[go: up one dir, main page]

JPH057995B2 - - Google Patents

Info

Publication number
JPH057995B2
JPH057995B2 JP59134536A JP13453684A JPH057995B2 JP H057995 B2 JPH057995 B2 JP H057995B2 JP 59134536 A JP59134536 A JP 59134536A JP 13453684 A JP13453684 A JP 13453684A JP H057995 B2 JPH057995 B2 JP H057995B2
Authority
JP
Japan
Prior art keywords
dna
growth hormone
added
tris
cdna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59134536A
Other languages
Japanese (ja)
Other versions
JPS6115699A (en
Inventor
Susumu Sekine
Tamio Mizukami
Moryuki Sato
Seiga Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP59134536A priority Critical patent/JPS6115699A/en
Priority to CA000485108A priority patent/CA1272144A/en
Priority to AU44195/85A priority patent/AU575961B2/en
Priority to NO852568A priority patent/NO174717C/en
Priority to EP85107987A priority patent/EP0166444B1/en
Priority to SU853913602A priority patent/RU1825376C/en
Priority to US06/750,587 priority patent/US4689402A/en
Publication of JPS6115699A publication Critical patent/JPS6115699A/en
Priority to US07/017,630 priority patent/US4849359A/en
Publication of JPH057995B2 publication Critical patent/JPH057995B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormone [GH], i.e. somatotropin

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Endocrinology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Feed For Specific Animals (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Fodder In General (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は魚類の成長ホルモンポリペプチドをコ
ードするDNA、該DNAを組み込んだ組換え体
DNA、該組換え体DNAを含む微生物および該微
生物を用いる魚類の成長ホルモンポリペプチドの
製造法に関する。魚類の成長ホルモンは魚類の養
殖産業分野において広い用途が期待される。 従来の技術 哺乳類の成長ホルモンは脳下垂体において生産
されるが、それらの活性ならびに構造は公知であ
る。たとえば、ヒト成長ホルモンについては、
U.J.LewisらによつてJ.Am.Chem.Soc.,80
4429(1958)に、A.S.HartreeによつてBiochem.
J.,100,754(1966)に、C.H.LiらによつてArch.
Biochem.Biophys.Acta(Suppl.),,327(1962)
に報告されている。 魚類の成長ホルモンについても、これまでに単
離されたという報告は多く見られるが、その生理
活性と蛋白化学的な性質で信頼性のあるものは数
が少ない。信頼性のある報告の例には次のような
ものがある。 テイラピアよりの単離例S.W.Farmerら、Gen.
Comp.Endocrin.,30,91(1976). チヨウザメよりの単離例S.W.Farmerら、 Endocrinology,108,377(1981). コイよりの単離例A.F.Cookら、Gen.Comp. Endorcrin.,50,335(1983). 一方哺乳動物の成長ホルモン遺伝子については
ラツト成長ホルモン遺伝子〔P.H.Seeburgら: Nature270 486(1977)〕、ウシおよびブタの成
長ホルモン遺伝子〔P.H.Seeburgら:DNA,
37(1983)〕、ヒト成長ホルモン遺伝子〔J.A.
Martialら:Sciece,205,602(1979)〕などがす
でに知られているが、魚類の成長ホルモン遺伝子
についてはいまだに報告がない。 本発明者らは先にサケ脳下垂体から成長ホルモ
ンを抽出、精製し、N末端からのアミノ酸配列
(31個)の決定を行つた。また、この物質が硬骨
魚類において成長促進効果を有することも確認し
ている〔特願昭59−68670〕。 発明が解決しようとする問題点 魚類の成長ホルモンは魚類の成長促進効果を有
するので、養魚用餌料の組成物として有用である
が、魚類の脳下垂体からの採取は供給量が限られ
ている。従つて魚類の成長ホルモンを安価に大量
に供給する方法の開発が望まれている。 問題点を解決するための手段 本発明者らは、組換えDNA技法により魚類の
成長ホルモンを製造する方法について研究を行つ
た。その結果、魚類の成長ホルモン製造に使用す
ることができる、魚類の成長ホルモンポリペプチ
ドに相補的なDNAの採取ならびにこれを含む組
換え体DNAおよび微生物の製造に成功した。即
ちサケ脳下垂体からメツセンジヤーRNA
(mRNA)を抽出し、これと相補的なDNA
(cDNA)を合成し、次いでサケの成長ホルモン
のN末端付近のアミノ酸配列に対応するDNAプ
ローブを合成し、このDNAとハイブリダイズす
るcDNAを選択することにより、サケ成長ホルモ
ン遺伝子をクローン化することに成功した。さら
にこのcDNAの全塩基配列を決定し、本発明を完
成するに至つた。 以下本発明を詳細に説明する。 本発明は、魚類の成長ホルモンポリペプチド、
とくに第1表に示されたペプチド配列を有するポ
リペプチドを提供する。該ポリペプチドは、組換
えDNA技法を用いて下記のごとく製造すること
ができる。 即ち、魚類成長ホルモンのmRNAを鋳型とし
て用いて該mRNAに相補性を示すDNA(cDNA)
を調製し、該cDNAを組み込んだ組換え体プラス
ミドを調製する。さらに、該組換え体プラスミド
を宿主微生物に挿入する。該DNAおよび組換え
体プラスミドは、とくにエツシエリヒア・コリの
ような細菌中でサケ成長ホルモン遺伝子の増幅に
使用することができる。該組換え体プラスミドを
有する微生物はサケ成長ホルモンを安価に大量に
製造するために有用である。 従つて、本発明は、魚類の成長ホルモンポリペ
プチドをコードするDNA、該DNAを組み込んだ
組換え体DNAならびに該組換え体DNAを含む微
生物を提供する。 本発明のDNAと組換え体プラスミドは下記の
一般的手法で調製される。 シロザケ脳下垂体より全RNAを調製し、これ
をオリゴdTセルロース(oligo dT cellulose)
カラムを通すことによりポリアデニル酸(ポリ
A)を有するRNA(ポリA+RNA)を分離する。
このポリA+RNAを鋳型とし、逆転写酵素により
二重鎖DNAを合成する。組換え体は試験管内
DNA組換え技法を用い、大腸菌のプラスミド
DNAのようなベクターDNAに該合成DNAを挿
入して得られる。シロザケ成長ホルモンmRNA
に相補性を示すDNAを有する組換え体プラスミ
ドを選択する。 次に本発明のDNAおよび組換え体プラスミド
の製法について具体的に説明する。 捕獲されたシロザケより脳下垂体を摘出し、即
座に液体窒素中にて凍結する。この凍結脳下垂体
にグアニジウム・イソチオシアネート
(guanidium isothiocyanate)を加え破砕し、可
溶化する。次いでCsCl溶液層に重層し、超遠心
後、沈殿物とし全細胞質RNAを得る。またグア
ニジウム・イソチオシアネート可溶化物にLiClを
加えてRNAのみを沈殿させ回収することもでき
る。 抽出したRNAをNaClまたはKClの高塩濃度
(たとえば0.5M)溶液に溶解し、オリゴ(dT)
セルロースのカラムに通塔してポリ(A)を有す
るmRNAをカラムに吸着させる。水、10mMト
リス−HCl緩衝液のような低塩濃度溶液を用いて
溶出し、ポリ(A)を有するmRNAを単離する。 以下、Okayama−Bergの方法〔Okayama
& Berg;Mol.Cell.Biol.,161(1982)〕に従
い、cDNAの合成および、そのベクターへの組み
込みを行う。 まずベクタープライマーを合成する。ベクター
としてはたとえばpCDV1を適当な溶液、たとえ
ばトリス−HCl緩衝液(たとえばPH7.5,
10mM),MgCl2(たとえば6mM),NaCl(たとえ
ば10mM)を含む溶液中でKpnIで処理し、
pCDV1のKpnI部位を切断する。このDNAをト
リス−HCl緩衝液(たとえばPH6.8,30mM),カ
コジル酸ナトリウム(たとえば140mM),CoCl2
(たとえば1mM),ジチオスレイトール(たとえ
ば0.1mM)およびdTTP(たとえば0.25mM)中、
ターミナルデオキシヌクレオチジルトランスフエ
ラーゼとともに一定温度(たとえば37℃)で一定
時間(たとえば20分間)インキユベートし、ベク
ターDNAの両3′末端に60個前後のチミジル残基
を付加する。さらにこのDNAをトリス−HCl緩
衝液(たとえばPH7.5,10mM)、MgCl2(たとえ
ば6mM),NaCl(たとえば100mM)を含む溶液
中EcoRIで切断後、低融点アガロースゲル電気泳
動〔Lars Wieslander:Analytical
Biochemistry,98,305(1979)〕にて分画し、約
3.1キロベースの断片を回収する。次いで該DNA
をNaClまたはKClの高塩濃度(たとえば0.5M)
溶液に溶解し、ポリ(dA)セルロースカラムに
通塔してポリ(T)を有するベクタープライマー
分子のみをカラムに吸着させる。水、10mMトリ
ス−HCl緩衝液のような低塩濃度溶液を用いて溶
出し、ポリ(T)の付加したベクタープライマー
分子のみを単離する。 次にリンカーDNAを合成する。たとえば
pL1DNAを適当な溶液、たとえばトリス−HCl
緩衝液(たとえばPH7.5,10mM)、MgCl2(たと
えば6mM),NaCl(たとえば50mM)を含む溶液
中でPstIで処理し、pL1のPstI部位を切断する。
このDNAを、dTTPの代わりにdGTPを加える
以外はベクタープライマー合成の場合と同様に処
理し、15個前後のオリゴdG鎖を付加する。該
DNAを適当な溶液たとえばトリス−HCl緩衝液
(たとえばPH7.5,10mM)、MgCl2(たとえば
6mM),NaCl(たとえば60mM)を含む溶液中
Hindにて切断する。アガロースゲル電気泳動
にて約0.5キロベースのDNA断片を分画し、
DEAEペーパーにて回収する。このようにしてリ
ンカーDNAを得る。 以上のようにして得たポリ(A)+RNA、ベク
タープライマー、リンカーDNAを用い、cDNA
合成を行う。ポリ(A)+RNA、ベクタープライ
マーDNAをトリス−HCl緩衝液(たとえばPH
8.3、50mM),MgCl2(たとえば8mM)、KCl(た
とえば30mM)、ジチオスレイトール(たとえば
0.3mM)、dATP,dTTP,dCTP,dGTP(たと
えば各々2mM)を含む溶液中、逆転写酵素を一
定温度(たとえば37℃)、一定時間(たとえば40
分間)反応させる。こうして得たRNA−DNA二
重鎖の3′末端に、dTTPがdCTPに変わる以外
はベクタープライマーにdT鎖を付加した条件と
同様の操作でオリゴdC鎖を15個前後付加する。
このDNAをトリス−HCl緩衝液(たとえばPH
7.5、10mM)、MgCl2(たとえば6mM)、NaCl(た
とえば60mM)を含む溶液中Hindで切断する。
このDNAに、先に調製したリンカーDNAを混合
し、トリス−HCl緩衝液(たとえばPH7.5、
20mM)、MgCl2(たとえば4mM)、(NH42SO4
(たとえば10mM)、KCl(たとえば0.1M)、β−ニ
コチンアミドアデニンジヌクレオチド(β−
NAD)(たとえば0.1mM)を含む溶液中、大腸
菌DNAリガーゼとともに一定時間(たとえば16
時間)、一定温度(たとえば12℃)でインキユベ
ートする。こうしてcDNAとリンカーDNAとの
環状化が行われる。この反応液にdATP,
dTTP,dGTP,dCTPを各々、終濃度40μMとな
るよう加え、大腸菌DNAリガーゼ、大腸菌DNA
ポリメラーゼ、大腸菌リボヌクレアーゼHを加
え、RNA部分をDNAに変換することにより、完
全な二重鎖cDNAを含む組換えプラスミドを得
る。 こうして得た組換えプラスミドを用い大腸菌、
たとえば大腸菌c600SF8株を、たとえばScottら
の方法〔重定勝哉:細胞工学、616(1983)〕に
より形質転換する。上記で得た組換え体プラスミ
ド上にはアンピシリン耐性遺伝子が存在するた
め、形質転換した大腸菌はアンピシリン耐性を示
す。以下の手法はこれらアンピシリン耐性
(Apr)菌株から魚類の成長ホルモンmRNAに相
補性を示す遺伝子を持つ新規組換え体プラスミド
DNAを保有する菌株を選択するのに一般的に用
いられる。すなわち、上記で得られた形質転換株
をニトロセルロースフイルター上に固定し、既知
のシロザケ成長ホルモンのアミノ酸配列より予想
されるDNA配列を有する合成DNAプローブと会
合させ、強く会合するものを選択する
〔Grunstein−Hognessの方法、Proc.Natl.Acap.
Sci.,USA.,72,3961(1975)〕。プローブDNA
は通常のトリエステル法(J.Am.Chem.Soc.,
97,7327(1975)〕で合成される。合成DNAプロ
ーブによる選択はSouthernらの方法〔J.Mol.
Biol.98,503(1975)〕によつてさらに確実にで
き、この方法でシロザケ成長ホルモンmRNAに
相補性を示す遺伝子を有する組換え体プラスミド
DNAを同定できる。 本発明の新規組換え体プラスミドは大腸菌のよ
うな微生物、あるいは真核細胞による魚類成長ホ
ルモンポリペプチドの大量生産に用いられる。 以下に本発明の実施例を示す。 実施例1 シロザケ脳下垂体よりのポリA+RNA
の調製: シロザケ脳下垂体よりグアニジウムチオシアネ
ート−セシウムクロライド法〔Maniatisら編、
Molecular Cloning.p196,Cold Spring Harbor
刊;重定勝哉、細胞工学、,616(1983)〕に従
いポリAを有するRNAを下記のごとく調製した。 シロザケの凍結脳下垂体2g(約30個体分)を
4Mグアニジウムチオシアネート、0.5%ザルコシ
ン、5mMクエン酸ナトリウム(PH7)および
0.1Mβ−メルカプトエタノールからなる溶液10ml
中でテフロンホモゲナイザー(5rpm)にて破砕
し可溶化した。このホモジネートを18G注射針に
数回通してDNAを分断した。5.7MCsCl、0.1M
EDTA(PH8)の溶液各1.2mlを超遠心管中に分注
しておき、前記ホモジネートを重層した。
Hitachi RPS40ローターにて35000rpm、15時間
遠心後、RNAを沈殿として回収した。RNAの沈
殿を1mM EDTAを含むトリス−HCl(PH8.0)溶
液10mlに溶解し、フエノール−クロロホルムで抽
出後、エタノール沈殿により回収した。得られた
RNA約1mgを10mMトリス−HCl(PH8.0)および
1mM EDTAからなる溶液1mlに溶かした。65
℃、5分間インキユベートし、0.1mlの5MNaCl
を加えた。混合物をオリゴdTセルロース・カラ
ム(P−L Biochemicals社製)クロマトグラ
フイーにかけた。吸着したポリAを有する
mRNAを10mMトリス−HCl(PH8.0および1mM
EDTAからなる溶液で溶出しポリAを有する
mRNA約10μgを得た。 実施例2 cDNA合成と該DNAのベクターへの
挿入: Okayama−Bergの方法〔Mol.Cell.Biol.,
161(1982)〕に従い、cDNAの合成とそれを組み
込んだ組換え体プラスミドの造成を行つた。その
工程の概略を第1図に示す。 pCDV1〔Okayama & Berg:J.Mol.Cell.
Biol.,,280(1983)〕400μgを10mMトリス−
HCl(PH7.5)、6mM MgCl2および10mM NaClか
らなる溶液300μlに加え、さらに500単位のKpn
(宝酒造社製)を加えて、37℃、6時間反応させ、
プラスミド中のKpn部位で切断した。フエノー
ル−クロロホルム抽出後、エタノール沈殿により
DNAを回収した。Kpn切断した該DNA約
200μgを40mMカコジル酸ナトリウム、30mMト
リス−HCl(PH6.8),1mM CaCl2および0.1mMジ
チオスレイトール(以下DTTと略記する)から
なる緩衝液(以下TdT緩衝液と略記する)に
dTTPを0.25mMとなるよう加えた溶液200μlに加
え、さらに81単位のターミナルデオキシヌクレオ
チジルトランスフエラーゼ(以下TdTと略記す
る)(P−L Bioche−micals社製)を加えて、
37℃11分間反応させた。ここで、pCDV1のKpn
切断部位の3′末端にポリdT鎖が約67個付加さ
れた。該溶液からフエノール−クロロホルム抽
出、エタノール沈殿により、ポリdT鎖の付加し
たpCDV1DNA約100μgを回収した。該DNAを
10mMトリス−HCl(PH7.5)、6mM MgCl2
100mM NaClからなる緩衝液150μlに加え、さら
に360単位のEcoR(宝酒造社製)を加え、37℃
2時間反応させた。該反応物を低融点アガロース
ゲル電気泳動後、約3.1KbのDNA断片を回収し、
約60μgのポリdT鎖付加pCDV1を得た。該DNA
を10mMトリス−HCl(PH8.0)および1mM
EDTAからなる溶液500μlに溶解し、65℃5分間
インキユベート後、氷冷して50μlの5M NaClを
加えた。混合物をオリゴdAセルロースカラム
(コラボラテイブリサーチ社製)クロマトグラフ
イーにかけた。ポリdT鎖長が充分なものはカラ
ムに吸着し、これを10mMトリス−HC(PH
8.0)および1mMEDTAからなる溶液で溶出し、
ポリdT鎖の付加したpCDV1(以下ベクタープラ
イマーと略記する)27μgを得た。 次にリンカーDNAの調製を行なう。 pL1〔Okayama & Berg:Mol.Cell.Biol.
280(1983)〕約14μgを10mMトリス−HCl(PH
7.5)、6mM MgCl2および50mM NaClからなる
緩衝液200μlに加え、さらに50単位のPst(宝酒
造社製)を加え、37℃4時間反応させ、
pL1DNA中のPst部位で切断させた。該反応物
をフエノール−クロロホルム抽出後、エタノール
沈殿を行い、Pstで切断したpL1DNA約13μgを
回収した。該DNA約13μgをTdT緩衝液に終濃度
0.25mMのdGTPを含む溶液50μlに加え、さらに
TdT(P−L Biochemicals社製)54単位を加え
て37℃13分間インキユベートし、pL1のPst切
断部位3′末端にdG鎖を約14個付加した。フエノ
ール−クロロホルム抽出後エタノール沈殿にて
DNAを回収した。該DNAを100μlの10mMトリ
ス−HCl(PH7.5)、6mM MgCl2および60mM
NaClからなる緩衝液100μlに加え、さらに80単位
のHind(宝酒造社製)を加えて37℃3時間イ
ンキユベートし、pL1DNAのHind部位で切断
した。該反応物をアガロースゲル電気泳動にて分
画し、約0.5KbのDNA断片をDEAEペーパー法
〔Dretzenら、Ana1.Biochem.,112,295(1981)〕
にて回収し、オリゴdG鎖付きのリンカーDNA
(以下単にリンカーDNAと略記する)を得た。 上記で調製したポリ(A)RNA約2μg,ベク
タープライマー約1.4μgを50mMトリス−HCl(PH
8.3)、8mM MgCl2,30mM KCl,0.3mM
DTT,2mM dNTP(dATP,dTTP,dGTPお
よびdCTP)および10単位のリボヌクレアーゼイ
ンヒビター(P−L Biochemicals社製)から
なる溶液22.3μlに溶解し、10単位の逆転写酵素
(生化学工業社製)を加え、37℃40分間インキユ
ベートし、mRNAに相補的なDNAを合成させ
た。該反応物をフエノール−クロロホルム抽出、
エタノール沈殿を行ない、RNA−DNA二重鎖の
付加したベクタープライマーDNAを回収した。
該DNAを66μMdCTPおよび0.2μgポリAを含む
TdT緩衝液20μlに溶かし、14単位のTdT(P−L
Biochemicals社製)を加えて37℃8分間イン
キユベートし、cDNA3′末端に12個のdC鎖を付
加した。該反応物をフエノール−クロロホルム抽
出し、エタノール沈殿によりdC鎖の付加した
cDNA−ベクタープライマーDNAを回収した。
該DNAをトリス−HCl(PH7.5)、6mM MgCl2
よび60mM NaClからなる液400μlに溶かし、20
単位のHind(宝酒造社製)を加え、37℃2時
間インキユベートし、Hind部位で切断した。
該反応物をフエノール−クロロホルム抽出、エタ
ノール沈殿して0.5pmoleのdC鎖付加cDNA−ベ
クタープライマーDNAを得た。該
DNA0.08pmoleおよび前記のリンカー
DNA0.16pmoleを40μlのトリス−HCl(PH7.5)、
0.1M NaClおよび1mM EDTAからなる溶液
40μlに加え、65℃、42℃、0℃でそれぞれ10分、
25分、30分間インキユベートした。20mMトリス
−HCl(PH7.5)、4mM MgCl2,10mM
(NH42SO4,0.1M KClおよび0.1mMβ−NAD
の組成で、全量400μlとなるよう反応液を調製し
た。該反応液に10単位の大腸菌DNAリガーゼ
(New England Biolabs社製)を加え、11℃一
液インキユベートした。該反応液を各40μMの
dNTP、0.15mMβ−NADとなるよう成分を追加
調製し、5単位の大腸菌DNAリガーゼ、7単位
の大腸菌DNAポリメラーゼ(P−L
Biochemicals社製)および2単位の大腸菌リボ
ヌクレアーゼH(P−L Biochemicals社製)を
加え、12℃、25℃で順次1時間ずつインキユベー
トした。上記反応で、cDNAを含む組換えDNA
の環状化と、RNA−DNA二重鎖のRNA部分が
DNAに置換され、完全な二重鎖DNAの組換えプ
ラスミドが生成した。 実施例3 シロザケ成長ホルモンcDNAを含む組
換えDNAの選択: 実施例2で得た組換え体プラスミドを用い、大
腸菌c600SF8株〔Cameron:Proc.Natl.Acad.
Sci.USA,72,3416(1975)〕をScottらの方法
〔重定勝哉:細胞工学、,616(1983)〕に従い形
質転換した。得られた約1万個のコロニーのうち
4800個をニトロセルロース上に固定した。シロザ
ケ成長ホルモンのN末端から23番目−28番目のア
ミノ酸配列に対応する合成DNA、すなわち (3番目の塩基はAまたはG、9番目はTまた
はC、12番目はCまたはT、15番目はCまたはT
であり、組み合わせて16通りの合成DNAの混合
物となる)を32Pで標識したプローブに40℃で強
く会合した8菌株を選んだ〔Grunstein−
Hognessの方法、Proc.Natl.Acad.Sci.USA,72
3961(1975)〕。得られた8菌株についてSouthern
の方法〔J.Mol.Biol.,98,503(1975)〕により、
上記プローブおよびC末端付近のアミノ酸配列に
対応する合成DNAプローブ (3番目の塩基はCまたはT、6番目はAまた
はG、9番目はA,T,G,Cのいずれか、12番
目はGまたはAであり、組み合わせて32通りの合
成DNAの混合物となる)とも会合が確認された。
これらのプラスミドはpSGH1,3,6,8,9,
10,14,17と命名したが、いずれも、シロザケ成
長ホルモンのアミノ酸配列から予想されるDNA
配列を有することから成長ホルモンcDNAを含ん
でいるものと考えられた。 実施例4 該プラスミドpSGH1の塩基配列: 上記で得られたプラスミド8種につき、種々の
制限酵素で消化し、cDNA部分の切断地図を決定
した。制限酵素部位の存在位置から、得られたプ
ラスミドは3群に分類でき、pSGH1,6,9,
10,17の群、pSGH3の群、pSGH8,14の群と分
けられた。それぞれの群の制限酵素地図を第2図
に示す。 次に実施例3で行つた合成DNAプローブと最
も強い会合を示し、かつほぼ完全長のcDNAを含
むと考えられるpSGH1を含む群のプラスミド、
特にpSGH1について、その翻訳領域の全ヌクレ
オチド配列をM13フアージを用いたSanger法
〔Sangerら、Proc.Natl.Acad.Sci,USA,74
5463(1977):Amersham社 M13 cloning and
sequencing handbook〕に従つて決定した。配
列を第1表に示す。第1表中、塩基数1−66がシ
グナルペプチドを、67−630がシロザケ成長ホル
モンの成熟ペプチドをコードする。pSGH1に含
まれるcDNA配列から予想されるアミノ酸配列
は、シロザケ成長ホルモンペプチドから決定され
ているN末端付近およびC末端付近のアミノ酸配
列と完全に一致し、該cDNAはシロザケ成長ホル
モンをコードしていることが確認された。
pSGH1、pSGH3、pSGH8を含む大腸菌(それぞ
れESGH1、ESGH3、ESGH8)は昭和59年6月
23日付で、FERM BP−551,552および553とし
て工業技術院微生物工業技術研究所に寄託されて
いる。 【表】 発明の効果 本発明によれば、魚類の成長ホルモンポリペプ
チドをコードするDNAを組み込んだ組換え体
DNA、該組換え体DNAを含む微生物が得られ、
これらは魚類の成長ホルモンポリペプチドの大量
生産に利用することができる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a DNA encoding a fish growth hormone polypeptide, and a recombinant product incorporating the DNA.
The present invention relates to DNA, a microorganism containing the recombinant DNA, and a method for producing a fish growth hormone polypeptide using the microorganism. Fish growth hormones are expected to have wide applications in the fish aquaculture industry. BACKGROUND OF THE INVENTION Mammalian growth hormones are produced in the pituitary gland, and their activity and structure are known. For example, for human growth hormone,
J.Am.Chem.Soc., 80 , by UJLewis et al.
4429 (1958) by AShartree in Biochem.
J., 100 , 754 (1966), by CHLi et al. in Arch.
Biochem. Biophys. Acta (Suppl.), 1 , 327 (1962)
has been reported. There have been many reports that fish growth hormones have been isolated, but there are only a few that are reliable in terms of their physiological activity and protein chemical properties. Examples of reliable reporting include: Isolation example from tilapia SWFarmer et al., Gen.
Comp. Endocrin., 30 , 91 (1976). Isolation example from a sturgeon shark SW Farmer et al., Endocrinology, 108 , 377 (1981). Isolation example from carp AFCook et al., Gen. Comp. Endorcrin., 50 , 335 (1983). On the other hand, regarding mammalian growth hormone genes, there are the rat growth hormone gene [PHSeeburg et al.: Nature 270 486 (1977)], the bovine and pig growth hormone genes [PHSeeburg et al.: DNA, 2 ,
37 (1983)], human growth hormone gene [JA
Martial et al.: Sciece, 205 , 602 (1979)], but there are no reports yet on growth hormone genes in fish. The present inventors previously extracted and purified growth hormone from salmon pituitary gland, and determined the amino acid sequence (31) from the N-terminus. It has also been confirmed that this substance has a growth-promoting effect on teleost fish [Patent Application 1986-68670]. Problems to be Solved by the Invention Fish growth hormone has a growth-promoting effect on fish, and is therefore useful as a composition for fish feed, but the supply of it from the pituitary gland of fish is limited. . Therefore, it is desired to develop a method for supplying fish growth hormone in large quantities at low cost. Means for Solving the Problems The present inventors conducted research on a method for producing fish growth hormone using recombinant DNA technology. As a result, we succeeded in collecting DNA complementary to fish growth hormone polypeptide, which can be used in the production of fish growth hormone, and in producing recombinant DNA and microorganisms containing this DNA. That is, Metsenjar RNA from the salmon pituitary gland.
(mRNA) and complementary DNA to this
Cloning the salmon growth hormone gene by synthesizing (cDNA), then synthesizing a DNA probe corresponding to the amino acid sequence near the N-terminus of salmon growth hormone, and selecting cDNA that hybridizes with this DNA. succeeded in. Furthermore, the entire base sequence of this cDNA was determined, leading to the completion of the present invention. The present invention will be explained in detail below. The present invention provides fish growth hormone polypeptides,
In particular, polypeptides having the peptide sequences shown in Table 1 are provided. The polypeptide can be produced using recombinant DNA techniques as described below. That is, DNA (cDNA) complementary to fish growth hormone mRNA is used as a template.
A recombinant plasmid incorporating the cDNA is prepared. Furthermore, the recombinant plasmid is inserted into a host microorganism. The DNA and recombinant plasmid can be used to amplify the salmon growth hormone gene, especially in bacteria such as E. coli. Microorganisms having the recombinant plasmid are useful for producing salmon growth hormone in large quantities at low cost. Accordingly, the present invention provides a DNA encoding a fish growth hormone polypeptide, a recombinant DNA incorporating the DNA, and a microorganism containing the recombinant DNA. The DNA and recombinant plasmid of the present invention are prepared by the following general method. Total RNA was prepared from the pituitary gland of chum salmon, and this was added to oligo dT cellulose.
RNA containing polyadenylic acid (polyA) (polyA + RNA) is separated by passing it through a column.
Using this polyA + RNA as a template, double-stranded DNA is synthesized using reverse transcriptase. Recombinant in vitro
E. coli plasmids using recombinant DNA techniques
It can be obtained by inserting the synthetic DNA into a vector DNA such as DNA. Chum salmon growth hormone mRNA
Select a recombinant plasmid that has DNA complementary to . Next, the method for producing the DNA and recombinant plasmid of the present invention will be specifically explained. The pituitary gland is removed from a captured chum salmon and immediately frozen in liquid nitrogen. Guanidium isothiocyanate is added to the frozen pituitary gland to crush it and solubilize it. Next, it is layered on a CsCl solution layer, and after ultracentrifugation, it is precipitated and total cytoplasmic RNA is obtained. Alternatively, only RNA can be precipitated and recovered by adding LiCl to the guanidium isothiocyanate solubilized product. Dissolve the extracted RNA in a high salt concentration (e.g. 0.5M) solution of NaCl or KCl and add oligo(dT)
The mRNA containing poly(A) is adsorbed onto the column by passing it through a cellulose column. The mRNA with poly(A) is isolated by elution using a low salt solution such as water, 10mM Tris-HCl buffer. The following is the Okayama-Berg method [Okayama
&Berg; Mol. Cell. Biol. 2 , 161 (1982)], synthesis of cDNA and its integration into a vector are performed. First, vector primers are synthesized. As a vector, for example, pCDV1 can be dissolved in a suitable solution, such as Tris-HCl buffer (e.g. PH7.5,
10mM), MgCl2 (e.g. 6mM), and NaCl (e.g. 10mM),
Cut pCDV1 at the KpnI site. This DNA was added to Tris-HCl buffer (e.g. PH6.8, 30mM), sodium cacodylate (e.g. 140mM), CoCl 2
(e.g. 1mM), dithiothreitol (e.g. 0.1mM) and dTTP (e.g. 0.25mM).
Approximately 60 thymidyl residues are added to both 3' ends of the vector DNA by incubation with terminal deoxynucleotidyl transferase at a constant temperature (eg, 37°C) for a certain period of time (eg, 20 minutes). Furthermore, this DNA was cut with EcoRI in a solution containing Tris-HCl buffer (e.g. PH7.5, 10mM), MgCl 2 (e.g. 6mM), NaCl (e.g. 100mM), and then subjected to low melting point agarose gel electrophoresis [Lars Wieslander: Analytical
Biochemistry, 98 , 305 (1979)], and approximately
Recover a 3.1 kilobase fragment. Then the DNA
High salt concentration of NaCl or KCl (e.g. 0.5M)
It is dissolved in a solution and passed through a poly(dA) cellulose column, so that only vector primer molecules having poly(T) are adsorbed onto the column. Elution is performed using a low salt solution such as water, 10mM Tris-HCl buffer to isolate only the poly(T)-attached vector primer molecules. Next, linker DNA is synthesized. for example
pL1DNA in a suitable solution, e.g. Tris-HCl.
The PstI site of pL1 is cleaved by treatment with PstI in a solution containing a buffer (eg, PH7.5, 10mM), MgCl 2 (eg, 6mM), and NaCl (eg, 50mM).
This DNA is treated in the same manner as for vector primer synthesis, except that dGTP is added instead of dTTP, and approximately 15 oligo dG chains are added. Applicable
Transfer the DNA to a suitable solution such as Tris-HCl buffer (e.g. PH7.5, 10mM), MgCl2 (e.g.
6mM), in a solution containing NaCl (e.g. 60mM)
Cut at Hind. Fractionate approximately 0.5 kilobase DNA fragments by agarose gel electrophoresis.
Collect with DEAE paper. In this way, linker DNA is obtained. Using poly(A) + RNA, vector primer, and linker DNA obtained as above, cDNA
Perform synthesis. Poly(A) + RNA, vector primer DNA was dissolved in Tris-HCl buffer (e.g. PH
8.3, 50mM), MgCl2 (e.g. 8mM), KCl (e.g. 30mM), dithiothreitol (e.g.
0.3mM), dATP, dTTP, dCTP, dGTP (e.g. 2mM each), reverse transcriptase was incubated at a constant temperature (e.g. 37°C) for a certain period of time (e.g. 40°C).
(minutes). Approximately 15 oligo dC strands are added to the 3' end of the RNA-DNA duplex thus obtained using the same procedure as when adding dT strands to the vector primer, except that dTTP is changed to dCTP.
This DNA was added to a Tris-HCl buffer (e.g. PH
7.5, 10mM), MgCl2 (e.g. 6mM), NaCl (e.g. 60mM).
Mix the previously prepared linker DNA with this DNA and add Tris-HCl buffer (e.g. PH7.5,
20mM), MgCl2 ( e.g. 4mM), ( NH4 ) 2SO4
(e.g. 10mM), KCl (e.g. 0.1M), β-nicotinamide adenine dinucleotide (β-
NAD) (e.g. 0.1mM) with E. coli DNA ligase for a fixed period of time (e.g. 16
time) and incubate at a constant temperature (e.g. 12°C). In this way, cDNA and linker DNA are circularized. This reaction solution contains dATP,
Add dTTP, dGTP, and dCTP to a final concentration of 40 μM each, and add E. coli DNA ligase and E. coli DNA.
A recombinant plasmid containing a complete double-stranded cDNA is obtained by adding a polymerase, E. coli ribonuclease H, and converting the RNA portion into DNA. Using the thus obtained recombinant plasmid, E. coli
For example, Escherichia coli c600SF8 strain is transformed by the method of Scott et al. [Katsuya Shigesada: Cell Engineering 2 , 616 (1983)]. Since the ampicillin resistance gene is present on the recombinant plasmid obtained above, the transformed E. coli exhibits ampicillin resistance. The following method uses a novel recombinant plasmid containing a gene complementary to fish growth hormone mRNA from these ampicillin-resistant ( Apr ) strains.
Commonly used to select strains that carry DNA. That is, the transformed strain obtained above is immobilized on a nitrocellulose filter and allowed to associate with a synthetic DNA probe having a DNA sequence predicted from the known amino acid sequence of chum salmon growth hormone, and those with strong association are selected. Grunstein-Hogness method, Proc. Natl. Acap.
Sci., USA., 72 , 3961 (1975)]. probe dna
is the usual triester method (J.Am.Chem.Soc.,
97, 7327 (1975)]. Selection using synthetic DNA probes was performed using the method of Southern et al. [J. Mol.
Biol. 98 , 503 (1975)], and by this method a recombinant plasmid containing a gene complementary to chum salmon growth hormone mRNA was obtained.
DNA can be identified. The novel recombinant plasmids of the present invention can be used for large scale production of fish growth hormone polypeptides by microorganisms such as E. coli or eukaryotic cells. Examples of the present invention are shown below. Example 1 Poly A + RNA from chum salmon pituitary gland
Preparation: Guanidium thiocyanate-cesium chloride method from chum salmon pituitary gland [Maniatis et al., eds.
Molecular Cloning.p196,Cold Spring Harbor
PolyA-containing RNA was prepared as follows . 2g frozen pituitary gland of chum salmon (about 30 individuals)
4M guanidinium thiocyanate, 0.5% sarcosine, 5mM sodium citrate (PH7) and
10ml of a solution consisting of 0.1M β-mercaptoethanol
The mixture was crushed and solubilized using a Teflon homogenizer (5 rpm). This homogenate was passed through an 18G needle several times to fragment the DNA. 5.7MCsCl, 0.1M
1.2 ml of each EDTA (PH8) solution was dispensed into ultracentrifuge tubes, and the homogenate was layered thereon.
After centrifugation at 35,000 rpm for 15 hours in a Hitachi RPS40 rotor, RNA was collected as a precipitate. The RNA precipitate was dissolved in 10 ml of Tris-HCl (PH8.0) solution containing 1 mM EDTA, extracted with phenol-chloroform, and recovered by ethanol precipitation. obtained
Approximately 1 mg of RNA was added to 10 mM Tris-HCl (PH8.0) and
It was dissolved in 1 ml of a solution consisting of 1 mM EDTA. 65
℃, incubate for 5 minutes and add 0.1 ml of 5M NaCl.
added. The mixture was subjected to chromatography on an oligo dT cellulose column (manufactured by PL Biochemicals). with adsorbed polyA
mRNA was purified using 10mM Tris-HCl (PH8.0 and 1mM
Contains polyA eluted with a solution consisting of EDTA
Approximately 10 μg of mRNA was obtained. Example 2 cDNA synthesis and insertion of the DNA into a vector: Okayama-Berg method [Mol.Cell.Biol., 2 ,
161 (1982)], cDNA was synthesized and a recombinant plasmid incorporating it was constructed. An outline of the process is shown in FIG. pCDV1〔Okayama & Berg: J.Mol.Cell.
Biol., 3 , 280 (1983)] 400μg in 10mM Tris-
Add to 300 μl of a solution consisting of HCl (PH7.5), 6 mM MgCl 2 and 10 mM NaCl, plus 500 units of Kpn.
(manufactured by Takara Shuzo Co., Ltd.) and reacted at 37℃ for 6 hours.
It was cut at the Kpn site in the plasmid. After phenol-chloroform extraction, ethanol precipitation
DNA was recovered. About the Kpn-cleaved DNA
200μg was added to a buffer solution (hereinafter abbreviated as TdT buffer) consisting of 40mM sodium cacodylate, 30mM Tris-HCl (PH6.8), 1mM CaCl 2 and 0.1mM dithiothreitol (hereinafter abbreviated as DTT).
Add 200 μl of a solution containing dTTP to 0.25 mM, and further add 81 units of terminal deoxynucleotidyl transferase (hereinafter abbreviated as TdT) (manufactured by PL Bioche-micals).
The reaction was carried out at 37°C for 11 minutes. Here, Kpn of pCDV1
Approximately 67 poly-dT chains were added to the 3' end of the cleavage site. Approximately 100 μg of pCDV1 DNA with poly dT chain added was recovered from the solution by phenol-chloroform extraction and ethanol precipitation. the DNA
10mM Tris-HCl (PH7.5), 6mM MgCl2 ,
In addition to 150 μl of a buffer consisting of 100 mM NaCl, 360 units of EcoR (manufactured by Takara Shuzo Co., Ltd.) was added and incubated at 37°C.
The reaction was allowed to proceed for 2 hours. After the reaction product was subjected to low melting point agarose gel electrophoresis, a DNA fragment of about 3.1 Kb was collected,
Approximately 60 μg of poly-dT chain-added pCDV1 was obtained. the DNA
10mM Tris-HCl (PH8.0) and 1mM
It was dissolved in 500 μl of a solution consisting of EDTA, incubated at 65° C. for 5 minutes, cooled on ice, and 50 μl of 5M NaCl was added. The mixture was subjected to chromatography on an oligo dA cellulose column (manufactured by Collaborative Research). Poly-dT with sufficient chain length is adsorbed onto the column and added to 10mM Tris-HC (PH
8.0) and 1mM EDTA,
27 μg of pCDV1 (hereinafter abbreviated as vector primer) to which a poly-dT chain was added was obtained. Next, prepare linker DNA. pL1 [Okayama & Berg: Mol.Cell.Biol. 3 ,
280 (1983)] Approximately 14 μg was added to 10 mM Tris-HCl (PH
7.5), in addition to 200 μl of a buffer consisting of 6 mM MgCl 2 and 50 mM NaCl, 50 units of Pst (manufactured by Takara Shuzo Co., Ltd.) was added and reacted at 37°C for 4 hours.
It was cut at the Pst site in pL1DNA. After the reaction product was extracted with phenol-chloroform, ethanol precipitation was performed, and about 13 μg of pL1 DNA cut with Pst was recovered. Approximately 13 μg of the DNA was added to TdT buffer at a final concentration.
Add to 50μl of solution containing 0.25mM dGTP, and
54 units of TdT (manufactured by PL Biochemicals) was added and incubated at 37°C for 13 minutes to add about 14 dG chains to the 3' end of the Pst cleavage site of pL1. After phenol-chloroform extraction, ethanol precipitation
DNA was recovered. The DNA was mixed with 100 μl of 10 mM Tris-HCl (PH7.5), 6 mM MgCl 2 and 60 mM
In addition to 100 μl of a buffer consisting of NaCl, 80 units of Hind (manufactured by Takara Shuzo Co., Ltd.) was added, and the mixture was incubated at 37° C. for 3 hours, and the pL1 DNA was cleaved at the Hind site. The reaction product was fractionated by agarose gel electrophoresis, and a DNA fragment of about 0.5 Kb was separated using the DEAE paper method [Dretzen et al., Ana1.Biochem., 112 , 295 (1981)].
Linker DNA with oligo dG strand
(hereinafter simply referred to as linker DNA) was obtained. Approximately 2 μg of poly(A) RNA prepared above and approximately 1.4 μg of vector primer were mixed with 50 mM Tris-HCl (PH
8.3), 8mM MgCl2 , 30mM KCl, 0.3mM
DTT, 2mM dNTP (dATP, dTTP, dGTP and dCTP) and 10 units of ribonuclease inhibitor (manufactured by PL Biochemicals) were dissolved in 22.3 μl of a solution, and 10 units of reverse transcriptase (manufactured by Seikagaku Corporation) were added. In addition, the mixture was incubated at 37°C for 40 minutes to synthesize DNA complementary to the mRNA. The reaction product was extracted with phenol-chloroform,
Ethanol precipitation was performed to recover vector primer DNA with an RNA-DNA double strand added thereto.
The DNA contained 66 μM dCTP and 0.2 μg polyA.
Dissolve 14 units of TdT (P-L) in 20 μl of TdT buffer.
Biochemicals) and incubated at 37°C for 8 minutes to add 12 dC strands to the 3' end of the cDNA. The reaction product was extracted with phenol-chloroform, and dC chains were added by ethanol precipitation.
cDNA-vector primer DNA was recovered.
The DNA was dissolved in 400 μl of a solution consisting of Tris-HCl (PH7.5), 6 mM MgCl 2 and 60 mM NaCl, and incubated for 20 min.
A unit of Hind (manufactured by Takara Shuzo Co., Ltd.) was added, incubated at 37°C for 2 hours, and cut at the Hind site.
The reaction product was extracted with phenol-chloroform and precipitated with ethanol to obtain 0.5 pmole of dC strand-added cDNA-vector primer DNA. Applicable
0.08pmole of DNA and the above linker
0.16pmole of DNA in 40μl Tris-HCl (PH7.5),
Solution consisting of 0.1M NaCl and 1mM EDTA
Add to 40 μl and incubate at 65℃, 42℃, and 0℃ for 10 minutes each.
Incubated for 25 and 30 minutes. 20mM Tris-HCl (PH7.5), 4mM MgCl2 , 10mM
( NH4 ) 2SO4 , 0.1M KCl and 0.1mM β-NAD
A reaction solution was prepared with the following composition in a total volume of 400 μl. 10 units of Escherichia coli DNA ligase (manufactured by New England Biolabs) was added to the reaction solution, and the solution was incubated at 11°C. The reaction solution was diluted with 40 μM each.
dNTP, 0.15mM β-NAD, 5 units of E. coli DNA ligase, 7 units of E. coli DNA polymerase (P-L).
Biochemicals) and 2 units of Escherichia coli ribonuclease H (P-L Biochemicals) were added and incubated at 12°C and 25°C for 1 hour each. In the above reaction, recombinant DNA containing cDNA
circularization and the RNA part of the RNA-DNA duplex
DNA was replaced, and a complete double-stranded DNA recombinant plasmid was generated. Example 3 Selection of recombinant DNA containing chum salmon growth hormone cDNA: Using the recombinant plasmid obtained in Example 2, Escherichia coli c600SF8 strain [Cameron: Proc. Natl. Acad.
Sci. USA, 72 , 3416 (1975)] was transformed according to the method of Scott et al. [Katsuya Shigesada: Cell Engineering, 2 , 616 (1983)]. Of the approximately 10,000 colonies obtained,
4800 were immobilized on nitrocellulose. Synthetic DNA corresponding to the 23rd to 28th amino acid sequence from the N-terminus of chum salmon growth hormone, i.e. (3rd base is A or G, 9th base is T or C, 12th base is C or T, 15th base is C or T)
Eight bacterial strains were selected that strongly associated with the 32 P-labeled probe at 40°C (combining to form a mixture of 16 synthetic DNAs) [Grunstein-
Hogness' method, Proc.Natl.Acad.Sci.USA, 72 ,
3961 (1975)]. Regarding the eight strains obtained, Southern
By the method of [J.Mol.Biol., 98 , 503 (1975)],
Synthetic DNA probe corresponding to the above probe and the amino acid sequence near the C-terminus (The 3rd base is C or T, the 6th base is A or G, the 9th base is A, T, G, or C, and the 12th base is G or A, which can be combined to create a mixture of 32 synthetic DNAs.) A meeting was confirmed with Naru.
These plasmids are pSGH1, 3, 6, 8, 9,
10, 14, and 17, all of which are DNA predicted from the amino acid sequence of chum salmon growth hormone.
It was thought that it contained the growth hormone cDNA because it had the same sequence. Example 4 Base sequence of the plasmid pSGH1: The eight plasmids obtained above were digested with various restriction enzymes, and the cleavage map of the cDNA portion was determined. Based on the location of the restriction enzyme site, the obtained plasmids can be classified into three groups: pSGH1, 6, 9,
They were divided into groups 10 and 17, pSGH3 group, and pSGH8 and 14 group. The restriction enzyme map of each group is shown in Figure 2. Next, a group of plasmids containing pSGH1, which showed the strongest association with the synthetic DNA probe conducted in Example 3 and is thought to contain almost full-length cDNA,
In particular, for pSGH1, the entire nucleotide sequence of its translated region was determined using the Sanger method using M13 phage [Sanger et al., Proc. Natl. Acad. Sci, USA, 74 ,
5463 (1977): Amersham M13 cloning and
sequencing handbook]. The sequences are shown in Table 1. In Table 1, base numbers 1-66 code for the signal peptide, and base numbers 67-630 code for the mature peptide of chum salmon growth hormone. The amino acid sequence predicted from the cDNA sequence contained in pSGH1 completely matches the amino acid sequence near the N-terminus and near the C-terminus determined from chum salmon growth hormone peptide, and this cDNA encodes chum salmon growth hormone. This was confirmed.
Escherichia coli containing pSGH1, pSGH3, and pSGH8 (ESGH1, ESGH3, and ESGH8, respectively) were introduced in June 1981.
It has been deposited as FERM BP-551, 552 and 553 with the Institute of Microbial Technology, Agency of Industrial Science and Technology on the 23rd. [Table] Effects of the Invention According to the present invention, a recombinant plant incorporating DNA encoding a fish growth hormone polypeptide is produced.
DNA, a microorganism containing the recombinant DNA is obtained,
These can be used for mass production of fish growth hormone polypeptides.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はOkayama−Berg法によるcDNA合成
と、該DNAを含む組換え体プラスミドの造成過
程の概略を示す。第2図はpSGH1、pSGH3、
pSGH8に含まれるcDNAの制限酵素地図を示す。
FIG. 1 schematically shows cDNA synthesis by the Okayama-Berg method and the construction process of a recombinant plasmid containing the DNA. Figure 2 shows pSGH1, pSGH3,
A restriction enzyme map of cDNA contained in pSGH8 is shown.

Claims (1)

【特許請求の範囲】 1 下記のペプチド配列を含む魚類の成長ホルモ
ンポリペプチドをコードするDNA。 【表】 【表】 2 下記のペプチド配列を含む魚類の成長ホルモ
ンポリペプチドをコードするDNAを組み込んだ
組換え体DNA。 【表】 【表】 3 プラスミドpSGH1,pSGH3またはpSGH8と
名づけた特許請求の範囲第2項の組換え体DNA。 4 下記のペプチド配列を含む魚類の成長ホルモ
ンポリペプチドをコードするDNAを組み込んだ
組換え体DNAを含む細菌。 【表】 5 該細菌がエツシエリヒア・コリに属する特許
請求の範囲第4項の細菌。
[Scope of Claims] 1. A DNA encoding a fish growth hormone polypeptide comprising the following peptide sequence. [Table] [Table] 2 Recombinant DNA incorporating DNA encoding a fish growth hormone polypeptide containing the following peptide sequence. [Table] [Table] 3. Recombinant DNA of Claim 2 named plasmid pSGH1, pSGH3 or pSGH8. 4. A bacterium containing recombinant DNA incorporating DNA encoding a fish growth hormone polypeptide containing the following peptide sequence. [Table] 5. The bacterium of claim 4, wherein the bacterium belongs to E. coli.
JP59134536A 1984-06-29 1984-06-29 Growth hormone of fish Granted JPS6115699A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP59134536A JPS6115699A (en) 1984-06-29 1984-06-29 Growth hormone of fish
CA000485108A CA1272144A (en) 1984-06-29 1985-06-25 Fish growth hormone polypeptide
AU44195/85A AU575961B2 (en) 1984-06-29 1985-06-26 Salmon fish growth hormone by genetic engeneering
NO852568A NO174717C (en) 1984-06-29 1985-06-26 A method for producing a fish growth hormone polypeptide from Oncorhynchus keta as well as expression vectors for use in the method
EP85107987A EP0166444B1 (en) 1984-06-29 1985-06-27 Fish growth hormone polypeptide
SU853913602A RU1825376C (en) 1984-06-29 1985-06-28 Method for producing deoxyribonucleic acid coding salmon growth hormone: method of constructing intermediate recombination plasmide dna including dna fragment coding salmon growth hormone for producing p s g h1, p s g h3, p s b h9, p s g h10, p s g h14 and p s g h17 plasmides: method of producing recombination plasmi
US06/750,587 US4689402A (en) 1984-06-29 1985-07-01 Fish growth hormone polypeptide
US07/017,630 US4849359A (en) 1984-06-29 1987-04-14 Fish growth hormone polypeptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59134536A JPS6115699A (en) 1984-06-29 1984-06-29 Growth hormone of fish

Publications (2)

Publication Number Publication Date
JPS6115699A JPS6115699A (en) 1986-01-23
JPH057995B2 true JPH057995B2 (en) 1993-01-29

Family

ID=15130608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134536A Granted JPS6115699A (en) 1984-06-29 1984-06-29 Growth hormone of fish

Country Status (1)

Country Link
JP (1) JPS6115699A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193197A (en) * 1984-10-12 1986-05-12 Kyowa Hakko Kogyo Co Ltd Growth hormone polypeptide of fish
JPS6193196A (en) * 1984-10-12 1986-05-12 Kyowa Hakko Kogyo Co Ltd Growth hormone gene of fish
JPH0568572A (en) * 1991-09-11 1993-03-23 Agency Of Ind Science & Technol Blue-green alga synechococcus capable of producing salmon growth hormone

Also Published As

Publication number Publication date
JPS6115699A (en) 1986-01-23

Similar Documents

Publication Publication Date Title
EP0083777B1 (en) Physiologically active peptide with between 147 and 162 amino acid residues
EP0112149B1 (en) Molecular cloning and characterization of a further gene sequence coding for human relaxin
JP2533470B2 (en) DNA sequence, recombinant DNA molecule and method for producing swine growth hormone
EP0051873A2 (en) Hybrid human leukocyte interferons, process for their microbial production, intermediates therefor and compositions containing them
JP2521657B2 (en) Recombinant DNA molecule and transformed host cell containing the same
HU197350B (en) Process for the molecular cloning and characterization of gene encoding human relaxin and for the production of human h1 relaxin
CA1272144A (en) Fish growth hormone polypeptide
JP2637393B2 (en) Human gene having proinsulin and preproinsulin producing code
EP0259891B1 (en) [Leu 13] motilin, DNAs coding for same and methods for producing same
JPH057995B2 (en)
HU197939B (en) Process for producing deoxyribonucleic acid, or its precursor, determining human growth hormone releasing factor
EP0169505A2 (en) Process for preparing oligopeptide
JP2548204B2 (en) New bioactive polypeptide
JPH051799B2 (en)
JPS61291598A (en) Fish calcitonin derivative and method for producing the same
JPH051800B2 (en)
JPS59140884A (en) Cloned dna fragment coding corticotropin releasing factor
JPS63304997A (en) Gonadotropin gene of fishes
JPS6222800A (en) Growth hormone gene of fish and polypeptide coded by said gene
JPS638399A (en) Physiologically active polypeptide
HUT51328A (en) Process for producing proteins
JPH0579310B2 (en)
JPH0683670B2 (en) Deoxyribonucleic acid
JPH0695938B2 (en) Novel fish growth hormone polypeptide
JPH05268969A (en) New growth hormone polypeptide of fishes