[go: up one dir, main page]

JPH0581016B2 - - Google Patents

Info

Publication number
JPH0581016B2
JPH0581016B2 JP60251845A JP25184585A JPH0581016B2 JP H0581016 B2 JPH0581016 B2 JP H0581016B2 JP 60251845 A JP60251845 A JP 60251845A JP 25184585 A JP25184585 A JP 25184585A JP H0581016 B2 JPH0581016 B2 JP H0581016B2
Authority
JP
Japan
Prior art keywords
optical recording
recording medium
light
liquid crystal
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60251845A
Other languages
Japanese (ja)
Other versions
JPS62112295A (en
Inventor
Toyoichi Nakamura
Toshihiko Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60251845A priority Critical patent/JPS62112295A/en
Publication of JPS62112295A publication Critical patent/JPS62112295A/en
Publication of JPH0581016B2 publication Critical patent/JPH0581016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/04Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光記録方式、特に書き替え可能な情
報多値記録方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an optical recording system, and particularly to a rewritable information multilevel recording system.

〔従来の技術〕[Conventional technology]

従来、書き替え可能な情報記録方式として、光
磁気記録方式、無機系材料の相変化を利用した方
式が知られている。
Conventionally, magneto-optical recording methods and methods utilizing phase change of inorganic materials are known as rewritable information recording methods.

光磁気記録方式では、媒体中のスピンの方向を
外部磁場により制御し、カー効果又はフアラデー
効果を利用してわずかな偏光方向の回転を検出す
る方式である。
In the magneto-optical recording method, the direction of spin in the medium is controlled by an external magnetic field, and a slight rotation in the polarization direction is detected using the Kerr effect or the Faraday effect.

無機系材料の相変化を利用した方式は、熱印加
後の急冷・徐冷の差によつて無機系材料に結晶−
結晶転移あるいは結晶−アモルフアス転移を生じ
せしめ、それに伴なう反射率又は透過率の変化が
利用されている。
Methods that utilize phase changes in inorganic materials produce crystals in inorganic materials through the difference between rapid cooling and slow cooling after heat application.
A crystal transition or a crystal-amorphous transition is caused, and the accompanying change in reflectance or transmittance is utilized.

この他に、S/N比の向上、製造コストの低廉
化を目的として、高分子液晶を記録層として使
い、書き込みに一定のエネルギー密度を使つた情
報記録方式が特開昭59−10930号公報および特開
昭59−35989号公報の中において提案されている。
かかる方式においては、液晶基の均一配向状態と
無配向状態における反射率は透過率の変化を利用
している。
In addition, Japanese Patent Application Laid-Open No. 10930/1983 discloses an information recording method that uses polymeric liquid crystal as a recording layer and uses a constant energy density for writing, with the aim of improving the S/N ratio and reducing manufacturing costs. and Japanese Patent Application Laid-Open No. 59-35989.
In this method, the reflectance of the liquid crystal groups in a uniformly oriented state and in a non-oriented state is determined by a change in transmittance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

情報化社会になるに伴い、高い記録密度を有す
る情報媒体ならびに方式が望まれるが、記録密度
は現在使用可能な光ビームの波長によるビーム径
の広がり約1μmにより制限されており、前記の高
分子液晶を用いた情報記録方式でも、最高記録密
度が109BPI2である。
As we become an information society, information media and systems with high recording density are desired, but the recording density is limited by the beam diameter spread of about 1 μm depending on the wavelength of the currently available light beam, and the above-mentioned polymer Even with information recording methods using liquid crystals, the maximum recording density is 10 9 BPI 2 .

記録密度をさらに向上させるには、一般に1つ
の記録スポツトに相異なる複数の波長特性を生じ
せしめて情報を多値的に記録すればよい。この場
合、前記光磁気記録方式では、スピンの反転を利
用しており、その場合の回転角も小さく、S/N
比が小さいためこれを応用しての多値化は困難で
ある。また、無機系材料の相変化を利用した方式
では、相転移温度領域が狭くその領域での中間的
な反射スペクトル特性変化が小さいため、この反
射スペクトル特性変化を利用した多値化は困難で
ある。
In order to further improve the recording density, it is generally sufficient to create a plurality of different wavelength characteristics in one recording spot and record information in a multivalued manner. In this case, the magneto-optical recording method uses spin reversal, the rotation angle is small, and the S/N is
Since the ratio is small, it is difficult to apply this to multiple values. In addition, in methods that utilize phase changes in inorganic materials, the phase transition temperature region is narrow and the intermediate change in reflection spectrum characteristics in that region is small, so it is difficult to achieve multi-leveling using this change in reflection spectrum characteristics. .

そこで、本発明の目的は、高分子液晶を記録層
とする情報記録方式において、多値化を可能とす
る光記録方式を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical recording system that enables multilevel recording in an information recording system using a polymeric liquid crystal as a recording layer.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、光照射により光記録媒体の光反射率
もしくは光透過率を変化せしめる事で情報を記録
消去可能な光記録媒体の光記録方式において、前
記光記録媒体としてコレステリツク性高分子液晶
を用い、前記光記録媒体に照射する光エネルギー
を多値的に制御し、前記光エネルギーに対応し
て、コレステリツク性高分子液晶のらせんピツチ
長又はらせん軸の傾きを変えるかもしくはピツト
を形成し、前記光記録媒体に情報を多値的に記録
し、前記光記録媒体の光反射もしくは光透過スペ
クトルの光量極大値もしくは極小値の波長から情
報を読み出す事を特徴としている。
The present invention provides an optical recording system for an optical recording medium in which information can be recorded and erased by changing the light reflectance or light transmittance of the optical recording medium through light irradiation, using a cholesteric polymer liquid crystal as the optical recording medium. , controlling the light energy irradiated to the optical recording medium in a multivalued manner, and changing the helical pitch length or the inclination of the helical axis of the cholesteric polymer liquid crystal or forming pits in accordance with the light energy; The method is characterized in that information is multivalued recorded on an optical recording medium, and the information is read out from the wavelength of the maximum or minimum value of the light amount in the optical reflection or transmission spectrum of the optical recording medium.

〔作用〕[Effect]

本発明者らは鋭意研究の結果、適度な粘度があ
るため中間状態が制御できる高分子液晶、特にブ
ラツグ反射が利用できるコレステリツク性高分子
液晶(コレステリールを含む液晶およびカイラル
ネマチツクな高分子液晶を指す)を用いて照射光
エネルギーのエネルギー密度を少なくとも2つ以
上多値的に制御することにより記録密度の向上が
図れることを見いだした。
As a result of intensive research, the present inventors have found that polymer liquid crystals that have an appropriate viscosity and can control intermediate states, particularly cholesteric polymer liquid crystals (liquid crystals containing cholesteryl and chiral nematic polymer liquid crystals) that can utilize Blugg reflection. It has been found that the recording density can be improved by controlling the energy density of the irradiated light energy in a multivalued manner using at least two or more values.

第1図は、コレステリツク性高分子液晶を記録
層として含む光記録媒体に、種々のエネルギー密
度を持つ光ビームパルスを照射した場合の照射光
エネルギー密度に対する反射スペクトルのレツド
シフトを示す。選択反射波長のシフトのしきい値
は25mJ/cm2であり、これから65mJ/cm2の範囲で
長波長側にシフトする。第1図において、は初
めの選択反射スペクトルを、は50mJ/cm2の場
合の選択反射スペクトルを、は65mJ/cm2の場
合の選択反射スペクトルを示す。光エネルギー密
度が65mJ/cm2以上では、の様な一様で低反射
率の反射スペクトルを示す。そして、これら反射
スペクトルの変化はパルス照射後も保存されるこ
とが判明した。
FIG. 1 shows the red shift of the reflection spectrum with respect to the energy density of the irradiated light when an optical recording medium containing a cholesteric polymer liquid crystal as a recording layer is irradiated with light beam pulses having various energy densities. The threshold for selective reflection wavelength shift is 25 mJ/cm 2 , and from this it shifts to the longer wavelength side within a range of 65 mJ/cm 2 . In FIG. 1, indicates the initial selective reflection spectrum, indicates the selective reflection spectrum at 50 mJ/cm 2 , and indicates the selective reflection spectrum at 65 mJ/cm 2 . When the optical energy density is 65 mJ/cm 2 or more, a uniform reflection spectrum with low reflectance is shown. It was also found that these changes in the reflection spectrum were preserved even after pulse irradiation.

この現象は、次のメカニズムに依ると考えられ
る。すなわち、光ビームの照射による光エネルギ
ーが光吸収体により熱エネルギーに変換され、こ
れによりコレステリツク性高分子液晶の温度が上
昇する。コレステリツク性高分子液晶のコレステ
リツクピツチ(らせんピツチ)が温度により変化
する事が知られているから、このコレステリツク
ピツチの変化により、コレステリツクピツチに基
づく選択反射スペクトルのシフトが起こると考え
られる。すなわち、選択反射最大波長λnaxとコレ
ステリツクピツチPの管にはλnax=n・Pの関係
があり、屈折率nは1.5で温度変化しないとする
と、前記レツドシフトはコレステリツクピツチの
増大によるものと考えられる。。
This phenomenon is thought to be due to the following mechanism. That is, the light energy generated by the irradiation of the light beam is converted into thermal energy by the light absorber, thereby increasing the temperature of the cholesteric polymer liquid crystal. Since it is known that the cholesteric pitch (helical pitch) of a cholesteric polymer liquid crystal changes with temperature, it is thought that this change in cholesteric pitch causes a shift in the selective reflection spectrum based on the cholesteric pitch. In other words, there is a relationship between the maximum selective reflection wavelength λ nax and the cholesteric pitch P of the tube, λ nax = n・P, and assuming that the refractive index n is 1.5 and does not change with temperature, the red shift is due to an increase in the cholesteric pitch. it is conceivable that. .

このピツチの増大は光ビームの照射が終わると
照射スポツトとその周囲部との温度差のため急冷
されることにより、固定化される。
This increase in pitch is fixed by rapid cooling due to the temperature difference between the irradiation spot and its surroundings after the irradiation of the light beam is completed.

前記したように、第1図において、エネルギー
密度が65mJ/cm2以上の領域において反射率の急
激な減少が見られている。得られたスポツトの顕
微鏡観察によれば、このスポツトはピツト形状を
し、反射率が低いことが判明している。この事か
ら、光エネルギー密度が65mJ/cm2以上の領域で
は粘度の低下による流動が起こつてピツトが形成
され、同時にらせん軸の傾きの変化に伴なう無配
向化が起こり、選択反射率の低下が起こつている
と考えられる。この領域においてもピツトおよび
無配向は急冷により保存される。
As mentioned above, in FIG. 1, a rapid decrease in reflectance is observed in the region where the energy density is 65 mJ/cm 2 or more. According to microscopic observation of the obtained spot, it has been found that this spot has a pit shape and has a low reflectance. From this, in the region where the optical energy density is 65 mJ/cm2 or more, flow occurs due to the decrease in viscosity and pits are formed, and at the same time non-orientation occurs due to changes in the inclination of the helical axis, resulting in a decrease in selective reflectance. It is thought that a decline is occurring. Even in this region, pits and non-orientation are preserved by rapid cooling.

以上述べたように各照射光エネルギー密度によ
つて、反射スペクトル特性の異なる状態が保持さ
れる。これにより、照射光エネルギー密度を多値
的に制御する事によつて、コレステリツク性高分
子液晶を記録層として含む光記録媒体の光反射ス
ペクトル特性を多値的に変化せしめて情報を記録
することが可能となる。
As described above, different states of reflection spectrum characteristics are maintained depending on each irradiation light energy density. By controlling the irradiated light energy density in a multivalued manner, the light reflection spectrum characteristics of an optical recording medium containing cholesteric polymer liquid crystal as a recording layer are changed in a multivalued manner, thereby recording information. becomes possible.

このようにして記録された情報を消去するに
は、前記の如く作成した照射スポツトの記録点を
再加熱して(これは記録媒体全体でもそのスポツ
トのみでもよい)徐冷すると前記照射スポツトの
反射スペクトル特性は周囲のそれと同じになり、
また初めの反射スペクトル特性と同一となること
が判明した。これは再加熱徐冷中にコレステリツ
ク性高分子液晶が所定の再配向をするからだと考
えられ、これにより反射率は初期の状態にもど
り、情報は消去されたことになると同時に再書き
込みすなわち書き替えが可能となる。書き替え方
法は前に述べた初めの書き込み方法と同じ方法で
行なえる。
In order to erase the information recorded in this way, if the recording point of the irradiation spot created as described above is reheated (this may be the entire recording medium or just that spot) and slowly cooled, the reflection of the irradiation spot will be removed. The spectral characteristics will be the same as those of the surroundings,
It was also found that the reflection spectrum characteristics were the same as the initial reflection spectrum characteristics. This is thought to be because the cholesteric polymer liquid crystal undergoes a predetermined reorientation during reheating and slow cooling, and as a result, the reflectance returns to its initial state, meaning that the information is erased and can be rewritten or rewritten at the same time. becomes. The rewriting method can be performed in the same manner as the initial writing method described above.

読み出し方法は、選択最大反射波長λnaxのレツ
ドシフトに伴う、レーザダイオードの固定された
読み出し波長における反射率変化を利用する。色
素レーザを用いれば、λnaxのレツドシフトした波
長位置を検出し、これから情報を読み出す事が可
能となる。これは、選択最大反射波長のシフト領
域を色素レーザの波長をスキヤンさせることによ
り行う。波長スキヤンの際に微小波長間隔ごとの
反射光量を検知し、その差分が所定量以下になる
所(極大値)の波長位置を検出することにより行
う。差分の検知方法は、微小波長間隔ごとの反射
光量を検知し、電圧に変換した後にアナログ・デ
ジタル変換し、差分量をデジタル計算して行う。
The readout method utilizes the change in reflectance of the laser diode at a fixed readout wavelength with a red shift of the selected maximum reflection wavelength λ nax . If a dye laser is used, it becomes possible to detect the red-shifted wavelength position of λ nax and read information from it. This is done by scanning the wavelength of the dye laser to shift the selected maximum reflection wavelength. This is performed by detecting the amount of reflected light for each minute wavelength interval during wavelength scanning, and detecting the wavelength position where the difference is less than or equal to a predetermined amount (maximum value). The method of detecting the difference is to detect the amount of reflected light for each minute wavelength interval, convert it to voltage, perform analog-to-digital conversion, and digitally calculate the amount of difference.

さらに、本発明者らは反射スペクトル特性と同
様に、透過スペクトル特性を多値的に変化せしめ
て情報を記録し、透過スペクトルの波長から情報
を読み取ることができることを確認した。透過ス
ペクトル特性の変化を利用する場合の情報の読み
出しは、光透過スペクトルの光量極小値の波長か
ら情報を読み取ることにより行う。
Furthermore, the present inventors have confirmed that information can be recorded by changing the transmission spectrum characteristic in a multi-valued manner, similar to the reflection spectrum characteristic, and the information can be read from the wavelength of the transmission spectrum. When using changes in transmission spectrum characteristics, information is read out by reading information from the wavelength of the minimum light amount in the light transmission spectrum.

〔実施例〕〔Example〕

次に本発明の一実施例について説明する。 Next, one embodiment of the present invention will be described.

本実施例では、第3図に示す分子構造を有する
コレステリツク性高分子液晶を用いる。このコレ
ステリツク性高分子液晶のらせんの回転方向は左
巻である。このコレステリツク性高分子液晶に、
波長830nmのレーザダイオードを用いて、80μs巾
のパルス光を照射し(スポツト径10μm)、その際
の光エネルギー密度に対して得られた反射スペク
トル変化は、第1図に示したとおりである。光ビ
ームのエネルギー密度25mJ/cm2が書き込みエネ
ルギーのしきい値であり、これから65mJ/cm2
での範囲で反射スペクトルが変化している(曲線
,,)。65mJ/cm2以上のエネルギー密度を
与えると反射率が一様に減少している(曲線)。
In this embodiment, a cholesteric polymer liquid crystal having a molecular structure shown in FIG. 3 is used. The direction of rotation of the helix of this cholesteric polymer liquid crystal is left-handed. In this cholesteric polymer liquid crystal,
A laser diode with a wavelength of 830 nm was used to irradiate pulsed light with a duration of 80 μs (spot diameter 10 μm), and the changes in the reflection spectrum obtained with respect to the optical energy density are shown in Figure 1. The light beam energy density of 25 mJ/cm 2 is the threshold of writing energy, and the reflection spectrum changes in the range from this to 65 mJ/cm 2 (curve, , ). When an energy density of 65 mJ/cm 2 or more is applied, the reflectance decreases uniformly (curve).

このコレステリツク性高分子液晶を記録層とし
て用いた記録媒体の断面図を第2図に示す。支持
体基板1上に光吸収体3として酸化バナジウム膜
を蒸着し、この上にコレステリツク性高分子液晶
5をスピンコートして付ける。それからエアーギ
ヤツプ層9を有するエアーギヤツプセルとするた
めのスペーサ7および透明な保護板11を設け
る。コレステリツク性高分子液晶層は室温でバル
キーであり、低分子液晶のように封止する必要は
ない。保護板11の上にコレステリツク性高分子
液晶5のらせん回転方向と一致した円偏光板15
を設ける。この円偏光板は、書き込み、読み取り
に無偏光の光ビームを用いる場合に、光ビームを
円偏向して、その回転方向をコレステリツク性高
分子液晶5のらせん回転方向と一致させるためで
ある。これはコレステリツク性高分子液晶の選択
反射は、そのらせん回転方向と同一の回転方向を
持つ光に対してだけ有効であるからである。円偏
光板を設けることにより、再生する時のS/n比
を高くすることができる。なお、円偏光板15は
保護板11の下面に設けても良い。もちろん、円
偏光された光ビームを用いる場合には、円偏光板
は不要である。
FIG. 2 shows a cross-sectional view of a recording medium using this cholesteric polymer liquid crystal as a recording layer. A vanadium oxide film is deposited as a light absorber 3 on a support substrate 1, and a cholesteric polymer liquid crystal 5 is applied thereon by spin coating. Then, a spacer 7 and a transparent protection plate 11 are provided to form an air gap cell having an air gap layer 9. The cholesteric polymer liquid crystal layer is bulky at room temperature and does not need to be sealed like low molecular liquid crystals. A circularly polarizing plate 15 is disposed on the protective plate 11 and is aligned with the helical rotation direction of the cholesteric polymer liquid crystal 5.
will be established. This circularly polarizing plate is used to circularly polarize the light beam to match the direction of rotation of the cholesteric polymer liquid crystal 5 with the helical rotation direction of the light beam when an unpolarized light beam is used for writing or reading. This is because the selective reflection of the cholesteric polymer liquid crystal is effective only for light having the same rotation direction as its helical rotation direction. By providing a circularly polarizing plate, the S/N ratio during reproduction can be increased. Note that the circularly polarizing plate 15 may be provided on the lower surface of the protection plate 11. Of course, if a circularly polarized light beam is used, a circularly polarizing plate is not necessary.

第2図に示した記録媒体に対して書き込み、読
み取りを行うには、従来用いられているDRAW
型の光ヘツドを使用すれば良い。情報の書き込み
は、記録媒体に照射する光エネルギーを多値的に
制御し、光エネルギーに対応してコレステリツク
性高分子液晶のらせんピツチ長又はらせん軸の傾
きを変えるかもしくはピツトを形成し、記録媒体
に情報を多値的に記録する事により行う。情報の
読み取りは、光エネルギー密度が10mJ/cm2の光
ビームを記録媒体に照射し、記録媒体の光反射ス
ペクトルの光量極大値の波長から情報を読み出す
事により行われる。
To write to and read from the recording medium shown in Figure 2, the conventional DRAW
You can use a type of optical head. Information is written by controlling the light energy irradiated onto the recording medium in a multivalued manner, changing the helical pitch length or the inclination of the helical axis of the cholesteric polymer liquid crystal in response to the light energy, or forming pits. This is done by recording information on a medium in multiple values. Information is read by irradiating the recording medium with a light beam having an optical energy density of 10 mJ/cm 2 and reading information from the wavelength of the maximum light intensity value of the optical reflection spectrum of the recording medium.

本実施例に用いられるコレステリツク性高分子
液晶では、室温での選択反射スペクトルの最大ピ
ーク波長λnaxは570nmであり、半値巾nmである。
半値巾は、コレステリツク性高分子液晶の配向秩
序性を示す目安であり、半値巾100nmでは余り高
い配向秩序ではない。配向秩序性の高いコレステ
リツク性高分子液晶を用い、最大ピーク波長を書
き込み・読み取り光の波長に適切に近くすれば、
書き込み、読み取り感度が向上することは容易に
推定される。なお、読み取り光の光エネルギー密
度10mJ/cm2では、記録媒体の劣化は認められな
かつた。
In the cholesteric polymer liquid crystal used in this example, the maximum peak wavelength λ nax of the selective reflection spectrum at room temperature is 570 nm, and the half width is nm.
The half-width is a measure of the orientation order of a cholesteric polymer liquid crystal, and a half-width of 100 nm is not a very high orientation order. If a cholesteric polymer liquid crystal with high orientation order is used and the maximum peak wavelength is appropriately close to the wavelength of the writing/reading light,
It is easily estimated that the writing and reading sensitivity will be improved. Note that no deterioration of the recording medium was observed when the optical energy density of the reading light was 10 mJ/cm 2 .

最大ピーク波長の移動率はしきい値エネルギー
密度25mJ/cm2から、ピツト形成エネルギー密度
65mJ/cm2の範囲で10mJ/cm2ごとに50nmであり、
この変化量は100nmの分散を持つ本実施例におい
ても識別可能であり、これにより波長による多値
記録およびその読み出しが可能となつた。なお、
再生S/N比は、60dBであつた。
The transfer rate of the maximum peak wavelength is determined by the pit formation energy density from the threshold energy density of 25 mJ/ cm2.
50nm for every 10mJ/ cm2 in the range of 65mJ/ cm2 ,
This amount of change can be discerned even in this example, which has a dispersion of 100 nm, and this makes it possible to perform multilevel recording and readout based on wavelength. In addition,
The reproduction S/N ratio was 60 dB.

なお、記録媒体の選択波長位置の設定、コレス
テリツク性高分子液晶の配向成膜特性を向上させ
ることによりスペクトル分散を小さくすることが
可能であり、より多くの反射スペクトルが識別可
能になり、さらにS/N比、記録密度の向上が期
待できる。
In addition, it is possible to reduce spectral dispersion by setting the selected wavelength position of the recording medium and improving the alignment film formation characteristics of the cholesteric polymer liquid crystal, making it possible to identify more reflection spectra, and further improving the S /N ratio and recording density can be expected to improve.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、コレステリツク性高分子液晶
を用いることにより、1つの記録スポツトに相異
なる複数の波長特性を生ぜしめて情報を多値的に
記録することが可能となる。
According to the present invention, by using a cholesteric polymer liquid crystal, it is possible to produce a plurality of different wavelength characteristics in one recording spot and record information in a multivalued manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の動作原理を説明するのに用い
るコレステリツク性高分子液晶の反射スペクトル
特性を示す図、第2図は本発明の一実施例に用い
た記録媒体の断面図、第3図は本発明の一実施例
に用いたコレステリツク性高分子液晶の分子構造
を示す図である。 1……支持体基数、3……光吸収体、5……コ
レステリツク性高分子液晶、7……スペーサ、9
……エアーギヤツプ層、11……透明保護板、1
3……光ビーム、15……円偏光板。
Fig. 1 is a diagram showing the reflection spectrum characteristics of cholesteric polymer liquid crystal used to explain the operating principle of the present invention, Fig. 2 is a cross-sectional view of a recording medium used in an embodiment of the present invention, and Fig. 3 1 is a diagram showing the molecular structure of a cholesteric polymer liquid crystal used in an example of the present invention. 1... Number of support groups, 3... Light absorber, 5... Cholesteric polymer liquid crystal, 7... Spacer, 9
...Air gap layer, 11...Transparent protection plate, 1
3...Light beam, 15...Circular polarizing plate.

Claims (1)

【特許請求の範囲】[Claims] 1 光照射により光記録媒体の光反射率もしくは
光透過率を変化せしめる時で情報を記録消去可能
な光記録媒体の光記録方式において、前記光記録
媒体としてコレステリツク性高分子液晶を用い、
前記光記録媒体に照射する光エネルギーを多値的
に制御し、前記光エネルギーに対応して、コレス
テリツク性高分子液晶のらせんピツチ長又はらせ
ん軸の傾きを変えるかもしくはピツトを形成し、
前記光記録媒体に情報を多値的に記録し、前記光
記録媒体の光反射もしくは光透過スペクトルの光
量極大値もしくは極小値の波長から情報を読み出
す事を特徴とする光記録方式。
1. In an optical recording method for an optical recording medium in which information can be recorded and erased by changing the light reflectance or light transmittance of the optical recording medium by light irradiation, using a cholesteric polymer liquid crystal as the optical recording medium,
controlling the light energy irradiated to the optical recording medium in a multivalued manner, and changing the helical pitch length or the inclination of the helical axis of the cholesteric polymer liquid crystal or forming pits in accordance with the light energy;
An optical recording method characterized in that information is multi-valued recorded on the optical recording medium, and the information is read from the wavelength of the maximum or minimum value of the light amount in the optical reflection or transmission spectrum of the optical recording medium.
JP60251845A 1985-11-12 1985-11-12 Optical recording system Granted JPS62112295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60251845A JPS62112295A (en) 1985-11-12 1985-11-12 Optical recording system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60251845A JPS62112295A (en) 1985-11-12 1985-11-12 Optical recording system

Publications (2)

Publication Number Publication Date
JPS62112295A JPS62112295A (en) 1987-05-23
JPH0581016B2 true JPH0581016B2 (en) 1993-11-11

Family

ID=17228773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60251845A Granted JPS62112295A (en) 1985-11-12 1985-11-12 Optical recording system

Country Status (1)

Country Link
JP (1) JPS62112295A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632920B2 (en) * 1988-05-11 1997-07-23 キヤノン株式会社 Recording method, recording medium and recording device
JPH02134615A (en) * 1988-11-15 1990-05-23 Ricoh Co Ltd Color image display device
US5353247A (en) * 1992-05-27 1994-10-04 Faris Sadeg M Optical mass storage system and memory cell incorporated therein

Also Published As

Publication number Publication date
JPS62112295A (en) 1987-05-23

Similar Documents

Publication Publication Date Title
US5329512A (en) Temperature detection of a magneto-optic recording medium for controlling irradiation of an erasure region
EP0306925B1 (en) Recording method and recording apparatus
US6226258B1 (en) Optical recording medium with transmissivity controlling layer
KR100719431B1 (en) Optical recording medium and recording and/or reproducing apparatus employing the optical recording medium
JPS62231437A (en) Optical recording medium and optical recording method
JPH01286156A (en) Magneto-optical recording system employing medium having control layer without domain
JPS5935989A (en) Information recording medium
JPH0581016B2 (en)
JPS62107448A (en) Optical recording system
JPS62162254A (en) Optical recording and reading method
JPH0441915B2 (en)
KR100342622B1 (en) Phase change optical disk and a method for recording and pi aybacking optical information on or from an optical disk
JPS61280046A (en) Optical recording system
JP3626211B2 (en) Signal reproduction method for optical recording medium
JP2678219B2 (en) Method of fixing data to optical recording medium, optical recording medium, and data recording device
JP2515567B2 (en) Recording method
JPS62157341A (en) Optical recording medium
JP2803245B2 (en) Information recording and playback method
JPH0312824A (en) Method for recording/erasing/reproducing and constituting phase change type optical recording medium
JP2713977B2 (en) recoding media
JPH0329117A (en) Information recording method
JP2553100B2 (en) Information operation method of information recording medium
JP2632920B2 (en) Recording method, recording medium and recording device
JPH08147756A (en) Optical recording medium, optical recording and reproducing method and optical recording and reproducing device
JPH03160634A (en) Optical recording medium