JPH0580461B2 - - Google Patents
Info
- Publication number
- JPH0580461B2 JPH0580461B2 JP13265285A JP13265285A JPH0580461B2 JP H0580461 B2 JPH0580461 B2 JP H0580461B2 JP 13265285 A JP13265285 A JP 13265285A JP 13265285 A JP13265285 A JP 13265285A JP H0580461 B2 JPH0580461 B2 JP H0580461B2
- Authority
- JP
- Japan
- Prior art keywords
- optically active
- naphthol
- formula
- mixture
- racemic form
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
産業上の利用分野 本発明は式(1) Industrial applications The present invention uses formula (1)
【式】
(式中、R1およびR2はアルキル基を示す。)で
表わされる1,1′−ビ−2−ナフトール誘導体の
光学活性体の製法に関するものである。
さらに、前記の化合物(1)の光学活性体は立体保
持的に脱アルキル化することにより、式(2)The present invention relates to a method for producing an optically active 1,1'-bi-2-naphthol derivative represented by the formula: (wherein R 1 and R 2 represent an alkyl group). Furthermore, the optically active form of the compound (1) can be dealkylated in a steric retention manner to form the formula (2).
【式】
で表わされる1,1′−ビ−2−ナフトールの光学
活性体に導びくことができるので、本発明の方法
は光学活性な1,1′−ビ−2−ナフトール製造の
中間体の製造に有用である。また、式(2)で表わさ
れる化合物は光学活性な配位子あるいは相間移動
触媒等の用途がある。
光学活性な式(2)で表わされる1,1′−ビ−2−
ナフトールは、その軸性キラリテイーに特色があ
る光学活性化合物で、ケトン不斉還元の際の配位
子、アミノ酸等の光学分割能力を有する光学活性
クラウンエーテルの原料、あるいはそのまま非対
称スルホキシド類の化学分割剤等として有用な化
合物である。
従来の技術
従来、光学活性な1,1′−ビ−2−ナフトール
を得る方法としては、1,1′−ビ−2−ナフトー
ルのラセミ体を光学分割する次の様な方法が知ら
れている。
(1) リン酸エステルを経由して、シンコニジン塩
として光学分割後、リン酸エステルを切断する
方法(Tetrahedron Lett.,1971,4617)。
(2) 光学活性なメチルm−トリルスルホキシドを
分割剤とする方法(Tetrahedron Lett.,1984
4929)。
解決しようとする問題点
従来の技術は、共通の問題として1,1′−ビ−
2−ナフトールのラセミ体が水に対し難溶性であ
るにもかかわらず、難溶性の水の中でラセミ体を
合成する必要があり、ラセミ体合成が容易でない
という問題がある。また、上述の(1)の方法は比較
的高価なシンコニジンを用いること、多工程を要
することという問題があり、(2)の方法はかなり簡
便な方法であるがメチルm−トリルスルホキシド
の、しかも光学活性体という入手しにくい分割剤
を用いるという問題がある。
問題点を解決するための手段
本発明者らは、1,1′−ビ−2−ナフトールの
ラセミ体を経由しない、かつ高価なおよび/ある
いは入手困難な光学分割剤を用いない光学活性な
1,1′−ビ−2−ナフトールを経ることなく直
接、あるいは必要に応じて前記一般式(2)で表わさ
れる1,1′−2−ナフトールの製法を鋭意検討
し、(1)先ず、本発明者らが既に出願した製法(特
願昭60−15065)の方法で2−アルコキシナフタ
レンから難溶性の1,1′−ビ−2−ナフトールの
ラセミ体をアルキル化する方法等によつて前記一
般式(1)で表わされる1,1′−ビ−2−ナフトール
誘導体を得;(2)次のこの1,1′−ビ−2−ナフト
ール誘導体を所謂、優先晶出法で光学分割しその
まま利用するか;あるいは(3)さらにこの1,1′−
ビ−2−ナフトール誘導体を得;(2)次にこの1,
1′−ビ−2−ナフトール誘導体を所謂、優先晶出
法で光学分割しそのまま利用するか;あるいは(3)
さらにこの1,1′−2−ナフトール誘導体の光学
活性体を立体保持的に脱アルキル化することによ
り光学活性な1,1′−ビ−2−ナフトールを得る
という製法を完成した。
本発明の方法をさらに詳しく説明する。前記一
般式(1)により表わされる1,1′−ビ−2−ナフト
ール誘導体のラセミ体あるいは、一方の光学活性
体が他方の光学活性体よりも過剰に存在する混合
体の優先晶出に際し、先ず混合体を有機溶媒に溶
解させる。
使用される溶媒は、ラセミ体の溶解度の方が光
学活性体の溶解度よりも大きいものが好ましい。
例えば、ヘキサン、ベンゼン、トルエンのような
炭化水素類;エチルエーテル、イソプロピルエー
テルのようなエーテル類;クロロホルム、ジクロ
ロメタンのようなハロゲン化炭化水素類;メタノ
ール、エタノール、イソプロパノール(IPA)、
t−ブタノールのようなアルコール類;アセト
ン、メチルエチルケトン、酢酸メチル、DMSO,
DMFのような非プロトン性極性溶媒類及びこれ
らの混合溶媒を用いることができる。
次に冷却し過飽和とする。過飽和の程度は少な
い方が得られる結晶の光学純度が高くなるが、1
回で得られる量が少なくなる。通常その温度での
ラセミ体の溶解度の10ないし100%を析出させる
様に過飽和とする。但し、一方の光学活性体が他
方の光学活性体よりも過剰に存在する混合物の場
合は、この過剰分を予め考慮しておく必要があ
る。
次に接種する。接種する光学活性体は、ラセミ
体あるいはほぼラセミ体に近い混合体を用いる場
合は、d体、l体のいずれでも良いが、一方の光
学活性体が他方の光学活性体よりも過剰に存在す
る場合は、過剰な側の光学活性体が望ましい。
種晶の添加量、粒度には特に制限はないが、通
常は、溶液中のラセミ体または部分分割された混
合体に対し1〜20重量%程度の結晶を砕いた粉末
を用いるのが適当である。
晶析は、冷却による方法、溶媒を留去する方
法、溶解度が小さい溶媒を滴下する方法等が可能
であり、また回分法の他、連続晶析装置の導入も
可能である。晶出速度の調整が重要であり、晶出
速度をゆつくりにすると析出する結晶の光学純度
が高くなる傾向がある。
この様にして得られた前記の化合物(1)の光学活
性体を立体保持的に脱アルキル化し、1,1′−ビ
−2−ナフトールを得る方法としては、ハロゲン
化水素および含水有機カルボン酸での加熱による
方法(たとえば、ヨウ化水素酸−酢酸あるいは臭
化水素酸−酢酸)、三臭化ホウ素と低温で処理す
る方法〔たとえばJ.Amer.Chem.Soc.,104、881
(1982)〕等が挙げられる。
発明の作用効果
高価なあるいは入手しにくい光学分割剤を必要
とせず、最初にどちらか一方の種晶を小量用する
だけで得られた結晶を次回の種晶として利用でき
るので、極めて経済的である。
また、分割の操作も単純な晶析のみであるた
め、工業的に有利な方法である。
また、原料に用いる式(1)で表わされる1,1′−
ビ−2−ナフトール誘導体は、従来法に於て用い
られる式(2)で表わされる1,1′−ビ−2−ナフト
ール誘導体より合成がはるかに容易である。
実施例
以下に実施例を示し、さらに詳しく説明する。
なお、発明はこれら実施例によつて限定されるも
のではない。
参考例 1
2−メトキシナフタレン1.58gを塩化メチレン
100mlに溶解させ、−10〜−15℃の浴上で攪拌冷却
した。これに塩化第2鉄3.26gを少しずつ加え攪
拌、添加終了後さらに30分間攪拌した後、水50ml
を少しずつ加えた。水添加後充分攪拌し黒褐色の
液の色が淡黄色に変化した後、徐々に室温に戻し
た。分液し得た有機層を濃縮し、さらに蒸留し
1,1′−ビ−2−ナフキシナフタレンのラセミ体
1.18gを無色油状物として得た。このものはすぐ
に固化した。収率75%。物性値は以下の通りであ
つた。
mp 199〜202.5℃(ベンゼン)
NMR(CDCl2)δ3.74(s,6H),7.15〜8.20
(m,12H)
MS (m/e)314(M+,100),268(10)
なお、物性値は市販の1,1′−ビ−2−ナフト
ールをジメチルホルムアミド中、ヨウ化メチルお
よび水素化ナトリウムでメチル化して得た標品の
それらと一致した。
実施例 1
参考例1で得られた1,1′−ビ−2−メトキシ
ナフタレンのラセミ体201.5mgをベンゼン6.0gに
溶解させた後24℃に冷却し、粉末化した光学活性
体61.4mg(〔α〕25 D−44.0°(c=1.0,CHCl3),85.
3
%e.e.)を接種した。14時間かけて、ゆつくり24
℃から9℃まで攪拌しながら冷却し、過した。
結晶部分は162.5mgで〔α〕25 D−17.5°(33.9%e.e.)
、
液部分を濃縮すると97.5mgで〔α〕25 D+2.3°(4.5
%e.e.)だつた。l体,d体が3〜5mg増大した
ことになる。
実施例 2
1,1′−ビ−2−メトキシナフタレンのラセミ
体515mgをクロロホルム12.0gに溶解させた後20
℃に冷却し、粉末化した光学活性体24.6mg(〔α〕
25 D+51.1°(c=1.0,CHCl3),99.0%e.e.)を接種
した。19〜21℃で1時間攪拌し過した。結晶部
分は126.8mgで〔α〕25 D+16.7°(32.4%e.e.)、液
部
分を濃縮すると424mgで〔α〕25 D−2.5°(4.8%e.e.)
だつた。d体、l体が17〜21mg増大したことにな
る。
実施例 3
1,1′−ビ−2−メトキシナフタレンのラセミ
体1644mgとd体45mg〔α〕25 D+51.6°(c=1.0,
CHCl3),100%e.e.)の混合体をクロロホルム
36.0gに溶解させた後20℃に冷却し、粉末化した
光学活性体31.6mg(〔α〕25 D+37.8°,73.3%e.e.)
を
接種した。20℃で1時間攪拌し過した。結晶部
分は273mgで〔α〕25 D+23.0°(44.6%e.e.)であつ
た。d体が99mg増大したことになる。
この液部分からクロロホルムを1.0g留去し
た後、再溶解させ、20℃に冷却した。粉末化した
光学活性体39.0mg(〔α〕25 D−44.0°,85.3%e.e.)
を
接種し、20℃で1時間攪拌し過した。結晶部分
は349mgで〔α〕25 D−36.0°(69.8%e.e.)で、l体が
210mg増大したことになる。このものをクロロホ
ルム4.3gで還流温度まで加熱、溶解し、さらに
20℃までゆつくり冷却した後過し、無色結晶
185mgを得た。〔α〕25 D−51.3°(99.4%e.e.)。mp23
2
〜234.5℃(ベンゼン)NMR,MSの値は実施例
1のラセミ体と同じであつた。
参考例 2
参考例1の2−メトキシナフタレン1.58gの代
りに、2−エトキシナフタレン1.72gを用い、参
考例1と同様に反応、処理し1,1′−ビ−2−エ
トキシナフタレンのラセミ体0.86gを無色油状物
として得た。このものはすぐに固化した。収率50
%。物性値は以下の通りであつた。
mp 105.5〜107.5℃(アセトン)
NMR(CDCl3)δ1.01(t,6H),3.98(q,
4H),7.0〜8.1(m,12H)
MS (m/e)342(M+,100),286(26),
268(15)
なお、物性値は市販の1,1′−ビ−2−ナフト
ールをジメチルホルムアミド中、ヨウ化エチルお
よび水素化ナトリウムでエチル化して得た標品の
それらと一致した。このエチル化で得た光学活性
体の標品の融点は137〜140℃(ヘキサン)であつ
た。
実施例 4
参考例2で得られた1,1′−ビ−2−エトキシ
ナフタレンのラセミ体770mgをアセトン10.2gに
溶解させた後20℃に冷却し、粉末化したd体33.5
mg(〔α〕25 D+67.0°(c=1.0,CHCl3),100%e.e.
)
を接種した。19℃に冷却し1時間攪拌した後過
した。結晶部分は127.3mgで〔α〕25 D+27.5°(41.0%
e.e.)、液部分を濃縮すると692mgで〔α〕25 D−
1.8°(2.7%e.e.)だつた。d体、l体が19mg増大し
たことになる。Since the method of the present invention can lead to an optically active form of 1,1'-bi-2-naphthol represented by the formula: It is useful in the production of Further, the compound represented by formula (2) has uses such as an optically active ligand or a phase transfer catalyst. Optically active 1,1'-B-2- represented by formula (2)
Naphthol is an optically active compound characterized by its axial chirality, and can be used as a ligand for asymmetric reduction of ketones, as a raw material for optically active crown ethers that have the ability to optically resolve amino acids, etc., or as it is for the chemical resolution of asymmetric sulfoxides. It is a compound useful as a drug. Prior Art Conventionally, as a method for obtaining optically active 1,1'-bi-2-naphthol, the following method of optically resolving a racemic form of 1,1'-bi-2-naphthol has been known. There is. (1) A method in which the phosphoric acid ester is optically resolved as a cinchonidine salt via the phosphoric acid ester, and then the phosphoric acid ester is cleaved (Tetrahedron Lett., 1971 , 4617). (2) Method using optically active methyl m-tolyl sulfoxide as a resolving agent (Tetrahedron Lett., 1984
4929). Problems to be solved Conventional technologies have a common problem of 1,1'-beam
Although the racemic form of 2-naphthol is poorly soluble in water, it is necessary to synthesize the racemic form in poorly soluble water, and there is a problem in that racemic synthesis is not easy. In addition, method (1) described above has the problem of using relatively expensive cinchonidine and requiring multiple steps, while method (2) is a fairly simple method, but it uses methyl m-tolylsulfoxide. There is a problem in using a resolving agent called an optically active substance, which is difficult to obtain. Means for Solving the Problems The present inventors have developed an optically active 1,1'-bi-2-naphthol that does not pass through the racemic form and does not use an expensive and/or difficult-to-obtain optical resolving agent. , 1'-bi-2-naphthol directly without going through it, or as necessary, we have intensively studied the method of producing 1,1'-2-naphthol represented by the above general formula (2), and (1) First, we have developed the present invention. The above-mentioned product can be obtained by alkylating a racemic form of sparingly soluble 1,1'-bi-2-naphthol from 2-alkoxynaphthalene according to the production method already filed by the inventors (Japanese Patent Application No. 15065/1982). Obtain a 1,1'-bi-2-naphthol derivative represented by general formula (1); (2) Optically resolve this 1,1'-bi-2-naphthol derivative by the so-called preferential crystallization method. Use it as is; or (3) further add this 1, 1′−
Obtain a bi-2-naphthol derivative; (2) then this 1,
Either optically resolve the 1'-bi-2-naphthol derivative by the so-called preferential crystallization method and use it as it is; or (3)
Furthermore, a production method was completed in which optically active 1,1'-bi-2-naphthol was obtained by dealkylating the optically active form of this 1,1'-2-naphthol derivative in a steric-retentive manner. The method of the present invention will be explained in more detail. When preferentially crystallizing a racemic form of the 1,1'-bi-2-naphthol derivative represented by the general formula (1) or a mixture in which one optically active form is present in excess over the other optically active form, First, the mixture is dissolved in an organic solvent. The solvent used is preferably one in which the solubility of the racemic form is greater than the solubility of the optically active form.
For example, hydrocarbons such as hexane, benzene, and toluene; ethers such as ethyl ether and isopropyl ether; halogenated hydrocarbons such as chloroform and dichloromethane; methanol, ethanol, isopropanol (IPA),
Alcohols such as t-butanol; acetone, methyl ethyl ketone, methyl acetate, DMSO,
Aprotic polar solvents such as DMF and mixed solvents thereof can be used. Next, it is cooled to supersaturation. The smaller the degree of supersaturation, the higher the optical purity of the obtained crystal, but 1
The amount obtained each time is reduced. Usually, supersaturation is achieved so that 10 to 100% of the solubility of the racemate at that temperature is precipitated. However, in the case of a mixture in which one optically active substance is present in excess of the other optically active substance, this excess must be taken into consideration in advance. Next, inoculate. The optically active form to be inoculated may be either the d-form or the l-form when a racemic form or a mixture close to a racemic form is used, but one optically active form is present in excess over the other optically active form. In this case, it is desirable to use an optically active substance in excess. There are no particular restrictions on the amount or particle size of seed crystals, but it is usually appropriate to use a powder containing crushed crystals in an amount of 1 to 20% by weight based on the racemate or partially separated mixture in the solution. be. The crystallization can be carried out by cooling, by distilling off the solvent, by dropping a solvent with low solubility, and in addition to the batch method, it is also possible to introduce a continuous crystallizer. Adjustment of the crystallization rate is important; slowing down the crystallization rate tends to increase the optical purity of the precipitated crystals. The optically active form of the compound (1) obtained in this manner is dealkylated in a steric-retentive manner to obtain 1,1'-bi-2-naphthol. (e.g., hydroiodic acid-acetic acid or hydrobromic acid-acetic acid), treatment with boron tribromide at low temperatures [e.g., J.Amer.Chem.Soc., 104 , 881
(1982)]. Effects of the invention: It is extremely economical because it does not require an expensive or difficult-to-obtain optical resolution agent, and by first using a small amount of either seed crystal, the resulting crystal can be used as the next seed crystal. It is. Furthermore, since the separation operation involves only simple crystallization, it is an industrially advantageous method. In addition, 1,1'- expressed by formula (1) used as a raw material
Bi-2-naphthol derivatives are much easier to synthesize than the 1,1'-bi-2-naphthol derivatives represented by formula (2) used in conventional methods. Examples Examples will be shown below and explained in more detail.
Note that the invention is not limited to these Examples. Reference example 1 1.58g of 2-methoxynaphthalene was mixed with methylene chloride.
The solution was dissolved in 100 ml and cooled with stirring on a -10 to -15°C bath. Add 3.26 g of ferric chloride little by little and stir. After addition, stir for another 30 minutes, then add 50 ml of water.
was added little by little. After adding water, the mixture was thoroughly stirred and the color of the dark brown liquid changed to pale yellow, after which the temperature was gradually returned to room temperature. The separated organic layer was concentrated and further distilled to obtain a racemic product of 1,1'-bi-2-naphxinaphthalene.
1.18 g was obtained as a colorless oil. This stuff solidified quickly. Yield 75%. The physical property values were as follows. mp 199-202.5℃ (benzene) NMR (CDCl 2 ) δ3.74 (s, 6H), 7.15-8.20
(m, 12H) MS (m/e) 314 (M + , 100), 268 (10) The physical properties are obtained by mixing commercially available 1,1'-bi-2-naphthol with methyl iodide and hydrogen in dimethylformamide. The results were consistent with those of the standard specimen obtained by methylation with sodium chloride. Example 1 201.5 mg of the racemic form of 1,1'-bi-2-methoxynaphthalene obtained in Reference Example 1 was dissolved in 6.0 g of benzene, and then cooled to 24°C to obtain 61.4 mg of the optically active substance ( [α] 25 D −44.0° (c=1.0, CHCl 3 ), 85.
3
%ee) was inoculated. 14 hours of leisure time 24
The mixture was cooled with stirring from 0.degree. C. to 9.degree. C. and filtered.
The crystalline portion is 162.5 mg [α] 25 D −17.5° (33.9%ee)
,
When the liquid part is concentrated, it becomes 97.5 mg [α] 25 D +2.3° (4.5
%ee). This means that the l- and d-isomers increased by 3 to 5 mg. Example 2 After dissolving 515 mg of racemic form of 1,1'-bi-2-methoxynaphthalene in 12.0 g of chloroform,
24.6 mg of optically active substance ([α]
25 D +51.1° (c=1.0, CHCl 3 ), 99.0% ee) was inoculated. The mixture was stirred at 19-21°C for 1 hour. The crystal part is 126.8 mg [α] 25 D +16.7° (32.4% ee), and when the liquid part is concentrated, it is 424 mg [α] 25 D −2.5° (4.8% ee)
It was. This means that the d- and l-isomers increased by 17 to 21 mg. Example 3 Racemic form of 1,1'-bi-2-methoxynaphthalene 1644 mg and d form 45 mg [α] 25 D +51.6° (c = 1.0,
A mixture of CHCl 3 ), 100% ee) was added to chloroform.
31.6 mg of optically active material ([α] 25 D +37.8°, 73.3%ee) was dissolved in 36.0 g, cooled to 20°C, and powdered.
was inoculated. The mixture was stirred at 20°C for 1 hour. The crystalline portion was 273 mg and [α] 25 D +23.0° (44.6% ee). This means that the d-isomer increased by 99 mg. After 1.0 g of chloroform was distilled off from this liquid portion, it was redissolved and cooled to 20°C. Powdered optically active substance 39.0 mg ([α] 25 D −44.0°, 85.3%ee)
was inoculated and stirred at 20°C for 1 hour. The crystal part is 349 mg [α] 25 D −36.0° (69.8% ee), and the l-isomer is
This means an increase of 210 mg. Heat this material to reflux temperature with 4.3 g of chloroform, dissolve it, and then
After slowly cooling to 20℃, filter it to form colorless crystals.
Obtained 185 mg. [α] 25 D −51.3° (99.4%ee). mp23
2
~234.5°C (benzene) NMR and MS values were the same as those of the racemate of Example 1. Reference Example 2 1.72 g of 2-ethoxynaphthalene was used instead of 1.58 g of 2-methoxynaphthalene in Reference Example 1, and the reaction and treatment were carried out in the same manner as in Reference Example 1 to obtain a racemic form of 1,1'-bi-2-ethoxynaphthalene. Obtained 0.86 g as a colorless oil. This stuff solidified quickly. Yield 50
%. The physical property values were as follows. mp 105.5-107.5℃ (acetone) NMR (CDCl 3 ) δ1.01 (t, 6H), 3.98 (q,
4H), 7.0~8.1 (m, 12H) MS (m/e) 342 (M + , 100), 286 (26),
268 (15) The physical properties were consistent with those of a standard product obtained by ethylating commercially available 1,1'-bi-2-naphthol with ethyl iodide and sodium hydride in dimethylformamide. The melting point of the standard optically active substance obtained by this ethylation was 137-140°C (hexane). Example 4 770 mg of the racemic form of 1,1'-bi-2-ethoxynaphthalene obtained in Reference Example 2 was dissolved in 10.2 g of acetone, cooled to 20°C, and powdered d-form 33.5
mg ([α] 25 D +67.0° (c=1.0, CHCl 3 ), 100%ee
)
was inoculated. The mixture was cooled to 19°C, stirred for 1 hour, and then filtered. The crystalline portion is 127.3 mg [α] 25 D +27.5° (41.0%
ee), when the liquid part is concentrated, it becomes 692 mg [α] 25 D −
It was 1.8° (2.7%ee). This means that the d- and l-isomers increased by 19 mg.
Claims (1)
のラセミ体、あるいは一方の光学活性体が他方の
光学活性体より過剰に存在する混合体を溶媒に溶
解させた後、冷却し過飽和とした後、いずれか一
方の光学活性体を接種し、晶析分割することを特
徴とする光学活性な1,1′−ビ−2−ナフトール
誘導体の光学分割法。 2 式()の式中のR1とR2が同一で、低級ア
ルキル基である特許請求の範囲第1項記載の光学
分割法。[Scope of Claims] 1 A racemic form of a 1,1'-bi-2-naphthol derivative represented by the formula () [Formula] (wherein R 1 and R 2 represent an alkyl group), or one of the It is characterized by dissolving a mixture in which one optically active substance is present in excess of the other optically active substance in a solvent, cooling it to make it supersaturated, and then inoculating one of the optically active substances and performing crystallization resolution. An optical resolution method for optically active 1,1'-bi-2-naphthol derivatives. 2. The optical resolution method according to claim 1, wherein R 1 and R 2 in the formula () are the same and are lower alkyl groups.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13265285A JPS61291535A (en) | 1985-06-18 | 1985-06-18 | Optical resolution of 1,1'-bi-2-naphthol derivative |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13265285A JPS61291535A (en) | 1985-06-18 | 1985-06-18 | Optical resolution of 1,1'-bi-2-naphthol derivative |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61291535A JPS61291535A (en) | 1986-12-22 |
JPH0580461B2 true JPH0580461B2 (en) | 1993-11-09 |
Family
ID=15086325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13265285A Granted JPS61291535A (en) | 1985-06-18 | 1985-06-18 | Optical resolution of 1,1'-bi-2-naphthol derivative |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61291535A (en) |
-
1985
- 1985-06-18 JP JP13265285A patent/JPS61291535A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61291535A (en) | 1986-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008239629A (en) | Novel polymorph of venlafaxine hydrochloride and method for preparing it | |
CA2971093A1 (en) | Process of making cenicriviroc and related analogs | |
CN110818634B (en) | Refining method of lervatinib mesylate | |
JPH02275877A (en) | Optically active ketene dithioacetal derivative and its production | |
CA2451979C (en) | Novel modifications of the trometamol salt of r-thioctic acid and method for producing the same | |
FR2468370A1 (en) | NEW PYRIDOTHIENOTRIAZINES AND PROCESS FOR PREPARING THEM | |
BE897617A (en) | ACETYLSALICYLIC ACID THIOESTERS PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THE SAME | |
JPH0580461B2 (en) | ||
JP5406194B2 (en) | Process for preparing R-gossypol L-phenylalaninol dienamine | |
CA1217489A (en) | Piperidine derivatives, and their preparation | |
US7368593B1 (en) | Method of selective esterification | |
US20200095229A1 (en) | Purified cenicriviroc and purified intermediates for making cenicriviroc | |
JPH10245352A (en) | Purification of biscresol compounds | |
JP4397990B2 (en) | Purification method of 3-alkylflavanonol derivatives | |
EA011763B1 (en) | Processes for preparing venlafaxine hydrochloride of form i | |
JP3432880B2 (en) | Preparation of optically active azaspiro compounds | |
US6008413A (en) | Process for recrystallizing 1,3-bis(aminophenoxy benzene) | |
JP2576598B2 (en) | Process for producing optically active 1-methyl-3-phenylpropylamine | |
JPH0798802B2 (en) | Process for producing optically active indoline-2-carboxylic acid | |
JP2905931B2 (en) | Process for producing optically active 2-cyclopentenones | |
JPH0143731B2 (en) | ||
JPS59152346A (en) | Preparation of optically active 2-(6-methoxy-2-naphthyl) propionic acid | |
WO2009118758A2 (en) | Novel crystalline forms of desvenlafaxine succinate | |
JPS61103852A (en) | Method of optical resolution of 2-phenylpropionic ester | |
WO2019184772A1 (en) | Gibberellin-like compound, preparation method thereof, pharmaceutical composition, uses and intermediate thereof |