic polymer flocculants in particular exhibit long-term storage stability as an inorganic-organic composite one-package liquid flocculant over a wide range of LA/LB ratios. . Therefore, considering that in the past, when both were used in combination, the cationic flocculant deteriorated, storage stability was impaired, and a practical one-package type could not be obtained, the polyamine used in this example is extremely suitable. It is well understood that it is a combination. Furthermore, in terms of the viscosity of the liquid composition, the LA/LB ratio is 40/60 to 98/2, and in terms of practicality such as workability and cost, it is particularly preferably 95/5 of 50/50.
A composition of 80/20 to 95/5 may be used.

【表】 実施例2及び比較例2 実施例1で調製した貯蔵安定性に優れたワンパ
ツケージの複合液体組成物について凝集試験を行
つた。 凝集試験方法 原水1000mlを1リツトル型ガラスビーカーに採
取し、ジヤーテスターにて急速攪拌(120rpm)
しながら、各試料を所定量添加し3分間攪拌しフ
ロツクを生成させた。その後緩速攪拌(60rpm)
を10分間行いフロツクを成長させ、得られたフロ
ツクの大きさを肉眼観察した。 また、このものを10分間静置した後、水面より
約2cm下の部分の上澄液を採り、濁度、PH、アル
カリ度および色度を測定した。 濁度102.4,PH7.48、アルカリ度55mg/の天
然の河川水1に対し、実施例1で調製した各
LA,LBについて、LA/LBの混合比90/10の液
体凝集剤を選んで、原水に対し10乃至60mg/の
範囲で添加し、それぞれ凝集試験を行つた。その
結果を第3表に示した。 また比較例として液体無機凝集剤FA−2,P
−1及びA−1について同様に試験した。その結
果を第3表に示した。 実施例3及び比較例3 濁度19,PH7.10、アルカリ度55mg/、色度64
の天然の河川水1に対し、実施例2と同様にし
て、実施例1で調製したそれぞれLA,LBについ
て、LA/LBの混合比90/10について、原水に対
し40乃至140mg/の添加範囲で同様に凝集試験
を行つた。その結果を第4表に示した。 比較例として液体無機凝集剤FA−1及びA−
1について同様に試験した。その結果を第4表に
示した。 実施例4及び比較例4 し尿処理場における活性汚泥法によつて得られ
た濁度20.4,PH7.65,COD32.9mg/,P14.7mg/
色度250のし尿2次処理水を3次処理するため
に実施例2と同様にして、原水1に対し、実施
例1で調製したそれぞれLA,LBについて、
LA/LBの混合比95/5,90/10及び80/20につ
いて、同様に原水に対し300乃至500mg/の添加
範囲で同様に凝集試験を行つた。 また3次処理の効果を評価するためCOD及び
リンイオンを上澄液について測定した。それらの
結果を第5表に示した。また比較のために液体無
機凝集剤FA−1,A−1,BP−1及びポリアミ
ン系凝集剤PA−1にういても同様に試験した。
それらの結果を第5表に示した。 実施例5及び比較例5 濁度19,PH7.3、色度64アルカリ度148mg/の
天然の河川水1にアニオン系の海面活性剤
(MBAS)を1.44mg/溶解させた原水に対し、
実施例1で調製したLA,LBについてそれぞれの
LA/LBの混合比90/10について実施例2と同様
の凝集試験を行ない、上澄液についてMBASの
除去液をMBASの残存量(mg/)で評価した。
その結果を第6表に示した。 以上の結果、第3,4,5及び6表から明らか
なように濁度、PH、アルカリ度等の性状の異なる
河川水、し尿処理場における高度処理等の原水に
対して本発明凝集剤は、ワンパツケージで優れた
凝集剤効果が得られることが判る。更に第5表に
明らかなように脱リン作用にも優れた効果を奏
し、第6表に明らかなように界面活性剤の除去作
用というような効果も特性として利用できること
が判つた。
[Table] Example 2 and Comparative Example 2 A flocculation test was conducted on the one-package composite liquid composition with excellent storage stability prepared in Example 1. Coagulation test method: Collect 1000ml of raw water in a 1 liter glass beaker and stir rapidly (120rpm) using a jar tester.
At the same time, a predetermined amount of each sample was added and stirred for 3 minutes to form a floc. Then stir slowly (60 rpm)
was performed for 10 minutes to grow flocs, and the size of the resulting flocs was observed with the naked eye. After allowing this product to stand for 10 minutes, the supernatant liquid was taken from a portion approximately 2 cm below the water surface, and the turbidity, pH, alkalinity, and chromaticity were measured. Each sample prepared in Example 1 was added to natural river water with a turbidity of 102.4, a pH of 7.48, and an alkalinity of 55 mg/1.
For LA and LB, a liquid flocculant with an LA/LB mixing ratio of 90/10 was selected and added to the raw water in a range of 10 to 60 mg/flocculant, and a flocculation test was conducted for each. The results are shown in Table 3. In addition, as a comparative example, liquid inorganic flocculant FA-2, P
-1 and A-1 were similarly tested. The results are shown in Table 3. Example 3 and Comparative Example 3 Turbidity 19, PH 7.10, alkalinity 55 mg/, chromaticity 64
For LA and LB prepared in Example 1 in the same manner as in Example 2, for natural river water 1 of A similar agglutination test was carried out. The results are shown in Table 4. Liquid inorganic flocculants FA-1 and A- as comparative examples.
1 was similarly tested. The results are shown in Table 4. Example 4 and Comparative Example 4 Turbidity 20.4, PH 7.65, COD 32.9 mg/, P 14.7 mg/ obtained by activated sludge method at a human waste treatment plant
In order to perform tertiary treatment of secondary treated human waste water with a chromaticity of 250, in the same manner as in Example 2, for raw water 1, for LA and LB prepared in Example 1,
A flocculation test was similarly conducted for LA/LB mixing ratios of 95/5, 90/10, and 80/20, with addition ranges of 300 to 500 mg per raw water. In addition, in order to evaluate the effect of the tertiary treatment, COD and phosphorus ions were measured in the supernatant. The results are shown in Table 5. For comparison, liquid inorganic flocculants FA-1, A-1, BP-1 and polyamine flocculant PA-1 were also tested in the same manner.
The results are shown in Table 5. Example 5 and Comparative Example 5 For raw water in which 1.44 mg/anionic sea surfactant (MBAS) was dissolved in natural river water 1 with turbidity 19, PH 7.3, chromaticity 64, alkalinity 148 mg/1,
Regarding LA and LB prepared in Example 1, each
An agglutination test similar to that in Example 2 was conducted using a LA/LB mixing ratio of 90/10, and the supernatant was evaluated in terms of the remaining amount of MBAS (mg/) in the MBAS removal solution.
The results are shown in Table 6. As is clear from Tables 3, 4, 5, and 6, the flocculant of the present invention is effective against river water with different properties such as turbidity, PH, and alkalinity, and raw water subjected to advanced treatment at human waste treatment plants. It can be seen that an excellent flocculant effect can be obtained in one package. Furthermore, as shown in Table 5, it has an excellent dephosphorizing effect, and as shown in Table 6, it was found that the effect of removing surfactants can also be utilized as a characteristic.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 又、LA/LB比と凝集剤効果についてその比が
特に好ましくは80/20乃至95/5であるが、第3
表に示すように特に90/10に特異点が見られるこ
とは、安定性、作業性、コスト等の観点から、よ
り実用性が高いといえる。 勿論、以上の実施例の結果から本発明の複合液
体凝集剤は工業廃水、下水道水に対しても検討さ
れることを示唆している。
[Table] Also, regarding the LA/LB ratio and flocculant effect, the ratio is particularly preferably 80/20 to 95/5, but the third
As shown in the table, the fact that a singularity is observed especially at 90/10 can be said to be more practical from the viewpoints of stability, workability, cost, etc. Of course, the results of the above examples suggest that the composite liquid flocculant of the present invention can also be considered for industrial wastewater and sewage water.

Claims (1)

【特許請求の範囲】 1 アルミ系又はアルミ−鉄系の液体無機凝集剤
に、ジメチルアミンとエピクロルヒドリンの縮重
合体を主体とし反復単位当り主鎖中に少なくとも
1個の窒素原子及び側鎖に少なくとも1個の水酸
基を有するポリアミン系凝集剤を、Al2O3重量又
はAl2O3−Fe2O3の合計重量に対して固形分とし
てAl2O3又はAl2O3−Fe2O3/ポリアミン系凝集
剤の重量比が40/60乃至98/2の範囲を満足する
量で配合したことを特徴とする液体凝集剤組成
物。 2 アルミ系の液体無機凝集剤がAl2O3重量濃度
が5乃至15重量%の範囲内にあるポリ塩化アルミ
ニウム凝集剤である特許請求の範囲第1項記載の
組成物。 3 アルミ−鉄系の液体無機凝集剤が、3成分組
成で表わして、SO3,Fe2O3及びAl2O3を下記式 (i) Cが12以下のとき S≧−0.25F+72.0 S≦100−4/3C (Aが2.5より小のとき) F≧4/3C−2.5 (Aが2.5乃至4.1+3/5Cのとき) S≦98.4−29/15C (Aが4.1+3/5Cより大のとき) A≧0.5 F≧2 (ii) Cが12を越えるとき S≧−0.25F+72.0 S≦84(Aが2.5より小のとき) F≧13.5(Aが2.5乃至11.3のとき) S≦75.2(Aが11.3より大のとき) A≧0.5 F≧2 [式中、S,F及びAは上記3成分の合計量当
りのSO3,Fe2O3及びAl2O3モル%を夫々表わし、
Cは溶液中のFe2O3及びAl2O3の合計重量%濃度
を表わす。] を満足する量で含有し且つFe2O3及びAl2O3の合
計重量%濃度Cが4乃至15%の範囲にある液体無
機凝集剤である特許請求の範囲第1項記載の組成
物。
[Scope of Claims] 1. An aluminum-based or aluminum-iron-based liquid inorganic flocculant containing at least one nitrogen atom in the main chain and at least one nitrogen atom in the side chain per repeating unit, mainly consisting of a condensation polymer of dimethylamine and epichlorohydrin. A polyamine flocculant having one hydroxyl group is added as a solid content to the weight of Al2O3 or the total weight of Al2O3 - Fe2O3 . A liquid flocculant composition, characterized in that a weight ratio of /polyamine flocculant is blended in an amount satisfying a range of 40/60 to 98/2. 2. The composition according to claim 1, wherein the aluminum-based liquid inorganic flocculant is a polyaluminum chloride flocculant having an Al 2 O 3 weight concentration in the range of 5 to 15% by weight. 3 The aluminum-iron based liquid inorganic flocculant is expressed as a three-component composition, SO 3 , Fe 2 O 3 and Al 2 O 3 as shown in the following formula (i) When C is 12 or less S≧-0.25F+72.0 S≦100-4/3C (When A is less than 2.5) F≧4/3C-2.5 (When A is between 2.5 and 4.1+3/5C) S≦98.4-29/15C (When A is less than 4.1+3/5C) A≧0.5 F≧2 (ii) When C exceeds 12 S≧−0.25F+72.0 S≦84 (When A is smaller than 2.5) F≧13.5 (When A is between 2.5 and 11.3) S≦75.2 (when A is greater than 11.3) A≧0.5 F≧2 [In the formula, S, F and A are SO 3 , Fe 2 O 3 and Al 2 O 3 mol% based on the total amount of the above three components respectively,
C represents the total weight percent concentration of Fe 2 O 3 and Al 2 O 3 in the solution. ] The composition according to claim 1, which is a liquid inorganic flocculant containing a satisfactory amount of Fe 2 O 3 and Al 2 O 3 and having a total weight % concentration C in the range of 4 to 15%. .
JP28927985A 1985-12-24 1985-12-24 Liquid flocculant composition Granted JPS62149311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28927985A JPS62149311A (en) 1985-12-24 1985-12-24 Liquid flocculant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28927985A JPS62149311A (en) 1985-12-24 1985-12-24 Liquid flocculant composition

Publications (2)

Publication Number Publication Date
JPS62149311A JPS62149311A (en) 1987-07-03
JPH0583282B2 true JPH0583282B2 (en) 1993-11-25

Family

ID=17741111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28927985A Granted JPS62149311A (en) 1985-12-24 1985-12-24 Liquid flocculant composition

Country Status (1)

Country Link
JP (1) JPS62149311A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2705661B1 (en) * 1993-05-24 1995-08-25 Rhone Poulenc Chimie Composition based on aluminum polychloride and iron salt, its method of preparation and its use in water treatment.
JPH02194803A (en) * 1989-01-23 1990-08-01 Taki Chem Co Ltd Flocculant
JP2010227887A (en) * 2009-03-27 2010-10-14 Nippon Rensui Co Ltd Wastewater treatment method and wastewater treatment apparatus
CN103232105A (en) * 2013-05-24 2013-08-07 西安益维普泰科工贸有限公司 Composite phosphorous removal agent for sewage treatment and preparation method thereof
CN103991941B (en) * 2014-05-22 2016-05-25 西安益维普泰科工贸有限公司 A kind of compound sewage chemical dephosphorization medicament and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068979A (en) * 1973-10-23 1975-06-09
JPS5982911A (en) * 1982-11-01 1984-05-14 Kurita Water Ind Ltd Flocculant composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068979A (en) * 1973-10-23 1975-06-09
JPS5982911A (en) * 1982-11-01 1984-05-14 Kurita Water Ind Ltd Flocculant composition

Also Published As

Publication number Publication date
JPS62149311A (en) 1987-07-03

Similar Documents

Publication Publication Date Title
US4655934A (en) Dimeric aluminum compounds and their use
KR101113178B1 (en) Basic polyaluminum chloride and its manufacturing method for preparing a basic polyaluminum chloride prepared by
US4769155A (en) Turbidity reduction
KR101640368B1 (en) Method of preparation for coagulant contains low basicity and treating method of water/wastewater using the same
US6656377B2 (en) Inorganic composition, process of preparation and method of use
KR102263203B1 (en) Method of manufacturing coagulant composition for water treatment
US6929759B2 (en) Composition of matter and its use as a coagulant and flocculent
Hassan et al. Pre-treatment of palm oil mill effluent (POME): a comparison study using chitosan and alum
KR101813511B1 (en) Cohesive agent comprising sodium aluminum silicate for water-treatment
CN109928475B (en) Composite water purifying agent and preparation method and application thereof
JPH0583282B2 (en)
KR100748601B1 (en) Manufacturing method of high basic polyaluminum chloride
KR101842094B1 (en) Cohesive agent and pH adjustment agent comprising sodium aluminum silicate for water-treatment
KR20010103460A (en) Producting Method of Flocculant Composition for Water Treatment and Flocculant Composition Thereby
JPH0356119B2 (en)
Hassan et al. Removal of boron from industrial wastewater by chitosan via chemical precipitation
KR0149124B1 (en) Cohesive agent composition
KR20220095338A (en) Polyaluminum chloride-based coagulant for water treatment with improved performance for removing suspended matter and total phosphorus and method for manufacturing the same
KR960008085B1 (en) Coagulant preparation to remove trihalomethane and its precursors
KR940011523B1 (en) Compound for clarifying of water
AU602021B2 (en) Water treatment compositions and processes
KR20170133760A (en) Coagulant-flocculant for wastewater treatment including quaternary ammonium tannate, and manufacturing method of the same
CA1055802A (en) Cationic flocculants for raw water clarification
RU2114787C1 (en) Water treatment process
CN115702122A (en) Use of chloramines and cationic polymers in water treatment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees