JPH0583072B2 - - Google Patents
Info
- Publication number
- JPH0583072B2 JPH0583072B2 JP15568488A JP15568488A JPH0583072B2 JP H0583072 B2 JPH0583072 B2 JP H0583072B2 JP 15568488 A JP15568488 A JP 15568488A JP 15568488 A JP15568488 A JP 15568488A JP H0583072 B2 JPH0583072 B2 JP H0583072B2
- Authority
- JP
- Japan
- Prior art keywords
- prepreg
- film
- resin
- molded
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
Description
〔技術分野〕
本発明は、耐衝撃性に優れ衝撃時のクラツク伝
播を抑制する能力のある成形物を製造するための
中間体、及び、該成形物に関するものである。
更に詳しくは、高強度炭素繊維等を強化材とし
た場合に、マトリツクス樹脂の優れた機械的特性
及び熱的特性を損ねることなく、靱性(タフネ
ス)が付与された成形物を与えるための中間体、
及び、該成形物に関するものである。
〔従来技術及び問題点〕
近年、炭素繊維、芳香族ポリアミド繊維等を強
化材として用いた複合材料は、その高い比強度、
比剛性を利用して、航空機等の構造材として多く
用いられてきている。
これらの複合材料は、強化繊維にマトリツクス
樹脂が含浸された中間製品であるプリプレグか
ら、加熱、加圧といつた成形・加工工程を経て実
際に用いられる場合が多い。
プリプレグにおけるマトリツクス樹脂として
は、熱硬化性樹脂としてエポキシ樹脂、ビスマレ
イミド樹脂、不飽和ポリエステル樹脂、ポリイミ
ド樹脂等が用いられ、また、最近ではポリエーテ
ルエーテルケトンといつた熱可塑性樹脂も用いら
れるようになつてきており、いずれの樹脂を用い
た場合も、複合材料は、その優れた耐熱性、機械
的特性、寸法安定性、耐薬品性、耐候性が特徴と
されていた。
熱可塑樹脂をマトリツクス樹脂とした場合、良
好な耐熱性、機械的特性に加え複合材料が衝撃特
性も優れていることが期待されるが、プリプレグ
としての取扱性、例えばプリプレグのドレープ性
に乏しいために、現状の成形加工技術では取扱い
にくい材料であり、複雑形状物への適用が難しい
状況にある。
一方、エポキシ樹脂系プリプレグのように熱硬
化性樹脂をマトリツクス樹脂に用いた場合、耐熱
性、機械的特性に良好な性能を示すことが認めら
れていたが、反面、マトリツクス樹脂の伸度が低
く、脆いために複合材料の靱性、耐衝撃性に劣る
ことが指摘され、その改善が求められてきた。
特に、これらのプリプレグから作られた複合材
料は、これを航空機一次構造材の用途に使用する
場合、離着陸時の小石の跳上げ、整備時の工具の
落下等による外部からの衝撃に耐える性能を有す
る必要があるが、耐熱性を落さずに耐衝撃性を改
善することは、これまで困難視されていた。
耐衝撃性のあるプリプレグに改善する場合、
炭素繊維等の強化材自身の伸度を向上させる、
プリプレグに用いられるマトリツクス樹脂の靱性
(タフネス)を上げる、強化繊維/マトリツク
ス樹脂の界面を最適化する、ことが重要なポイン
トであると指摘され研究が進められてきたが、こ
の他に積層材の高次構造を制御することも衝撃特
性の向上とクラツク伝播の抑制に重要であると考
えられる。
プリプレグ用マトリツクス樹脂を高靱性化し、
複合材料の耐衝撃性を向上させる技術としては、
特開昭58−120639号、同62−250021号、同62−
36421号、同62−57417号の公報等で知られるよう
に、マトリツクス樹脂に特定のエラストマー成
分、高分子量ゴム成分、熱可塑性樹脂を配合し、
複合材料の靱性(衝撃特性)を高めたプリプレグ
組成物も開発されているが、複合材料の耐衝撃性
に関しては、今一歩満足ゆくものではなかつた。
強化繊維/マトリツクス樹脂の界面を最適化す
ることに関しては、繊維の表面処理条件、集束剤
の種類を選択する等の研究が行われているが、ま
だ研究段階にあり所望の効果が得られていない。
複合材料の高次構造を制御し、複合材料の耐衝
撃性を改良する技術としては、強化繊維の素材形
態をコントロールする方法、積層間に異種材料を
挿入する方法等が考えられる。等力的な材料にす
るため、強化素材に三次元織物を使用する等の試
みもなされているが、今のところ、織物の製造が
難しい、樹脂含浸が悪い、繊維体積含有率のコン
トロールが難しい等の問題点が多く、実用面では
顕著な効果を発揮させるまでには至つていない。
複合材料の積層間に異種材料を挿入する技術に
関しては、特開昭51−33162号、同61−135712号
の公報に示されるように、プリプレグの表面にス
クリーム・クロスを張り合わせた材料が知られて
いるが、この場合のスクリム・クロスは、むしろ
プリプレグの横割れ防止や繊維乱れを防止すると
いつた、プリプレグ自身の補強的な目的のため使
用されている。
複合材料の積層間に異種材料を挿入して、複合
材料の衝撃特性を向上させる技術として、特開昭
60−63229号、同60−231738号の公報に示される
ようなインターリーフ技術がある。
インターリーフ材料としては、厚さ0.03〜0.06
mmの可撓性に優れたエポキシ樹脂層を用いるのが
一般的であるが、厚さ0.01〜0.05mmの例えば、ポ
リエーテルイミド、ポリエーテルサルホン、ポリ
エーテルエーテルケトンのフイルムといつた熱可
塑性樹脂フイルムを使用することも可能である。
インターリーフ材料に可撓性に優れたエポキシ
樹脂、例えばエラストマー成分の多いエポキシ樹
脂層を用いた場合、衝撃特性の向上を図るために
はエラストマー成分を多量配合することが必要で
あるが、そうすると、エラストマー成分の種類や
量により複合材料の耐熱性や機械的特性の低下を
招くことがあり、その種類や量に制限が加えられ
るため、充分な効果を発揮できないことが多い。
複合材料の積層間に熱可塑性樹脂フイルムを挿
入した場合、複合材料の耐衝撃性を向上させる効
果は認められるが、隣接した層と層との間が樹脂
フイルムにより完全に遮断されるため、マトリツ
クス樹脂と熱可塑性樹脂フイルムとの接着性に問
題があつたり、積層間方向の樹脂フローが遮断さ
れるため、不均一な樹脂フローが起こり、成形物
の変形を招いたり、又は、熱可塑性樹脂フイルム
が比較的厚いために、マトリツクス樹脂に対する
熱可塑性樹脂フイルムの体積割合が高くなり、そ
れに伴なう複合材料性能(コンポジツト性能)の
低下を引き起こす場合もあつた。
〔発明の目的〕
本発明の目的は、上記の如き問題点を克服し、
優れた耐熱性に加え、靱性・衝撃強さに優れ、衝
撃時のクラツク伝播を抑制する能力を有する成形
物を複合材料に付与させるプリプレグ、及び、該
成形物を提供すること、敷えんすると、熱硬化性
のマトリツクス樹脂を用いたプリプレグにおい
て、プリプレグの表面にマトリツクス樹脂とは異
質の材質からなる薄い層を設け、成形後の複合材
料の積層間に異種材料を挿入することで、衝撃強
さに優れ、衝撃時のクラツク伝播を抑制する能力
のあるホツトメルトタイプ繊維強化複合材料用成
形物中間体、及び、これから得られる成形物を提
供することにある。
〔発明の構成〕
本発明は、下記の請求項(1)及び同(2)に記載され
たとおりのものである。
(1) 強化繊維を基材とした熱硬化性樹脂系プリプ
レグに、通孔を有する熱可塑性樹脂フイルムを
貼着してなる繊維強化樹脂積層成形物中間体。
(2) 積層間に、通孔を有する熱可塑性樹脂フイル
ムが介在してなる繊維強化樹脂積層成形物。
本発明の好適な実施態様は、下記のとおりであ
る。
(a) 強化繊維として、1.3%以上の伸度を有する
炭素繊維を用いる前記請求項1記載の繊維強化
樹脂積層成形物中間体。
(b) プリプレグの熱硬化性樹脂が熱可塑性樹脂フ
イルムの通孔を通して連続層を形成している前
記請求項1記載の繊維強化樹脂積層成形物中間
体。
(c) ガラス転移温度が100℃以上の熱可塑性樹脂
フイルムである前記請求項1記載の繊維強化樹
脂積層成形物中間体。
(d) 通孔が穿孔又はスリツトである前記請求項1
記載の繊維強化樹脂積層成形物中間体。
(e) ひとつの穿孔の面積が0.5〜50mm2である前記
請求項1記載の繊維強化樹脂積層成形物中間
体。
(f) スリツトされたフイルム幅が5〜20mmであ
り、スリツトの間隙が0.1〜1mmである前記請
求項1記載の繊維強化樹脂積層成形物中間体。
(g) 熱可塑性樹脂フイルムの厚さが1〜30μmで
ある前記請求項1記載の繊維強化樹脂積層成形
物中間体。
本発明の成形物は、耐衝撃性に優れ、しかも発
生したクラツクを伝播させにくい特性を有するも
のである。
本発明に用いられる強化繊維は、1.3%以上の
伸度を有する炭素繊維、ガラス繊維、芳香族ポリ
アミド繊維が好ましい。通常、ガラス繊維、芳香
族ポリアミド繊維は、2.5%以上の伸度を有して
いる。炭素繊維に伸度1.3%未満のものを使用し
た場合、複合材料の衝撃特性がやや不充分となる
きらいがある。
特に本発明においては、炭素繊維、とりわけ高
弾性炭素繊維を強化材とした場合に効果が大き
い。
炭素繊維としては、アクリル系炭素繊維、ピツ
チ系炭素繊維等特に制限はなく、引張り強さ350
Kgf/mm2、引張弾性率24T/mm2のものが通常用い
られる。複合材料の機械的特性を向上させるた
め、引張り強さ400Kgf/mm2以上、弾性率30T/
mm2レベルの、いわゆる中弾性高強度炭素繊維を用
いることもできる。
これら強化繊維を基材としたプリプレグは、強
化繊維の一方向シート、織物、短繊維マツト等の
基材の繊維間に未硬化の熱硬化性樹脂組成物を含
浸させたものである。
マトリツクス樹脂としての熱硬化性樹脂組成物
は、エポキシ樹脂、ビスマレイミド樹脂、不飽和
ポリエステル樹脂、ポリイミド樹脂等であり、樹
脂組成物の含有率は30〜50体積%が適当である。
樹脂の変性等により、マトリツクス樹脂の伸度が
向上した場合には、成形物は発生したクラツクを
伝播させにくい特性を有するようになる。
基本となる熱硬化性樹脂組成物のプリプレグ
は、従来知られた方法にて製造することができ
る。
本発明における熱可塑性樹脂フイルムは、例え
ば、ポリエーテルサルホン、ポリエーテルイミ
ド、ポリエーテルエーテルケトン、ポリイミドの
フイルム等である。これらのフイルムは延伸によ
る配向の少ないものが好ましいが、その表面に物
理的又は化学的なエツチング処理を施してもよ
い。特にガラス転移温度が100℃以上の熱可塑性
樹脂のフイルムが好ましく、フイルムの厚さは1
〜30μmのものが好適である。フイルムにおける
通孔は、穿孔又はスリツトである。穿孔の形状
は、丸、楕円、三角、多角等特に制限はない。ス
リツトの場合は、フイルムに設けられた切り込み
であつて、スリツトの方向はフイルムの巻方向に
連続していることが好ましい。
本発明を図面によつて説明する。
図面において第1図は、本発明の成形物中間体
の斜視図を示したものである。
第2図は、本発明成形物中間体のフイルム部の
平面図イ〜ニを示したものである。
第3図は、本発明の成形物中間体の断面図を模
式的に示したものである。
第1図における1はプリプレグ、2はフイルム
である。プリプレグ1は繊維一方向シート、織
物、ランダムマツト等の繊維シートに繊維間に未
硬化の熱硬化性樹脂を含浸、保持させた物であ
り、熱硬化性樹脂としては、前記のエポキシ樹
脂、ビスマレイミド樹脂、不飽和ポリエステル樹
脂、ポリイミド樹脂等である。
フイルム2は熱可塑性樹脂フイルムである。フ
イルムには通孔を有する。この通孔の形態を例示
したのが第2図である。第2図において、イは円
形通孔、ロは長円形通孔、ハは角形通孔、ニはス
リツト(通孔に抜き幅のない切り込み)をそれぞ
れ示す。
このような通孔のあるフイルムをプリプレグに
貼着し、樹脂にフイルムの通孔を通して連続層を
形成させた状態を、模式的に示したのが第3図で
ある。第3図においてプリプレグ1は主として繊
維1−1と樹脂1−2とにて構成されており、樹
脂1−2はフイルム2の通孔2−1を通しフイル
ムの裏面に回り込み連続層を形成している。
通孔2−1を有するフイルム2はプリプレグ1
の両面に貼着してもよいが、通常は片面にのみ貼
着される。
従来プリプレグにフイルムを貼着することは行
われていたが、これはプリプレグ保護のためであ
り、積層時には、フイルムをはがしてプリプレグ
のみ積層して成形物としていた。
しかし、本発明の成形物中間体は、フイルムを
はがすことなく成形され成形物の積層間にフイル
ムが介在した成形物とされる。
本発明の成形物中間体は、積層に際し全層を本
発明成形中間体にて構成する必要はなく、フイル
ムの貼着のない通常のプリプレグと組合せて積層
することもできる。この際、本発明成形物中間体
を成形物の表面層になるよう積層することが好ま
しい。
このような成形物は、耐衝撃性に優れ、しかも
積層間の剥離を起こしにくい成形物である。
本発明の成形物中間体は、例えば以下の方法に
より製造することができる。
先ず、ホツトメルト法、又は溶剤法による通常
の方法によつてプリプレグを調製する。次いで、
通孔を有するフイルムを該プリプレグと合せ、プ
レート、ローラー等にて加圧し一体化させる。こ
の際、加熱することもできるが、加熱温度は、60
〜120℃とするのがよい。
〔発明の効果〕
本発明により得られた成形物中間体及び成形物
は、優れた機械的特性及び熱的特性と靱性(タフ
ネス)が兼備されたものであり、しかも発生した
クラツクを伝播させにくい特性を有するため、航
空機構造材料、宇宙構造物材料等へ好適に使用さ
れる。
〔実施例及び比較例〕
実施例1及び比較例1
後掲第1表に示す樹脂組成物からなる炭素繊維
一方向プリプレグを、ホツトメルト法にて作つ
た。用いた炭素繊維(CF)は、ベスフアイト
IM−500(東邦レーヨン社製、引張り強さ500Kg
f/mm2、弾性率30T/mm2)である。プリプレグの
CF目付は150g/m2、樹脂含有率32重量%であつ
た。
一方、直径2mmφの通孔を全面に、面積比で20
%有するところの厚さ5μmのポリエーテルイミド
フイルム(略称PEI、ガラス転移温度216℃)を
準備した。
上記プリプレグとフイルムとを重ね、80℃のホ
ツトローラー間に通し両者を貼着し、成形物中間
体を得た。
この成形物中間体より、所定の寸法及び枚数の
小片をカツト、積層し、オートクレープ成形によ
り昇温速度2℃/分、180℃で2時間の効果条件
で硬化させ、成形板を作成した。これより試験片
を切りだし、0°層間せん断強さ、0°圧縮強さ、
1500in−lb/in衝撃後の圧縮強さを測定したとこ
ろ、第1表に示す結果を得た。
また、比較のため、実施例1と同様にして、第
1表に示す樹脂組成物からなる炭素繊維一方向プ
リプレグを作つた。ポリエーテルイミドフイルム
を貼着させないで、このプリプレグから、同様な
条件で成形板を作成し、成形板について試験を行
つた。
第1表に示す物性から、実施例1の成形板は、
比較例1に比べ、0°層間せん断強さ、0°圧縮強さ
に強度差は認められないものの、1500in−lb/in
衝撃後の圧縮強さが高く、耐衝撃性に優れること
が明らかとなつた。
実施例2及び比較例2
第1表に示す樹脂組成物からなる炭素繊維一方
向プリプレグを、実施例1と同様にして作り、プ
リプレグに貼着させる熱可塑性樹脂フイルムとし
て、厚さ5μmのポリエーテルイミドフイルム(略
称PEI、ガラス転移温度216℃)を10mmのスリツ
トテープ状で、テープ間の隙間が0.5〜1mmにな
るようにプリプレグ表面に並べ、80℃のホツトロ
ーラー間に通し両者を貼着させ、成形物中間体を
得た。
この成形物中間体より、実施例1と同様にして
成形板を作成し、0°層間せん断強さ、0°圧縮強
さ、1500in−lb/in衝撃後の圧縮強さを測定した
ところ、第1表に示す結果を得た。
また、比較のため、実施例2と同様にして、プ
リプレグを作つた。フイルム貼着をしないで、こ
のプリプレグのみを用い、同様にして成形を行
い、成形板についてコンポジツト試験を行つた。
第1表に示すように、実施例2の成形板は、比
較例2に比し、0°層間せん断強さ、0°圧縮強さに
強度差は認められないものの、1500in−lb/in衝
撃後の圧縮強さが高く、耐衝撃性に優れることが
明らかとなつた。
実施例3及び比較例3
第1表に示す樹脂組成物からなる炭素繊維一方
向プリプレグを、実施例1と同様にして作り、プ
リプレグに貼着させる熱可塑性樹脂フイルムとし
て、全面に施された長方形の通孔の面積が25mm2
で、面積比が50%を有するところの厚さ10μmの
ポリエーテルサルホンフイルム(略称PES、ガラ
ス転移温度223℃)をプリプレグ表面に並べ、80
℃のホツトローラ間に通し両者を貼着させ、成形
物中間体を得た。
この成形物中間体より、実施例1と同様に成形
準備を行つた後、オートクレーブ成形により昇温
速度2℃/分、130℃で1.5時間の硬化条件で硬化
させ、成形板を作成した。成形板について0°層間
せん断強さ、0°圧縮強さ、1500in−lb/in衝撃後
の圧縮強さを測定したところ、第1表に示す結果
を得た。
また、比較のため、実施例3と同様にしてプリ
プレグを作つた。フイルム貼着をしないで、この
プリプレグのみを用い、同様にして成形を行い、
成形板について試験を行つた。
第1表に示すように、実施例3の成形板は、比
較例3に比し、0°層間せん断強さ、0°圧縮強さに
強度差は認められないものの、1500in−lb/in衝
撃後の圧縮強さが高く、耐衝撃性に優れることが
明らかとなつた。
実施例4及び比較例4
第1表に示す樹脂組成物からなる炭素繊維一方
向プリプレグを、実施例1と同様にして作り、プ
リプレグに貼着させる熱可塑性樹脂フイルムとし
て、厚さ5μmのポリエーテルエーテルケトンフイ
ルム(略称PEEK、ガラス転移温度143℃)を5
mm幅のスリツトテープ状で、テープ間の隙間が
0.5〜1mmになるようにプリプレグ表面に並べ、
80℃のホツトローラ間に通し両者を貼着させ、成
形物中間体を得た。
この成形物中間体より、実施例1と同様にして
成形板を作成し、0°層間せん断強さ、0°圧縮強
さ、1500in−lb/in衝撃後の圧縮強さを測定した
ところ、第1表に示す結果を得た。
また、比較のため、実施例4と同様にしてプリ
プレグを作つた。フイルムを貼着しないで、この
プリプレグのみを用い、同様にして成形を行い、
成形板について試験を行つた。
第1表に示すように、実施例4の成形板は、比
較例4に比し、0°層間せん断強さ、0°圧縮強さに
強度差は認められないものの、1500in−lb/in衝
撃後の圧縮強さが高く、耐衝撃性に優れることが
明らかとなつた。
実施例5及び比較例5
実施例1と同様にして作られた炭素繊維一方向
プリプレグ(プリプレグのCF目付は150g/m2、
樹脂含有率36重量%)に、直径2mmφの通孔を全
面に、面積比で20%有するところの厚さ10μmの
ポリエーテルイミドフイルム(略称PEI、ガラス
転移温度216℃)をプリプレグと表面に並べ、80
℃のホツトローラ間に通し両者を貼着させ、成形
物中間体を得た。
また、比較のため、通孔のない同種のフイルム
(厚さ8μm)をプリプレグ表面に並べ、同じよう
にして成形中間体を得た。
二種の成形中間体は、成形後の繊維体積含有率
をコントロール(60体積%を目標)するため、成
形硬化時にプリプレグ中の5〜10重量%の樹脂成
分を流し出させる方式で成形を行い(硬化条件
は、実施例1と同様)、成形板を作成した。
実施例5の場合は、成形時に樹脂成分が目標通
りに流れ出し、繊維体積含有率のコントロールさ
れた比較的厚みの少ない良好な成形板であつた
が、比較例5の場合は、成形板中央部付近の樹脂
のフローが殆どなく、繊維体積含有率のコントロ
ールされていない、いびつな成形板となり、機械
的特性も良好なものではなかつた。
実施例6〜10及び比較例6〜10
第2表に示す樹脂組成物で実施例1と同様にし
て炭素繊維一方向プリプレグを作り、第2表に示
す通孔のある熱可塑性樹脂フイルムをプリプレグ
表面に並べ、80℃のホツトローラ間に通し両者を
貼着させ、成形物中間体を得た。
この成形物中間体より、第2表に示す成形条件
で成形板を作成し、成形板について0°層間せん断
強さ、0°圧縮強さ、1500in−lb/in衝撃後の圧縮
強さを測定したところ、第2表に示す結果を得
た。
また、比較例6〜10では、実施例6〜10と同様
にしてプリプレグを作つた。フイルム貼着をしな
いで、プリプレグのみを用い、同様にして成形を
行い、成形板について試験を行つた。
第2表に示すように、実施例6〜10の成形板
は、比較例6〜10に比べ、0°層間せん剪断強さ、
0°圧縮強さに強度差は認められないものの、
1500in−lb/in衝撃後の圧縮強さが高く、耐衝撃
性に優れることが明らかとなつた。
[Technical Field] The present invention relates to an intermediate for producing a molded product having excellent impact resistance and the ability to suppress crack propagation upon impact, and to the molded product. More specifically, it is an intermediate for providing molded products with toughness without impairing the excellent mechanical and thermal properties of matrix resin when high-strength carbon fiber or the like is used as a reinforcing material. ,
The present invention also relates to the molded product. [Prior art and problems] In recent years, composite materials using carbon fibers, aromatic polyamide fibers, etc. as reinforcing materials have been developed due to their high specific strength,
Due to its specific stiffness, it has been widely used as a structural material for aircraft etc. These composite materials are often actually used after forming a prepreg, which is an intermediate product in which reinforcing fibers are impregnated with a matrix resin, through molding and processing steps such as heating and pressurization. As matrix resins in prepreg, thermosetting resins such as epoxy resins, bismaleimide resins, unsaturated polyester resins, and polyimide resins are used, and recently thermoplastic resins such as polyether ether ketone have also been used. No matter which resin is used, composite materials are characterized by their excellent heat resistance, mechanical properties, dimensional stability, chemical resistance, and weather resistance. When a thermoplastic resin is used as a matrix resin, it is expected that the composite material will have good impact properties in addition to good heat resistance and mechanical properties. Moreover, it is a material that is difficult to handle with current molding technology, making it difficult to apply it to complex-shaped objects. On the other hand, when a thermosetting resin such as an epoxy resin prepreg is used as a matrix resin, it has been recognized that it shows good performance in terms of heat resistance and mechanical properties, but on the other hand, the elongation of the matrix resin is low. It has been pointed out that composite materials have inferior toughness and impact resistance due to their brittleness, and improvements have been sought. In particular, when composite materials made from these prepregs are used as primary structural materials for aircraft, they must have the ability to withstand external impacts such as those caused by pebbles being thrown up during takeoff and landing, and tools falling during maintenance. However, it has been considered difficult to improve impact resistance without reducing heat resistance. When improving impact resistant prepreg,
Improving the elongation of reinforcing materials such as carbon fiber,
Increasing the toughness of the matrix resin used in prepreg and optimizing the reinforcing fiber/matrix resin interface have been pointed out as important points, and research has been progressing. Controlling the higher-order structure is also considered important for improving impact properties and suppressing crack propagation. By increasing the toughness of the matrix resin for prepreg,
Technologies to improve the impact resistance of composite materials include:
JP-A-58-120639, JP-A No. 62-250021, JP-A No. 62-
As known from publications such as No. 36421 and No. 62-57417, a matrix resin is blended with a specific elastomer component, a high molecular weight rubber component, and a thermoplastic resin.
Although prepreg compositions with improved toughness (impact properties) of composite materials have been developed, the impact resistance of composite materials has not yet been satisfactory. Regarding optimizing the reinforcing fiber/matrix resin interface, research is being conducted on the surface treatment conditions of the fibers and the selection of the type of sizing agent, but it is still at the research stage and the desired effect has not yet been obtained. do not have. Possible techniques for controlling the higher-order structure of a composite material and improving its impact resistance include a method of controlling the material form of reinforcing fibers, and a method of inserting different materials between laminated layers. Attempts have been made to use three-dimensional fabrics as reinforcing materials to create uniform materials, but so far the fabrics are difficult to manufacture, resin impregnation is poor, and it is difficult to control the fiber volume content. There are many problems such as these, and it has not yet reached the point where it has a significant effect in practical terms. Regarding the technology of inserting different materials between the laminated layers of composite materials, materials in which scream cloth is pasted on the surface of prepreg are known, as shown in Japanese Patent Application Laid-Open Nos. 51-33162 and 61-135712. However, the scrim cloth in this case is rather used for the purpose of reinforcing the prepreg itself, such as preventing transverse cracking of the prepreg and preventing fiber disorder. Japanese Patent Laid-Open Publication No. 2003-19911 has developed a technology to improve the impact properties of composite materials by inserting different materials between the laminated layers of composite materials.
There is an interleaf technique as shown in the publications No. 60-63229 and No. 60-231738. As interleaf material, thickness 0.03~0.06
It is common to use a highly flexible epoxy resin layer with a thickness of 0.01 to 0.05 mm, but thermoplastic films such as polyetherimide, polyether sulfone, and polyether ether ketone films with a thickness of 0.01 to 0.05 mm are used. It is also possible to use resin films. When using an epoxy resin with excellent flexibility as an interleaf material, for example, an epoxy resin layer containing a large amount of elastomer component, it is necessary to incorporate a large amount of elastomer component in order to improve the impact properties. Depending on the type and amount of the elastomer component, the heat resistance and mechanical properties of the composite material may deteriorate, and because restrictions are placed on the type and amount, sufficient effects are often not achieved. When a thermoplastic resin film is inserted between the laminated layers of a composite material, it is effective to improve the impact resistance of the composite material, but since the resin film completely blocks adjacent layers, the matrix There may be problems with the adhesion between the resin and the thermoplastic resin film, or the flow of resin in the direction between the laminated layers may be blocked, resulting in uneven resin flow, leading to deformation of the molded product, or the thermoplastic resin film may be damaged. Since the film is relatively thick, the volume ratio of the thermoplastic resin film to the matrix resin becomes high, which sometimes causes a corresponding decrease in composite material performance. [Object of the invention] The object of the present invention is to overcome the above-mentioned problems,
To provide a prepreg that imparts a molded product to a composite material that has excellent heat resistance, excellent toughness and impact strength, and has the ability to suppress crack propagation during impact, and to provide the molded product, In prepregs using thermosetting matrix resin, impact strength is improved by providing a thin layer made of a material different from the matrix resin on the surface of the prepreg, and inserting the different material between the laminated layers of composite material after molding. An object of the present invention is to provide a molded intermediate for a hot melt type fiber-reinforced composite material, which has excellent properties and the ability to suppress crack propagation upon impact, and a molded product obtained therefrom. [Structure of the Invention] The present invention is as described in claims (1) and (2) below. (1) A fiber-reinforced resin laminate molded intermediate formed by adhering a thermoplastic resin film having through holes to a thermosetting resin prepreg based on reinforcing fibers. (2) A fiber-reinforced resin laminate molded product in which a thermoplastic resin film having through holes is interposed between the laminates. Preferred embodiments of the invention are as follows. (a) The fiber-reinforced resin laminate molded intermediate according to claim 1, wherein carbon fibers having an elongation of 1.3% or more are used as reinforcing fibers. (b) The fiber-reinforced resin laminate molded intermediate according to claim 1, wherein the thermosetting resin of the prepreg forms a continuous layer through the through holes of the thermoplastic resin film. (c) The fiber-reinforced resin laminate molded intermediate according to claim 1, which is a thermoplastic resin film having a glass transition temperature of 100° C. or higher. (d) Claim 1, wherein the through hole is a perforation or a slit.
The fiber-reinforced resin laminate molded product intermediate described above. (e) The fiber-reinforced resin laminate molded intermediate according to claim 1, wherein the area of each perforation is 0.5 to 50 mm2 . (f) The fiber-reinforced resin laminate molded intermediate according to claim 1, wherein the slit film has a width of 5 to 20 mm and a gap between the slits of 0.1 to 1 mm. (g) The fiber-reinforced resin laminate molded intermediate according to claim 1, wherein the thermoplastic resin film has a thickness of 1 to 30 μm. The molded product of the present invention has excellent impact resistance and has the property that cracks that occur are difficult to propagate. The reinforcing fibers used in the present invention are preferably carbon fibers, glass fibers, or aromatic polyamide fibers having an elongation of 1.3% or more. Glass fibers and aromatic polyamide fibers usually have an elongation of 2.5% or more. If carbon fiber with an elongation of less than 1.3% is used, the impact properties of the composite material tend to be somewhat insufficient. Particularly in the present invention, the effect is great when carbon fibers, particularly high modulus carbon fibers, are used as the reinforcing material. Carbon fibers are not particularly limited, such as acrylic carbon fibers and pitch carbon fibers, and have a tensile strength of 350.
Kgf/mm 2 and tensile modulus of 24T/mm 2 are usually used. In order to improve the mechanical properties of the composite material, the tensile strength is 400Kgf/ mm2 or more and the elastic modulus is 30T/
It is also possible to use so-called medium-modulus high-strength carbon fibers of mm 2 level. These prepregs based on reinforcing fibers are prepared by impregnating an uncured thermosetting resin composition between the fibers of a base material such as a unidirectional sheet of reinforcing fibers, a woven fabric, or a short fiber mat. The thermosetting resin composition as the matrix resin is an epoxy resin, a bismaleimide resin, an unsaturated polyester resin, a polyimide resin, etc., and the content of the resin composition is suitably 30 to 50% by volume.
If the elongation of the matrix resin is improved due to resin modification or the like, the molded product will have characteristics that make it difficult for cracks to propagate. The basic prepreg of the thermosetting resin composition can be manufactured by a conventionally known method. Examples of the thermoplastic resin film in the present invention include films of polyether sulfone, polyetherimide, polyether ether ketone, and polyimide. These films preferably have little orientation due to stretching, but their surfaces may be subjected to physical or chemical etching treatment. In particular, a thermoplastic resin film with a glass transition temperature of 100°C or higher is preferred, and the film thickness is 1
~30 μm is preferred. The holes in the film are perforations or slits. The shape of the perforation is not particularly limited and may be round, oval, triangular, polygonal, etc. In the case of a slit, it is a notch provided in the film, and the direction of the slit is preferably continuous in the winding direction of the film. The present invention will be explained with reference to the drawings. In the drawings, FIG. 1 shows a perspective view of the molded product intermediate of the present invention. FIG. 2 shows plan views A to D of the film portion of the molded intermediate of the present invention. FIG. 3 schematically shows a cross-sectional view of the molded product intermediate of the present invention. In FIG. 1, 1 is a prepreg, and 2 is a film. The prepreg 1 is made by impregnating and retaining an uncured thermosetting resin between the fibers of a fiber sheet such as a unidirectional fiber sheet, a woven fabric, or a random mat. These include maleimide resin, unsaturated polyester resin, polyimide resin, etc. Film 2 is a thermoplastic resin film. The film has holes. FIG. 2 shows an example of the form of this through hole. In Fig. 2, A shows a circular through hole, B shows an oval through hole, C shows a rectangular through hole, and D shows a slit (a cut with no width in the through hole). FIG. 3 schematically shows a state in which a film with such holes is attached to a prepreg and a continuous layer is formed by passing the holes in the film through the resin. In FIG. 3, the prepreg 1 is mainly composed of fibers 1-1 and resin 1-2, and the resin 1-2 passes through the through holes 2-1 of the film 2 and wraps around the back side of the film to form a continuous layer. ing. The film 2 having the through hole 2-1 is the prepreg 1
Although it may be attached to both sides, it is usually attached only to one side. Conventionally, a film was attached to prepreg, but this was done to protect the prepreg, and when laminating, the film was peeled off and only the prepreg was laminated to form a molded product. However, the intermediate molded product of the present invention is a molded product that is molded without peeling off the film and has a film interposed between the laminations of the molded product. When laminating the molded product intermediate of the present invention, all layers do not need to be composed of the molded intermediate of the present invention, and can also be laminated in combination with a normal prepreg to which no film is attached. At this time, it is preferable to laminate the molded product intermediate of the present invention so as to form the surface layer of the molded product. Such a molded product has excellent impact resistance and is less likely to cause peeling between laminated layers. The molded product intermediate of the present invention can be produced, for example, by the following method. First, a prepreg is prepared by a conventional method such as a hot melt method or a solvent method. Then,
A film having through holes is combined with the prepreg and pressed with a plate, roller, etc. to integrate the film. At this time, heating can be done, but the heating temperature is 60°C.
The temperature is preferably ~120°C. [Effects of the Invention] The molded product intermediate and molded product obtained by the present invention have excellent mechanical properties, thermal properties, and toughness, and are difficult to propagate cracks that occur. Because of these characteristics, it is suitable for use in aircraft structural materials, space structure materials, etc. [Examples and Comparative Examples] Example 1 and Comparative Example 1 Carbon fiber unidirectional prepregs made of resin compositions shown in Table 1 below were produced by a hot melt method. The carbon fiber (CF) used is besuphite.
IM-500 (manufactured by Toho Rayon Co., Ltd., tensile strength 500Kg
f/mm 2 , elastic modulus 30T/mm 2 ). of prepreg
The CF area weight was 150 g/m 2 and the resin content was 32% by weight. On the other hand, there are through holes with a diameter of 2 mmφ on the entire surface, and the area ratio is 20.
A polyetherimide film (abbreviated as PEI, glass transition temperature 216° C.) with a thickness of 5 μm and having a thickness of 5 μm was prepared. The prepreg and film were stacked and passed through a hot roller at 80°C to adhere them together to obtain a molded intermediate. From this molded intermediate, small pieces of a predetermined size and number were cut, laminated, and cured by autoclave molding at a heating rate of 2° C./min at 180° C. for 2 hours to produce a molded plate. A test piece was cut out from this, and the 0° interlaminar shear strength, 0° compressive strength,
The compressive strength after impact of 1500 in-lb/in was measured and the results shown in Table 1 were obtained. Further, for comparison, carbon fiber unidirectional prepregs made of the resin compositions shown in Table 1 were made in the same manner as in Example 1. A molded plate was prepared from this prepreg under the same conditions without attaching a polyetherimide film, and the molded plate was tested. From the physical properties shown in Table 1, the molded plate of Example 1 has the following properties:
Compared to Comparative Example 1, there is no difference in 0° interlaminar shear strength and 0° compressive strength, but at 1500 in-lb/in
It was revealed that the compressive strength after impact was high and the impact resistance was excellent. Example 2 and Comparative Example 2 A carbon fiber unidirectional prepreg made of the resin composition shown in Table 1 was made in the same manner as in Example 1, and a 5 μm thick polyether film was used as a thermoplastic resin film to be attached to the prepreg. Imide film (abbreviated as PEI, glass transition temperature 216℃) is arranged in the form of 10mm slit tape on the surface of the prepreg so that the gap between the tapes is 0.5 to 1mm, and the two are pasted through a hot roller at 80℃. A molded intermediate was obtained. A molded plate was prepared from this molded intermediate in the same manner as in Example 1, and the 0° interlaminar shear strength, 0° compressive strength, and compressive strength after 1500 in-lb/in impact were measured. The results shown in Table 1 were obtained. Further, for comparison, a prepreg was made in the same manner as in Example 2. Molding was performed in the same manner using only this prepreg without attaching a film, and a composite test was conducted on the molded plate. As shown in Table 1, compared to Comparative Example 2, the molded plate of Example 2 showed no difference in 0° interlaminar shear strength and 0° compressive strength, but It became clear that the compressive strength after the test was high and the impact resistance was excellent. Example 3 and Comparative Example 3 A carbon fiber unidirectional prepreg made of the resin composition shown in Table 1 was made in the same manner as in Example 1, and a rectangular shape was applied to the entire surface as a thermoplastic resin film to be attached to the prepreg. The area of the through hole is 25mm 2
A polyether sulfone film (abbreviated as PES, glass transition temperature 223°C) with a thickness of 10 μm and an area ratio of 50% was arranged on the surface of the prepreg, and
The mixture was passed between hot rollers at 0.degree. C. to adhere the two to obtain a molded intermediate. This molded intermediate was prepared for molding in the same manner as in Example 1, and then cured by autoclave molding at a heating rate of 2° C./min and at 130° C. for 1.5 hours to produce a molded plate. The 0° interlaminar shear strength, 0° compressive strength, and compressive strength after impact at 1500 in-lb/in were measured for the molded plates, and the results shown in Table 1 were obtained. Further, for comparison, a prepreg was made in the same manner as in Example 3. Using only this prepreg without attaching a film, molding was carried out in the same manner.
Tests were conducted on molded plates. As shown in Table 1, the molded plate of Example 3 showed no difference in 0° interlaminar shear strength and 0° compressive strength compared to Comparative Example 3, but It became clear that the compressive strength after the test was high and the impact resistance was excellent. Example 4 and Comparative Example 4 A carbon fiber unidirectional prepreg made of the resin composition shown in Table 1 was made in the same manner as in Example 1, and a 5 μm thick polyether film was used as a thermoplastic resin film to be attached to the prepreg. Ether ketone film (abbreviated as PEEK, glass transition temperature 143℃)
It is a slit tape shape with a width of mm, and the gap between the tapes is
Arrange them on the prepreg surface so that they are 0.5 to 1 mm apart,
Both were pasted together by passing between hot rollers at 80°C to obtain a molded intermediate. A molded plate was prepared from this molded intermediate in the same manner as in Example 1, and the 0° interlaminar shear strength, 0° compressive strength, and compressive strength after 1500 in-lb/in impact were measured. The results shown in Table 1 were obtained. Further, for comparison, a prepreg was made in the same manner as in Example 4. Molding was carried out in the same manner using only this prepreg without attaching a film.
Tests were conducted on molded plates. As shown in Table 1, compared to Comparative Example 4, the molded plate of Example 4 showed no difference in strength in 0° interlaminar shear strength and 0° compressive strength, but It became clear that the compressive strength after the test was high and the impact resistance was excellent. Example 5 and Comparative Example 5 Carbon fiber unidirectional prepreg made in the same manner as in Example 1 (CF basis weight of the prepreg is 150 g/m 2 ,
A polyetherimide film (abbreviated as PEI, glass transition temperature 216°C) with a thickness of 10 μm, which has through holes with a diameter of 2 mmφ on the entire surface and an area ratio of 20%, is arranged on the surface of the prepreg. , 80
The mixture was passed between hot rollers at 0.degree. C. to adhere the two to obtain a molded intermediate. For comparison, a similar film (thickness: 8 μm) without holes was arranged on the surface of the prepreg, and a molded intermediate was obtained in the same manner. In order to control the fiber volume content after molding (targeting 60% by volume), the two types of molded intermediates are molded using a method that allows 5 to 10% by weight of the resin component in the prepreg to flow out during mold curing. A molded plate was prepared (curing conditions were the same as in Example 1). In the case of Example 5, the resin component flowed out as planned during molding, resulting in a good molded plate with a controlled fiber volume content and a relatively small thickness. There was almost no flow of resin in the vicinity, the fiber volume content was not controlled, the molded plate was distorted, and the mechanical properties were not good. Examples 6 to 10 and Comparative Examples 6 to 10 Carbon fiber unidirectional prepregs were made in the same manner as in Example 1 using the resin compositions shown in Table 2, and thermoplastic resin films with holes shown in Table 2 were prepared in the prepreg. They were arranged on the surface and passed between hot rollers at 80°C to stick them together to obtain a molded intermediate. A molded plate was made from this molded intermediate under the molding conditions shown in Table 2, and the 0° interlaminar shear strength, 0° compressive strength, and compressive strength after 1500 in-lb/in impact were measured for the molded plate. As a result, the results shown in Table 2 were obtained. Moreover, in Comparative Examples 6 to 10, prepregs were made in the same manner as in Examples 6 to 10. Molding was performed in the same manner using only prepreg without attaching a film, and tests were conducted on the molded plates. As shown in Table 2, the molded plates of Examples 6 to 10 have 0° interlaminar shear strength,
Although no strength difference was observed in the 0° compressive strength,
It was revealed that the compressive strength after impact of 1500 in-lb/in was high and the impact resistance was excellent.
【表】【table】
【表】【table】
【表】【table】
第1図は、本発明の成形物中間体の斜視図を示
したものである。第2図は、本発明成形物中間体
のフイルム部の平面図イ〜ニを示したものであ
る。第3図は、本発明の成形物中間体の断面図を
模式的に示したものである。
図面における符号の説明、1……プリプレグ、
1−1……繊維、1−2……樹脂、2……フイル
ム、2−1……通孔。
FIG. 1 shows a perspective view of an intermediate molded product of the present invention. FIG. 2 shows plan views A to D of the film portion of the molded intermediate of the present invention. FIG. 3 schematically shows a cross-sectional view of the molded product intermediate of the present invention. Explanation of symbols in the drawings, 1...prepreg,
1-1...Fiber, 1-2...Resin, 2...Film, 2-1...Through hole.
Claims (1)
レグに、通孔を有する熱可塑性樹脂フイルムを貼
着してなる繊維強化樹脂積層成形物中間体。 2 積層間に、通孔を有する熱可塑性樹脂フイル
ムが介在してなる繊維強化樹脂積層成形物。[Scope of Claims] 1. A fiber-reinforced resin laminate molded intermediate formed by adhering a thermoplastic resin film having through holes to a thermosetting resin prepreg made of reinforcing fibers as a base material. 2. A fiber-reinforced resin laminate molded product in which a thermoplastic resin film having through holes is interposed between the laminates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15568488A JPH01320146A (en) | 1988-06-23 | 1988-06-23 | Molding intermediate product and moldings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15568488A JPH01320146A (en) | 1988-06-23 | 1988-06-23 | Molding intermediate product and moldings |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01320146A JPH01320146A (en) | 1989-12-26 |
JPH0583072B2 true JPH0583072B2 (en) | 1993-11-24 |
Family
ID=15611300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15568488A Granted JPH01320146A (en) | 1988-06-23 | 1988-06-23 | Molding intermediate product and moldings |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01320146A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9101691D0 (en) * | 1991-01-25 | 1991-03-06 | British Petroleum Co Plc | Toughened resins and composites |
JPH0545044U (en) * | 1991-11-12 | 1993-06-18 | 日本電気株式会社 | Synthetic resin film |
JPH06137372A (en) * | 1992-10-30 | 1994-05-17 | Yamaha Motor Co Ltd | Frp vibration damping material and manufacture thereof |
JP4543696B2 (en) * | 2003-02-21 | 2010-09-15 | 東レ株式会社 | FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE |
GB0606045D0 (en) | 2006-03-25 | 2006-05-03 | Hexcel Composites Ltd | A thermoplastic toughening material |
US10618227B2 (en) | 2006-03-25 | 2020-04-14 | Hexcel Composites, Ltd. | Structured thermoplastic in composite interleaves |
US10065393B2 (en) | 2006-03-25 | 2018-09-04 | Hexcel Composites Limited | Structured thermoplastic in composite interleaves |
TWI447009B (en) * | 2006-09-28 | 2014-08-01 | 東麗股份有限公司 | Method for preparing composite pre-impregnated substrate, laminated substrate and fiber reinforced plastic |
JP6300326B2 (en) * | 2012-12-21 | 2018-03-28 | サイテク・インダストリーズ・インコーポレーテツド | Curable prepreg with surface opening |
WO2019046218A1 (en) | 2017-08-28 | 2019-03-07 | Web Industries, Inc. | Thermoplastic composite master sheets and tapes and method |
-
1988
- 1988-06-23 JP JP15568488A patent/JPH01320146A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01320146A (en) | 1989-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5320742B2 (en) | Method for producing composite prepreg substrate, laminated substrate and fiber reinforced plastic | |
AU761069C (en) | Moulding materials | |
US8158245B2 (en) | Thermoplastic composites and methods of making and using same | |
EP0793573B1 (en) | Low resin content unidirectional fiber tape | |
US7267868B2 (en) | Composite products and molded articles obtained from said products | |
JPH0583072B2 (en) | ||
JP7269243B2 (en) | Fiber-reinforced resin composite, method for producing the same, and nonwoven fabric for fiber-reinforced resin composite | |
JPH0575575B2 (en) | ||
EP0327142A2 (en) | Resin matrix composites | |
JP6637503B2 (en) | Epoxy resin composition for composite materials | |
JP7074266B1 (en) | How to make a sandwich panel | |
JP2008174610A (en) | Impact-resistant prepreg and method for producing the same | |
JPH0872200A (en) | Composite molding | |
JP2510093B2 (en) | Prepreg and molded products | |
JPH05269909A (en) | Fiber reinforced resin molded product | |
JP2004338270A (en) | Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material | |
JPH10158417A (en) | Prepreg | |
JPH025979A (en) | Golf club | |
JP3113881B2 (en) | Composite substrate for resin reinforcement and fiber reinforced resin using the composite substrate | |
JPH04267139A (en) | Carbon fiber reinforced composite material prepreg sheet | |
KR102720727B1 (en) | Sandwich composite and manufacturing method thereof | |
JP2008045010A (en) | Impact-resistant prepreg and method for producing the same | |
JPH04251715A (en) | Manufacture of carbon fiber reinforced composite material | |
JPH06297647A (en) | Continuous fiber-reinforced composite material | |
JP6819276B2 (en) | Reinforced fiber base material and fiber reinforced plastic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081124 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081124 Year of fee payment: 15 |