JPH0582203A - Copper-alloy electric socket structural component - Google Patents
Copper-alloy electric socket structural componentInfo
- Publication number
- JPH0582203A JPH0582203A JP26911691A JP26911691A JPH0582203A JP H0582203 A JPH0582203 A JP H0582203A JP 26911691 A JP26911691 A JP 26911691A JP 26911691 A JP26911691 A JP 26911691A JP H0582203 A JPH0582203 A JP H0582203A
- Authority
- JP
- Japan
- Prior art keywords
- electric socket
- structural component
- thermal stress
- stress deformation
- heat conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 12
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 239000010949 copper Substances 0.000 abstract description 7
- 230000008646 thermal stress Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 5
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 abstract 1
- 230000008642 heat stress Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、耐熱応力変形性およ
び熱伝導性にすぐれ、かつ高い常温強度とばね性も具備
したCu合金製電気ソケット構造部品に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Cu alloy electric socket structural component which is excellent in heat stress deformation and thermal conductivity and has high room temperature strength and spring properties.
【0002】[0002]
【従来の技術】従来、単体ソケットやICソケットなど
の電気ソケットの構造部品が、一般的に、例えば重量%
で(以下%は重量%を示す)、Sn:1.5〜9%、P
:0.03〜0.35%、を含有し、残りがCuと不
可避不純物からなる組成を有するCu合金の条材や板材
から打抜き加工および曲げ加工にて、あるいは前記Cu
合金の線材や棒材から切出した所定長さの素材に、ドリ
ルやパンチなどを用いて、穴明け切削や穴抜き加工、さ
らに中ぐり加工などを施すことなどにより製造されてい
る。2. Description of the Related Art Conventionally, a structural component of an electric socket such as a single socket or an IC socket generally has, for example, weight%.
(Hereinafter,% indicates weight%), Sn: 1.5 to 9%, P
: 0.03 to 0.35%, the balance being Cu and unavoidable impurities, and punching and bending from a Cu alloy strip or plate, or the above Cu.
It is manufactured by subjecting a material of a predetermined length cut out from an alloy wire or rod to a drill, a punch, etc., to perform drilling, punching, boring, etc.
【0003】[0003]
【発明が解決しようとする課題】一方、近年の各種電気
電子装置の高性能化および多機能化はめざましく、これ
に伴ない電気ソケットにおける発熱量も一段と増加する
傾向にあり、このため電気ソケットの構造部品にはすぐ
れた耐熱応力変形性(応力付加下での加熱に変形しにく
い性質)と熱伝導性を具備することが要求されている
が、上記の従来Cu合金製電気ソケット構造部品は、高
い常温強度およびばね性を具備するものの、合金成分と
してのSnの含有量が相対的に高いことに原因して熱伝
導性が相対的に低く、かつ耐熱応力変形性も十分でない
ことから、これらの要求に満足に対応することができな
いのが現状である。On the other hand, in recent years, various electric and electronic devices have been remarkably improved in performance and multifunction, and accordingly, the amount of heat generated in the electric socket tends to be further increased. Structural parts are required to have excellent heat-resistant stress-deformability (the property of being hard to be deformed by heating under stress) and thermal conductivity. However, the conventional Cu alloy electric socket structural parts described above are Although it has high room temperature strength and spring properties, it has relatively low thermal conductivity due to the relatively high content of Sn as an alloying component, and also has insufficient heat stress deformability. At present, it is not possible to satisfy the above requirements.
【0004】[0004]
【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、特にすぐれた耐熱応力変形性お
よび熱伝導性を有するCu合金製電気ソケット構造部品
を開発すべく研究を行なった結果、電気ソケットの構造
部品を、Mg:0.1〜2%、P :0.001〜0.
1%、を含有し、残りがCuと不可避不純物からなる組
成を有するCu合金で構成すると、この結果のCu合金
製電気ソケット構造部品は、すぐれた耐熱応力変形性と
熱伝導性をもつようになり、かつソケットの構造部品に
要求される高い強度とばね性も具備するという研究結果
を得たのである。Therefore, the present inventors have
From the above viewpoints, as a result of research to develop a Cu alloy electric socket structural component having particularly excellent heat stress deformation resistance and thermal conductivity, the electric socket structural component was identified as Mg: 0.1 2%, P: 0.001 to 0.
If it is made of a Cu alloy containing 1% and the balance of Cu and unavoidable impurities, the resulting Cu alloy electric socket structural component should have excellent heat stress deformation and thermal conductivity. In addition, the research result that the high strength and the spring property required for the structural parts of the socket are provided.
【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、電気ソケットの構造部品を構成
するCu合金の成分組成を上記の通りに限定した理由を
説明する。The present invention was made based on the above research results, and the reason why the composition of the Cu alloy constituting the structural part of the electric socket is limited as described above will be explained.
【0006】(a) Mg Mg成分には、素地に固溶し、主要成分であるCuによ
ってもたらされるすぐれた熱伝導性を損なうことなく、
耐熱応力変形性を向上させ、さらに常温強度および切削
性も向上させる作用があるが、その含有量が0.1%未
満では前記作用に所望の効果が得られず、一方その含有
量が2%を越えると熱伝導性が低下するようになること
から、その含有量を0.1〜2%と定めた。(A) Mg The Mg component dissolves in the matrix and does not impair the excellent thermal conductivity brought about by the main component Cu,
Although it has the effect of improving the heat stress deformability and further improving the room temperature strength and the machinability, if the content is less than 0.1%, the desired effect cannot be obtained on the other hand, while the content is 2%. If it exceeds, the thermal conductivity will decrease, so the content was set to 0.1 to 2%.
【0007】(b) P P成分には、脱酸作用のほか、Mg成分と共存した状態
で、耐熱応力変形性を向上させ、かつばね性も向上させ
る作用があるが、その含有量が0.001%未満では前
記作用に所望の効果が得られず、一方その含有量が0.
1%を越えると大きな析出物が出易くなって脆化傾向が
現われるようになることから、その含有量を0.001
〜0.1%と定めた。(B) In addition to the deoxidizing action, the P P component has the action of improving the thermal stress deformability and the spring property in the state of coexisting with the Mg component, but its content is 0. If it is less than 0.001%, the desired effect cannot be obtained, while the content thereof is less than 0.001.
If it exceeds 1%, large precipitates are likely to appear, and a tendency toward embrittlement appears, so the content is set to 0.001.
It was set at 0.1%.
【0008】[0008]
【実施例】つぎに、この発明の電気ソケット構造部品を
実施例により具体的に説明する。黒鉛るつぼで銅地金を
溶解し、湯面を木炭粉末で被覆した状態で、Mgおよび
Pは母合金で、Snは純Snの形で添加して、それぞれ
表1に示される組成をもったCu合金を溶製し、金型に
鋳造して直径:80mm×長さ:200mmの寸法をもった
鋳塊とし、この鋳塊の表面部を深さ:5mmに亘って面削
した後、700〜850℃の範囲内の所定の加熱温度で
熱間押出し加工を施して直径:10mmの線材とし、つい
でこの線材に、冷間伸線加工と中間焼鈍を繰り返し施
し、最終仕上断面減少率:60%にて、直径:2.5mm
の線材とし、この線材に200〜400℃の範囲内の所
定温度に30分間保持の条件で歪取り焼鈍を施すことに
より本発明ソケット構造部品材1〜7、および従来ソケ
ット構造部品材1〜2をそれぞれ製造した。EXAMPLES Next, the electrical socket structural component of the present invention will be specifically described by way of examples. With the copper ingot melted in a graphite crucible and the hot water surface coated with charcoal powder, Mg and P were added as master alloys, and Sn was added in the form of pure Sn, and each had the composition shown in Table 1. A Cu alloy was melted and cast into a mold to form an ingot having a diameter of 80 mm and a length of 200 mm. The surface of the ingot was chamfered to a depth of 5 mm, and then 700 Hot extruding at a predetermined heating temperature within a range of up to 850 ° C. to obtain a wire having a diameter of 10 mm, and then cold drawing and intermediate annealing are repeatedly applied to this wire, and the final reduction of reduction in area: 60 %, Diameter: 2.5 mm
The present invention socket structure component materials 1 to 7 and conventional socket structure component materials 1 to 2 by subjecting these wire rods to strain relief annealing at a predetermined temperature within a range of 200 to 400 ° C. for 30 minutes. Were manufactured respectively.
【0009】[0009]
【表1】 [Table 1]
【0010】ついで、この結果得られた各種のソケット
構造部品材について、耐熱応力変形性を評価する目的
で、応力付加加熱後の残留変形率を測定し、熱伝導性を
評価する目的で導電率(%IACS)を測定した。ま
た、常温強度およびばね性を評価するために、常温引張
強さを測定し、JIS・H3130のモーメント式試験
に準じてばね限界値を測定した。これらの測定結果を表
1に合せて示した。Then, with respect to the various socket structure component materials obtained as a result, the residual deformation rate after stress-added heating was measured for the purpose of evaluating the thermal stress deformability, and the electrical conductivity was evaluated for the purpose of evaluating the thermal conductivity. (% IACS) was measured. Further, in order to evaluate the room temperature strength and the spring property, the room temperature tensile strength was measured, and the spring limit value was measured according to the moment formula test of JIS H3130. The results of these measurements are also shown in Table 1.
【0011】なお、残留変形率は、長さ:115mm(以
下L0 とする)の寸法をもった試験片を切出し、この試
験片を長さ:110mm×深さ:3mmの水平縦長溝を有す
る治具に前記試験片の中央部が上方に膨出するように弯
曲セットし(の時の試験片の両端部間の距離:110mm
をL1 とする)、この状態で温度:180℃に1000
時間保持し、加熱後、前記治具から取りはずした状態に
おける前記試験片の両端部間の距離(以下L2 とする)
を測定し、計算式: (L0 −L2)/(L0 −L1 )×100(%) により算出して求めた。As for the residual deformation rate, a test piece having a dimension of length: 115 mm (hereinafter referred to as L 0 ) was cut out, and this test piece had a horizontal longitudinal groove of length: 110 mm × depth: 3 mm. Bending is set on the jig so that the central part of the test piece bulges upward (the distance between both ends of the test piece at the time of: 110 mm
Is L 1 ), and in this state, temperature: 180 ° C. to 1000
The distance between both ends of the test piece in the state where the test piece is removed from the jig after being held for a time and heated (hereinafter referred to as L 2 ).
Was calculated and calculated according to the calculation formula: (L 0 −L 2) / (L 0 −L 1 ) × 100 (%).
【0012】[0012]
【発明の効果】表1に示される結果から、本発明ソケッ
ト構造部品材1〜7は、いずれも従来ソケット構造部品
材1〜2と同等のすぐれた常温強度とばね性を具備し、
かつこれより一段とすぐれた耐熱応力変形性と導電性を
もつことが明らかである。From the results shown in Table 1, all of the socket structure component materials 1 to 7 of the present invention have excellent room temperature strength and spring properties equivalent to those of the conventional socket structure component materials 1 and 2.
And it is clear that it has excellent thermal stress deformation and conductivity.
【0013】上述のように、この発明の電気ソケット構
造部品は、すぐれた耐熱応力変形性と熱伝導性、さらに
高い常温強度とばね性を有するので、熱発生を伴なう苛
酷な条件下での実用に際してもすぐれた性能を長期に亘
って発揮するのである。As described above, the electric socket structural component of the present invention has excellent heat stress deformability and thermal conductivity, as well as high room temperature strength and spring property, so that it can be used under severe conditions involving heat generation. Even in practical use, it will exhibit excellent performance over a long period of time.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑原 萬平 福島県会津若松市扇町128−7 三菱伸銅 株式会社若松製作所内 (72)発明者 斉藤 好次 東京都中央区銀座一丁目6番2号 三菱伸 銅株式会社内 (72)発明者 八代 一司 東京都中央区銀座一丁目6番2号 三菱伸 銅株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Manpei Kuwahara 128-7 Ogimachi, Aizuwakamatsu, Fukushima Prefecture Wakamatsu Plant, Mitsubishi Shindoh Co., Ltd. (72) Yoshiji Saito 1-6-2 Ginza, Chuo-ku, Tokyo Within Mitsubishi Shindoh Co., Ltd. (72) Inventor Kazushi Yashiro 1-6-2 Ginza, Chuo-ku, Tokyo Inside Mitsubishi Shindoh Co., Ltd.
Claims (1)
するCu合金で構成したことを特徴とするCu合金製電
気ソケット構造部品。1. A Cu alloy containing, by weight, Mg: 0.1 to 2%, P: 0.001 to 0.1%, and the balance being Cu and inevitable impurities. A Cu alloy electric socket structural part characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26911691A JPH0582203A (en) | 1991-09-20 | 1991-09-20 | Copper-alloy electric socket structural component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26911691A JPH0582203A (en) | 1991-09-20 | 1991-09-20 | Copper-alloy electric socket structural component |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0582203A true JPH0582203A (en) | 1993-04-02 |
Family
ID=17467902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26911691A Pending JPH0582203A (en) | 1991-09-20 | 1991-09-20 | Copper-alloy electric socket structural component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0582203A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4516154B1 (en) * | 2009-12-23 | 2010-08-04 | 三菱伸銅株式会社 | Cu-Mg-P copper alloy strip and method for producing the same |
JP4563508B1 (en) * | 2010-02-24 | 2010-10-13 | 三菱伸銅株式会社 | Cu-Mg-P-based copper alloy strip and method for producing the same |
JP2012007231A (en) * | 2010-06-28 | 2012-01-12 | Mitsubishi Shindoh Co Ltd | Cu-Mg-P-BASED COPPER ALLOY BAR MATERIAL AND MANUFACTURING METHOD THEREFOR |
CN103842551A (en) * | 2011-10-28 | 2014-06-04 | 三菱综合材料株式会社 | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment |
US10032536B2 (en) | 2010-05-14 | 2018-07-24 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
US10153063B2 (en) | 2011-11-07 | 2018-12-11 | Mitsubishi Materials Corporation | Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices |
US10458003B2 (en) | 2011-11-14 | 2019-10-29 | Mitsubishi Materials Corporation | Copper alloy and copper alloy forming material |
-
1991
- 1991-09-20 JP JP26911691A patent/JPH0582203A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105369050A (en) * | 2009-12-23 | 2016-03-02 | 三菱伸铜株式会社 | Cu-Mg-P based copper alloy material and method of producing the same |
EP2634274A1 (en) * | 2009-12-23 | 2013-09-04 | Mitsubishi Shindoh Co., Ltd. | Cu-Mg-P based copper alloy material |
CN102108457A (en) * | 2009-12-23 | 2011-06-29 | 三菱伸铜株式会社 | Cu-Mg-P based copper alloy material and method of producing the same |
JP2011132564A (en) * | 2009-12-23 | 2011-07-07 | Mitsubishi Shindoh Co Ltd | Cu-Mg-P-BASED COPPER-ALLOY MATERIAL AND METHOD OF PRODUCING THE SAME |
EP2343388A1 (en) * | 2009-12-23 | 2011-07-13 | Mitsubishi Shindoh Co., Ltd. | Cu-Mg-P based copper alloy material and method of producing the same |
JP4516154B1 (en) * | 2009-12-23 | 2010-08-04 | 三菱伸銅株式会社 | Cu-Mg-P copper alloy strip and method for producing the same |
US9255310B2 (en) | 2009-12-23 | 2016-02-09 | Mitsubishi Shindoh Co., Ltd. | Cu—Mg—P based copper alloy material and method of producing the same |
JP4563508B1 (en) * | 2010-02-24 | 2010-10-13 | 三菱伸銅株式会社 | Cu-Mg-P-based copper alloy strip and method for producing the same |
CN102753712A (en) * | 2010-02-24 | 2012-10-24 | 三菱伸铜株式会社 | Cu-mg-p-based copper alloy bar and method for producing same |
JP2011174127A (en) * | 2010-02-24 | 2011-09-08 | Mitsubishi Shindoh Co Ltd | Cu-mg-p-based copper alloy bar stock and method for producing the same |
WO2011104982A1 (en) * | 2010-02-24 | 2011-09-01 | 三菱伸銅株式会社 | Cu-mg-p-based copper alloy bar and method for producing same |
US10032536B2 (en) | 2010-05-14 | 2018-07-24 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
US10056165B2 (en) | 2010-05-14 | 2018-08-21 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
JP2012007231A (en) * | 2010-06-28 | 2012-01-12 | Mitsubishi Shindoh Co Ltd | Cu-Mg-P-BASED COPPER ALLOY BAR MATERIAL AND MANUFACTURING METHOD THEREFOR |
CN103842551A (en) * | 2011-10-28 | 2014-06-04 | 三菱综合材料株式会社 | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment |
US9587299B2 (en) | 2011-10-28 | 2017-03-07 | Mitsubishi Materials Corporation | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment |
US10153063B2 (en) | 2011-11-07 | 2018-12-11 | Mitsubishi Materials Corporation | Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices |
US10458003B2 (en) | 2011-11-14 | 2019-10-29 | Mitsubishi Materials Corporation | Copper alloy and copper alloy forming material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4177266B2 (en) | High strength and high conductivity copper alloy wire with excellent stress relaxation resistance | |
EP1520054A2 (en) | Copper alloy containing cobalt, nickel, and silicon | |
WO2009091417A1 (en) | Aluminum-zinc-magnesium-silver alloy | |
JPH0229737B2 (en) | ||
JP2565029B2 (en) | Semiconductor device lead material | |
JPH0582203A (en) | Copper-alloy electric socket structural component | |
JP4329967B2 (en) | Copper alloy wire suitable for IC lead pins for pin grid array provided on plastic substrate | |
JP3347001B2 (en) | Heat-resistant copper-based alloy | |
JP7195054B2 (en) | Copper alloy sheet material and manufacturing method thereof | |
GB2162539A (en) | Treatment of copper beryllium alloys | |
JP2007126739A (en) | Copper alloy for electronic material | |
JPS6215619B2 (en) | ||
JPS58210140A (en) | Heat resistant conductive copper alloy | |
JP2000129377A (en) | Copper-base alloy for terminal | |
JP2780584B2 (en) | Cu alloy for electrical and electronic parts with excellent hot workability and punching workability | |
JP2503793B2 (en) | Cu alloy plate material for electric and electronic parts, which has the effect of suppressing the wear of punching dies | |
JPS6210288B2 (en) | ||
JPS6142772B2 (en) | ||
US4704253A (en) | Copper alloy for a radiator fin | |
JPS5952943B2 (en) | Cu alloy with high heat resistance and high conductivity | |
JPH1068032A (en) | Copper alloy having high electric conductivity and high softening point, for use in field of electronics | |
US4139372A (en) | Copper-based alloy | |
JP2501290B2 (en) | Lead material | |
JPS6212295B2 (en) | ||
JPS5789449A (en) | Method of manufacture of copper alloy for conducting electricity |