[go: up one dir, main page]

JPH0579875A - Thermal flow meter - Google Patents

Thermal flow meter

Info

Publication number
JPH0579875A
JPH0579875A JP3268939A JP26893991A JPH0579875A JP H0579875 A JPH0579875 A JP H0579875A JP 3268939 A JP3268939 A JP 3268939A JP 26893991 A JP26893991 A JP 26893991A JP H0579875 A JPH0579875 A JP H0579875A
Authority
JP
Japan
Prior art keywords
fluid
temperature
pipe
upstream
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3268939A
Other languages
Japanese (ja)
Other versions
JP2952438B2 (en
Inventor
Akira Nakamura
明 中村
Tatsuro Kuromaru
達郎 黒丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP3268939A priority Critical patent/JP2952438B2/en
Publication of JPH0579875A publication Critical patent/JPH0579875A/en
Application granted granted Critical
Publication of JP2952438B2 publication Critical patent/JP2952438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

(57)【要約】 【目的】 流量が少ない場合にも過度の温度上昇を防止
できる熱式流量計を提供する。 【構成】 管1の上流側温度センサ4より上流側部分に
第1の冷却機構9、管1の下流側温度センサ5より下流
側部分に第2の冷却機構10を設けた。第1及び第2の冷
却機構9,10を作動させることにより、上流側及び下流
側温度センサ4,5間の管1が両側から冷却されて管1
及び流体の温度上昇が抑制される。管1及び流体の温度
が一定値以下に維持されるので、流体として液体を用い
る場合にも、流体の沸騰を防止して安全性を向上でき、
さらに気泡の発生を防止して測定精度の向上を図ること
ができる。
(57) [Summary] [Purpose] To provide a thermal type flow meter capable of preventing an excessive temperature rise even when the flow rate is small. [Structure] A first cooling mechanism 9 is provided on the upstream side of the upstream temperature sensor 4 of the pipe 1, and a second cooling mechanism 10 is provided on the downstream side of the downstream temperature sensor 5 of the pipe 1. By operating the first and second cooling mechanisms 9 and 10, the pipe 1 between the upstream and downstream temperature sensors 4 and 5 is cooled from both sides and the pipe 1 is cooled.
Also, the temperature rise of the fluid is suppressed. Since the temperature of the pipe 1 and the fluid is maintained below a certain value, it is possible to prevent boiling of the fluid and improve safety, even when using a liquid as the fluid.
Further, it is possible to prevent the generation of bubbles and improve the measurement accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体に生じる温度差を
検出して流体の流量を計測する熱式流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal type flow meter for detecting a temperature difference generated in a fluid and measuring the flow rate of the fluid.

【0002】[0002]

【従来の技術】従来の熱式流量計の一例として、流体を
通す管の途中に加熱部を設け、管の加熱部の上流側及び
下流側にそれぞれ対応させて上流側及び下流側温度セン
サを設けたものがある。この熱式流量計は、加熱部から
流体に時間当たり一定の熱量を供給した状態で、上流側
及び下流側温度センサで温度検出を行ない、両温度セン
サの検出温度差と加熱量に基づいて流体の質量流量を計
測するようにしている。
2. Description of the Related Art As an example of a conventional thermal type flow meter, a heating portion is provided in the middle of a pipe through which a fluid is passed, and upstream and downstream temperature sensors are provided corresponding to the upstream side and the downstream side of the heating portion of the pipe, respectively. There is one provided. This thermal type flow meter detects the temperature with the upstream and downstream temperature sensors while supplying a constant amount of heat to the fluid from the heating unit per hour, and based on the difference in temperature detected by both temperature sensors and the heating amount. The mass flow rate of is measured.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述した熱
式流量計では、時間当たり一定の加熱量を流体側に供給
するので、流量がゼロ等のように少ないときには管や流
体の温度上昇が大きくなってしまう。特に、流体が液体
の場合には、その液体が沸騰して安全上問題となるばか
りでなく、気泡の発生により計測精度が低下する虞があ
る。
By the way, in the above-mentioned thermal type flow meter, since a constant heating amount per hour is supplied to the fluid side, when the flow rate is small such as zero, the temperature rise of the pipe and the fluid is large. turn into. In particular, when the fluid is a liquid, not only is the liquid boiled to pose a safety problem, but also the generation of air bubbles may reduce the measurement accuracy.

【0004】本発明は、上記事情に鑑みてなされたもの
で、流量が少ない場合に起こりうる過度の温度上昇を防
止できる熱式流量計を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermal type flow meter capable of preventing an excessive temperature rise that may occur when the flow rate is small.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、流体を通す管に加熱部を設け、前記管の
前記加熱部の上流側及び下流側にそれぞれ上流側及び下
流側温度検出手段を設け、両温度検出手段の検出温度差
に基づいて前記流体の流量を計測する熱式流量計におい
て、前記管の上流側温度検出手段より上流側部分に第1
の冷却機構、前記管の下流側温度検出手段より下流側部
分に第2の冷却機構を設けたことを特徴とする。
In order to achieve the above object, the present invention provides a heating section in a pipe through which a fluid passes, and the upstream side and the downstream side of the heating section of the pipe are respectively upstream side and downstream side. In a thermal type flow meter which is provided with a temperature detecting means and measures the flow rate of the fluid based on a temperature difference detected by both temperature detecting means, a first portion is provided at a portion upstream of the upstream temperature detecting means of the pipe.
And a second cooling mechanism is provided at a portion downstream of the downstream temperature detecting means of the pipe.

【0006】[0006]

【作用】このような構成とすれば、第1及び第2の冷却
機構を作動させることにより、上流側及び下流側温度検
出手段間の管が両側から冷却されて管及び内部流体の温
度上昇が抑制される。
With this structure, by operating the first and second cooling mechanisms, the pipe between the upstream and downstream temperature detecting means is cooled from both sides, and the temperature rise of the pipe and the internal fluid is increased. Suppressed.

【0007】[0007]

【実施例】以下、本発明の一実施例の熱式流量計を図1
ないし図4に基づいて説明する。図において、1は流体
を通す管で、この管1は肉厚の薄いステンレス等の金属
材料またはフッ素樹脂等の樹脂材料で構成されている。
管1の途中にはコイル状のヒータ2が密着した状態で嵌
装されている。ヒータ2は定電圧回路3に接続され、定
電圧回路3から電力を供給されることにより発熱して流
体を加熱するようになっている。なお、ヒータ2は管1
に密着して設けているので、管1内の流体を効率よく加
熱できるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A thermal type flow meter according to an embodiment of the present invention is shown in FIG.
Or, it demonstrates based on FIG. In the figure, reference numeral 1 denotes a pipe through which a fluid passes, and this pipe 1 is made of a thin metal material such as stainless steel or a resin material such as fluororesin.
A coil-shaped heater 2 is fitted in the middle of the tube 1 in a close contact state. The heater 2 is connected to the constant voltage circuit 3 and generates heat by supplying power from the constant voltage circuit 3 to heat the fluid. The heater 2 is a tube 1
Since it is provided in close contact with, the fluid in the tube 1 can be efficiently heated.

【0008】管1の、ヒータ2上流側部分及び下流側部
分には上流側及び下流側温度センサ4,5がそれぞれ設
けられている。上流側及び下流側温度センサ4,5のそ
れぞれは、小型のサーミスタ、薄膜の白金測温抵抗体ま
たは白金等の温度係数が大きい金属製の細線等により構
成されており、応答性の優れたものになっている。
Upstream and downstream temperature sensors 4 and 5 are provided on the upstream and downstream portions of the heater 2 of the tube 1, respectively. Each of the upstream and downstream temperature sensors 4 and 5 is composed of a small thermistor, a thin film platinum resistance temperature detector, or a thin wire made of metal such as platinum having a large temperature coefficient, and has excellent responsiveness. It has become.

【0009】上流側及び下流側温度センサ4,5に接続
して演算回路6が設けられている。演算回路6は、上流
側及び下流側温度センサ4,5のそれぞれが検出する上
流側及び下流側検出温度Ta ,Tb を入力して温度差Δ
T(ΔT=Tb −Ta )を求め、温度差ΔTと流体の流
量Qとが次式の関係にあることに基づいて質量流量ρ・
Qを求めるようになっている。 ΔT=k・P/ρ・CP ・Q ρ:流体の密度、P:熱量、CP :流体の比熱、k:係
An arithmetic circuit 6 is provided in connection with the upstream and downstream temperature sensors 4 and 5. Arithmetic circuit 6, the upstream-side and downstream-side temperature detected respectively upstream and downstream temperature sensors 4,5 detects T a, the temperature difference to input T b delta
T (ΔT = T b −T a ) is calculated, and the mass flow rate ρ · is calculated based on the relationship between the temperature difference ΔT and the fluid flow rate Q in the following equation.
I am looking for Q. ΔT = k · P / ρ · C P · Q ρ: fluid density, P: heat quantity, C P : specific heat of fluid, k: coefficient

【0010】前記ヒータ2、上流側及び下流側温度セン
サ4,5を設けた部分を覆うように、管1には、断熱部
材7が設けられており、内部が外部温度の影響をほとん
ど受けないようになっている。断熱部材7内部の、上流
側部分には、管1に接触させて温度センサ8が設けられ
ていて、当該部における流体温度Tを検出する。
A heat insulating member 7 is provided in the pipe 1 so as to cover the portions where the heater 2 and the upstream and downstream temperature sensors 4 and 5 are provided, and the inside is hardly affected by the external temperature. It is like this. A temperature sensor 8 is provided in contact with the pipe 1 at an upstream portion inside the heat insulating member 7 to detect a fluid temperature T in the portion.

【0011】管1の、断熱部材7より上流側部分に第1
の冷却機構9が設けられ、かつ管1の、断熱部材7より
下流側部分に第2の冷却機構10が設けられている。第1
及び第2の冷却機構9,10のそれぞれは、管1に嵌装し
て設けられた熱伝導性の優れた金属製の伝熱部材11と、
伝熱部材11に隣接して設けられて伝熱部材11を冷却す
る、ファン等の冷却強さを調整可能な冷却部材12とから
概略構成されている。
A first portion is provided on the upstream side of the heat insulating member 7 of the pipe 1.
The cooling mechanism 9 is provided, and the second cooling mechanism 10 is provided at the downstream side of the heat insulating member 7 of the pipe 1. First
And each of the second cooling mechanisms 9 and 10, and a heat transfer member 11 made of a metal having excellent heat conductivity, which is provided by being fitted into the tube 1,
A cooling member 12 that is provided adjacent to the heat transfer member 11 and cools the heat transfer member 11 and that is capable of adjusting the cooling strength of a fan or the like is roughly configured.

【0012】冷却部材12には比較制御回路13が接続され
ていて冷却部材12をコントロールして伝熱部材11ひいて
は伝熱部材11取付部における流体を冷却するようになっ
ている。すなわち、比較制御回路13は、図2に示すよう
に周囲温度または流体温度等に基づいてあらかじめ設定
した基準温度T0 を図示しない記憶部に格納する(ステ
ップS1)と共に、温度センサ8から検出温度Tを入力し
(ステップS2)、この検出温度Tと基準温度T0 との大
小を比較し、その比較結果に基づいて制御信号Iを冷却
部材12に出力し(ステップS3)、温度センサ8ひいては
伝熱部材11取付部における流体の温度が一定の温度にな
るように冷却部材12をコントロールしている(ステップ
S4)。なお、ステップS3では、T>T0 の場合、Iを大
きくして冷却を強め、またT<T0 の場合、Iを小さく
して冷却を弱めるようにしている。
A comparison control circuit 13 is connected to the cooling member 12 so as to control the cooling member 12 to cool the heat transfer member 11 and the fluid in the heat transfer member 11 mounting portion. That is, the comparison control circuit 13 stores the reference temperature T 0 preset based on the ambient temperature, the fluid temperature, or the like in a storage unit (not shown) as shown in FIG. 2 (step S1), and the temperature sensor 8 detects the temperature. T is input (step S2), the detected temperature T and the reference temperature T 0 are compared in magnitude, and the control signal I is output to the cooling member 12 based on the comparison result (step S3). The cooling member 12 is controlled so that the temperature of the fluid at the mounting portion of the heat transfer member 11 becomes constant (step
S4). In step S3, if T> T 0 , I is increased to increase cooling, and if T <T 0 , I is decreased to decrease cooling.

【0013】以上のように構成された熱式流量計では、
ヒータ2で流体に時間当たり一定の熱量を供給しつつ、
上流側及び下流側温度センサ4,5で温度検出を行な
い、両温度センサ4,5の検出温度差と加熱量に基づい
て流体の質量流量を計測するが、例えば検出温度Tが基
準温度T0 より高い時には、比較制御回路13が制御信号
Iとして大きな値のものを両冷却部材12に出力し、冷却
部材12の冷却を強める。すると、両伝熱部材11が冷却さ
れ、これに伴って断熱部材7内部側が管1を介して冷却
されることとなる。ここで、流体が流れていない場合と
流れている場合について、管1の温度を測定すると、例
えば図3に示すようにそれぞれ実線A及び点線Bの特性
を得ることになるが、いずれの場合においても管1は一
定温度Tm以上になることはない。すなわち、流体が流
れていない場合には、管1の温度分布特性は実線Aに示
すようになってヒータ2設置部で最大値をとるものの第
1及び第2の冷却機構9,10の冷却作用によりその値は
一定温度Tm 以上になることはない。また、流体が流れ
ている場合には,流体の流れに伴い、ヒータ2設置部か
ら若干下流側に位置した部分で最大値を示すように温度
分布がずれた状態になり(図3点線B)、かつ第1及び
第2の冷却機構9,10の冷却作用によりその最大値は、
流体が流れていない場合の最大値ひいては一定温度Tm
に比べ小さなものになっている。
In the thermal type flow meter constructed as described above,
While supplying a constant amount of heat to the fluid with the heater 2
The temperature is detected by the upstream and downstream temperature sensors 4 and 5, and the mass flow rate of the fluid is measured based on the temperature difference between the temperature sensors 4 and 5 and the heating amount. For example, the detected temperature T is the reference temperature T 0. When it is higher, the comparison control circuit 13 outputs a large value as the control signal I to both the cooling members 12 to enhance the cooling of the cooling members 12. Then, both heat transfer members 11 are cooled, and accordingly, the inside of the heat insulating member 7 is cooled via the pipe 1. Here, when the temperature of the pipe 1 is measured for the case where the fluid is not flowing and the case where the fluid is flowing, for example, the characteristics of the solid line A and the dotted line B are obtained as shown in FIG. However, the temperature of the tube 1 never exceeds the constant temperature T m . That is, when the fluid is not flowing, the temperature distribution characteristic of the tube 1 becomes as shown by the solid line A and takes the maximum value at the heater 2 installation portion, but the cooling action of the first and second cooling mechanisms 9 and 10 Therefore, the value does not exceed the constant temperature T m . Further, when the fluid is flowing, the temperature distribution deviates so as to show the maximum value in the portion located slightly downstream from the heater 2 installation portion due to the fluid flow (dotted line B in FIG. 3). , And the maximum value thereof due to the cooling action of the first and second cooling mechanisms 9 and 10,
Maximum value when fluid is not flowing, and thus constant temperature T m
It is smaller than.

【0014】上述したように、管1の温度を一定温度T
m 以上にさせないことにより、流体として液体を用いる
場合にも、流体の沸騰を防止して安全性を向上でき、さ
らに気泡の発生を防止して測定精度の向上を図ることが
できる。
As described above, the temperature of the tube 1 is set to the constant temperature T.
By not making m or more, even when a liquid is used as the fluid, boiling of the fluid can be prevented and safety can be improved, and generation of bubbles can be prevented and measurement accuracy can be improved.

【0015】また、上述したように、計測する流体の温
度に関わらず流体の温度を一定にして流量計測できるの
で、計測精度を高いものにすることができる。さらに、
このように高精度の計測を達成できることに伴って保証
温度範囲を広くすることができる。
Further, as described above, since the flow rate can be measured while keeping the temperature of the fluid constant regardless of the temperature of the fluid to be measured, the measurement accuracy can be made high. further,
As a result of achieving highly accurate measurement in this way, the guaranteed temperature range can be widened.

【0016】上述したように第1及び第2の冷却機構
9,10で、管1の放熱量をコントロールできるので、応
答性の向上を図れる。本実施例の熱式流量計及び冷却機
構を有さない従来のものを対象にして、温度差について
の応答性能を測定したところ、図4に示すような特性
(実施例による応答性を実線Dで示し、従来のものによ
る応答性を点線Eで示す)が得られ、本発明のように第
1及び第2の冷却機構を設けることにより良好な応答性
を得られることを検証できた。
As described above, the amount of heat released from the pipe 1 can be controlled by the first and second cooling mechanisms 9 and 10, so that the responsiveness can be improved. When the response performance with respect to the temperature difference was measured for the thermal flowmeter of the present embodiment and the conventional one having no cooling mechanism, the characteristics as shown in FIG. , And the responsiveness of the conventional one is shown by a dotted line E), and it was verified that good responsiveness can be obtained by providing the first and second cooling mechanisms as in the present invention.

【0017】[0017]

【発明の効果】本発明は、以上説明したように構成され
た熱式流量計であるから、第1及び第2の冷却機構を作
動させることにより管及び流体の温度を一定値以下に維
持できるので、流体として液体を用いる場合にも、流体
の沸騰を防止して安全性を向上でき、さらに気泡の発生
を防止して測定精度の向上を図ることができる。
Since the present invention is the thermal type flow meter configured as described above, the temperatures of the pipe and the fluid can be maintained below a certain value by operating the first and second cooling mechanisms. Therefore, even when a liquid is used as the fluid, it is possible to prevent boiling of the fluid and improve the safety, and it is possible to prevent generation of bubbles and improve the measurement accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の熱式流量計を示す断面図で
ある。
FIG. 1 is a sectional view showing a thermal type flow meter according to an embodiment of the present invention.

【図2】同熱式流量計の比較制御回路の処理内容を示す
フローチャートである。
FIG. 2 is a flowchart showing processing contents of a comparison control circuit of the thermal type flow meter.

【図3】同熱式流量計の管の温度分布を示す図である。FIG. 3 is a diagram showing a temperature distribution in a tube of the same thermal type flow meter.

【図4】同熱式流量計の応答性能と従来の熱式流量計の
応答性能とを比較した図である。
FIG. 4 is a diagram comparing the response performance of the same thermal type flow meter and the response performance of a conventional thermal type flow meter.

【符号の説明】[Explanation of symbols]

1 管 2 ヒータ 4 上流側温度センサ 5 下流側温度センサ 9 第1の冷却機構 10 第2の冷却機構 1 Tube 2 Heater 4 Upstream Temperature Sensor 5 Downstream Temperature Sensor 9 First Cooling Mechanism 10 Second Cooling Mechanism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流体を通す管に加熱部を設け、前記管の
前記加熱部の上流側及び下流側にそれぞれ上流側及び下
流側温度検出手段を設け、両温度検出手段の検出温度差
に基づいて前記流体の流量を計測する熱式流量計におい
て、前記管の上流側温度検出手段より上流側部分に第1
の冷却機構、前記管の下流側温度検出手段より下流側部
分に第2の冷却機構を設けたことを特徴とする熱式流量
計。
1. A heating section is provided in a pipe through which a fluid is passed, upstream and downstream temperature detecting means are respectively provided on the upstream side and the downstream side of the heating section of the tube, and based on a temperature difference detected by both temperature detecting means. In the thermal type flow meter for measuring the flow rate of the fluid, the first portion is provided on the upstream side of the upstream temperature detecting means of the pipe.
And a second cooling mechanism at a portion downstream of the downstream temperature detecting means of the pipe.
JP3268939A 1991-09-20 1991-09-20 Thermal flow meter Expired - Fee Related JP2952438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3268939A JP2952438B2 (en) 1991-09-20 1991-09-20 Thermal flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3268939A JP2952438B2 (en) 1991-09-20 1991-09-20 Thermal flow meter

Publications (2)

Publication Number Publication Date
JPH0579875A true JPH0579875A (en) 1993-03-30
JP2952438B2 JP2952438B2 (en) 1999-09-27

Family

ID=17465383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3268939A Expired - Fee Related JP2952438B2 (en) 1991-09-20 1991-09-20 Thermal flow meter

Country Status (1)

Country Link
JP (1) JP2952438B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217960A (en) * 2015-05-25 2016-12-22 新熱工業株式会社 Gas heater and gas heater flow measurement method
KR102137787B1 (en) * 2019-02-18 2020-07-24 오재숙 Data signal transmission connector and manufacturing method for the same
JP2021526877A (en) * 2018-06-06 2021-10-11 カルディオン ゲーエムベーハーKardion Gmbh How to determine fluid volume flow through an implanted vascular assist system and vascular assist system
CN114812717A (en) * 2022-04-28 2022-07-29 一汽解放大连柴油机有限公司 Vehicle-mounted oil consumption meter, oil consumption detection system and measurement method
US11456562B2 (en) 2018-10-26 2022-09-27 Jae Suk Oh Signal transmission connector and method for manufacturing same
US12144976B2 (en) 2018-06-21 2024-11-19 Kardion Gmbh Method and device for detecting a wear condition of a ventricular assist device and for operating same, and ventricular assist device
US12178554B2 (en) 2018-06-06 2024-12-31 Kardion Gmbh Systems and methods for determining a viscosity of a fluid
US12194287B2 (en) 2018-05-30 2025-01-14 Kardion Gmbh Method of manufacturing electrical conductor tracks in a region of an intravascular blood pump
US12201821B2 (en) 2018-06-06 2025-01-21 Kardion Gmbh Method for determining a flow rate of a fluid flowing through an implanted vascular support system, and implantable vascular support system
US12222267B2 (en) 2018-06-06 2025-02-11 Kardion Gmbh Analysis device and method for analyzing a viscosity of a fluid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101767415B1 (en) * 2015-02-06 2017-08-14 한국원자력연구원 Two-phase Fluid Sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217960A (en) * 2015-05-25 2016-12-22 新熱工業株式会社 Gas heater and gas heater flow measurement method
US12194287B2 (en) 2018-05-30 2025-01-14 Kardion Gmbh Method of manufacturing electrical conductor tracks in a region of an intravascular blood pump
JP2021526877A (en) * 2018-06-06 2021-10-11 カルディオン ゲーエムベーハーKardion Gmbh How to determine fluid volume flow through an implanted vascular assist system and vascular assist system
US12178554B2 (en) 2018-06-06 2024-12-31 Kardion Gmbh Systems and methods for determining a viscosity of a fluid
US12201821B2 (en) 2018-06-06 2025-01-21 Kardion Gmbh Method for determining a flow rate of a fluid flowing through an implanted vascular support system, and implantable vascular support system
US12222267B2 (en) 2018-06-06 2025-02-11 Kardion Gmbh Analysis device and method for analyzing a viscosity of a fluid
US12144976B2 (en) 2018-06-21 2024-11-19 Kardion Gmbh Method and device for detecting a wear condition of a ventricular assist device and for operating same, and ventricular assist device
US11456562B2 (en) 2018-10-26 2022-09-27 Jae Suk Oh Signal transmission connector and method for manufacturing same
KR102137787B1 (en) * 2019-02-18 2020-07-24 오재숙 Data signal transmission connector and manufacturing method for the same
CN114812717A (en) * 2022-04-28 2022-07-29 一汽解放大连柴油机有限公司 Vehicle-mounted oil consumption meter, oil consumption detection system and measurement method

Also Published As

Publication number Publication date
JP2952438B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
KR101393124B1 (en) Flowmeter
JP4831879B2 (en) Mass flow meter
JP3945385B2 (en) Flow sensor and flow measurement method
US6125695A (en) Method and apparatus for measuring a fluid
US5222395A (en) Thermal type flowmeter
JPH08201327A (en) Thermal conductivity meter
JPH01150817A (en) Mass flow meter
JPH0579875A (en) Thermal flow meter
EP1477779B1 (en) Mass flowmeter
US5142907A (en) Constant temperature gradient fluid mass flow transducer
JPWO2003016833A1 (en) Thermal flow meter
JP2930742B2 (en) Thermal flow meter
JP4095362B2 (en) Flowmeter
JP3293469B2 (en) Thermal flow sensor
JP2964186B2 (en) Thermal flow meter
JP2004069667A (en) Thermal mass flow meter for liquid
US7028544B2 (en) Mass flowmeter for measuring by the CT method
JPH0143903B2 (en)
JPS5923369B2 (en) Zero-level heat flow meter
JPH0643906B2 (en) Flow sensor
JP2879256B2 (en) Thermal flow meter
JP3163558B2 (en) Flow velocity detector
JPH09243423A (en) Flow rate measuring apparatus
JPH04116464A (en) Fluid velocity sensor
JP2005233859A (en) Thermal mass flowmeter for liquid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees