[go: up one dir, main page]

JPH0578474A - New polyamide resin - Google Patents

New polyamide resin

Info

Publication number
JPH0578474A
JPH0578474A JP8090991A JP8090991A JPH0578474A JP H0578474 A JPH0578474 A JP H0578474A JP 8090991 A JP8090991 A JP 8090991A JP 8090991 A JP8090991 A JP 8090991A JP H0578474 A JPH0578474 A JP H0578474A
Authority
JP
Japan
Prior art keywords
structural unit
bamc
polyamide resin
temperature
adipic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8090991A
Other languages
Japanese (ja)
Inventor
Kunio Matsuki
邦夫 松木
Kazufumi Kai
和史 甲斐
Yoshio Miyajima
芳生 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP8090991A priority Critical patent/JPH0578474A/en
Publication of JPH0578474A publication Critical patent/JPH0578474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Abstract

PURPOSE:To provide the subject resin having excellent heat-resistance, mechanical properties, etc., and consisting of a specific composition of adipic acid and a mixture of p-xylylenediamine and trans- and cis-1,4-bis(aminomethyl) cyclohexanes. CONSTITUTION:The objective resin useful as engineering plastics, etc., is composed of (A) a constituent unit having a polyamide skeleton of formula I derived from p-xylylenediamine and adipic acid, (B) a constituent unit having a polyamide skeleton of formula II (X1 is trans-1,4-cyclohexane ring residue) derived from trans-1,4-bis(aminomethyl)cyclohexane and adipic acid and (C) a constituent unit having a polyamide skeleton of formula III (X2 is cis-1,4-cyclohexane ring residue) derived from cis-1,4-bis(aminomethyl)cyclohexane and adipic acid. The molar ratio of the constituent units A:(B+C) is 50:50 to 90:10 and that of B:C is 10:90 to 90:10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高耐熱性、良好な機械
的特性、低吸水性および易成形加工性を有し、特に湿潤
時の機械的特性が優れたエンジニアリングプラスチック
ス等に有用な新規な熱可塑性ポリアミド樹脂に関する。
FIELD OF THE INVENTION The present invention has high heat resistance, good mechanical properties, low water absorption and easy moldability, and is particularly useful for engineering plastics having excellent mechanical properties when wet. The present invention relates to a novel thermoplastic polyamide resin.

【0002】[0002]

【従来の技術】ポリアミドは、1930年代にDuPo
nt社のW.H.Carothersが発見して以来、
繊維を中心に発展してきた。一方、繊維以外のポリアミ
ド樹脂用途としては、工業部品分野などがあったが、そ
の発展は繊維分野に較べると比較的遅かった。しかし、
近年の電子・電気産業、自動車産業、航空・宇宙産業等
の成長に支えられ、工業部品としての需要を急速に拡大
しつつある。特に、ポリアミド樹脂の優れた耐熱性・機
械的特性・成形加工性等が、エンジニアリングプラスチ
ックスへの用途展開を可能にしている。
2. Description of the Related Art Polyamide was used in DuPo in the 1930s.
W. of nt company. H. Since the discovery of Carothers
It has been developed centering on fibers. On the other hand, applications of polyamide resins other than fibers include the industrial parts field, but their development was relatively slow compared to the fiber field. But,
The demand for industrial parts is rapidly expanding, supported by the growth of the electronics / electricity industry, automobile industry, aviation / space industry, etc. in recent years. In particular, the excellent heat resistance, mechanical properties, molding processability, etc. of polyamide resin enable its application to engineering plastics.

【0003】ポリアミド樹脂として現在までに工業化さ
れてきたものとしては、例えば、Nylon6、Nyl
on6.6、Nylon11、Nylon12、Nyl
on6.10、NylonMXD−6等が挙げられる。
Polyamide resins that have been industrialized to date include, for example, Nylon6 and Nyl.
on6.6, Nylon11, Nylon12, Nyl
on 6.10, Nylon MXD-6 and the like.

【0004】一方、各種製品の高機能化・高集積化に伴
い、より高耐熱性、高強度、低吸水性、易成形加工性の
特性を持ち、かつ湿潤時の機械的特性が優れたポリアミ
ド樹脂が望まれている。特に、ポリアミド樹脂は優れた
耐熱性、機械的特性、成形加工性を有する反面、吸水性
が高く、乾燥時と吸水時の成形品の寸法変化が大きい、
吸水時の機械的強度低下が著しいという成形材料上重大
な問題点を有する。
On the other hand, as various products have been made highly functional and highly integrated, polyamides having higher heat resistance, high strength, low water absorption, easy moldability and excellent mechanical properties when wet. Resins are desired. In particular, polyamide resin has excellent heat resistance, mechanical properties, and moldability, but has high water absorption, and the dimensional change of the molded product during drying and water absorption is large.
There is a serious problem in the molding material that the mechanical strength is significantly reduced when absorbing water.

【0005】高耐熱性を目指したポリアミド樹脂として
最近、Nylon4.6が工業化されたが、高吸水性で
寸法変化が大きい上、吸水時の強度低下が著しいという
欠点がある。また、低吸水性、高強度ポリアミド樹脂と
してNylonMXD−6が知られているが、耐熱性が
不十分であるという欠点がある。高耐熱性、低吸水性樹
脂として開発が進められているMCX−A(商品名)も
強度が低いという欠点を有する。このように、高耐熱
性、高強度、低吸水性、易成形加工性の特性を持ち、か
つ湿潤時の機械的特性が優れたポリアミド樹脂は、未だ
開発されていないのが現状である。
Nylon 4.6 has recently been industrialized as a polyamide resin aiming at high heat resistance, but it has the drawbacks of high water absorption, large dimensional change, and marked decrease in strength upon water absorption. Further, NylonMXD-6 is known as a low water-absorbing and high-strength polyamide resin, but it has a drawback of insufficient heat resistance. MCX-A (trade name), which is being developed as a high heat resistance and low water absorbing resin, also has a drawback of low strength. As described above, a polyamide resin having the properties of high heat resistance, high strength, low water absorption, easy moldability and excellent mechanical properties when wet has not yet been developed.

【0006】パラ−キシリレンジアミン(以後、PXD
と称す。)系ポリアミドは、今までに繊維を中心として
種々検討されてきた。例えば、PXDとメタ−キシリレ
ンジアミン(以後、MXDと称す。)および脂肪族ジカ
ルボン酸からのポリアミド(特公昭32−6148号公
報)、PXDとパラ−ビス(2−アミノエチル)ベンゼ
ンと脂肪族ジカルボン酸からのポリアミド(特公昭43
−13069号公報、同44−19269号公報)、P
XDとピペラジンおよび脂肪族ジカルボン酸からのポリ
アミド(特公昭43−25997号公報)、PXDとN
−置換PXDと脂肪族ジカルボン酸からのポリアミド
(特公昭44−19873号公報)、PXDとヘキサメ
チレンジアミンとアジピン酸およびテレフタル酸からの
ポリアミド(特公昭47−33277号公報)等が挙げ
られる。しかし、PXD系ポリアミドが工業的に製造さ
れた例はまだない。
Para-xylylenediamine (hereinafter PXD
Called. ) -Based polyamides have been variously studied so far centering on fibers. For example, PXD and meta-xylylenediamine (hereinafter referred to as MXD) and polyamide from an aliphatic dicarboxylic acid (Japanese Patent Publication No. 32-6148), PXD, para-bis (2-aminoethyl) benzene and aliphatic. Polyamide from dicarboxylic acid
-13069 gazette, the same 44-19269 gazette), P.
Polyamide from XD and piperazine and aliphatic dicarboxylic acid (Japanese Patent Publication No. 43-25997), PXD and N
-Polyamides of substituted PXD and aliphatic dicarboxylic acid (Japanese Patent Publication No. 44-19873), polyamides of PXD, hexamethylenediamine, adipic acid and terephthalic acid (Japanese Patent Publication No. 47-33277) and the like. However, there is no example in which a PXD-based polyamide is industrially produced.

【0007】一方、ビス(アミノメチル)シクロヘキサ
ン(以後、BAMCと称す。)系ポリアミドについても
今までに検討されてきた。例えば、BAMCと脂肪族あ
るいは芳香族ジカルボン酸からのポリアミド(特公昭3
8−648号公報、米国特許3,012,994号明細
書、英国特許976,094号明細書、西独1,49
5,556号明細書)、BAMCとε−カプロラクタム
およびフタル酸あるいは脂肪族ジカルボン酸からのポリ
アミド(特公昭49−2369号公報、同49−345
3号公報、同49−4011号公報)、BAMCと脂肪
族ジアミンおよびジカルボン酸からのポリアミド(特開
昭49−55796号公報、同50−145492号公
報)、BAMCとω−アミノカルボン酸およびテレフタ
ル酸からのポリアミド(米国特許2,985,626号
明細書)、BAMCとω−アミノカルボン酸およびシク
ロヘキサン1,4−ジカルボン酸からのポリアミド(米
国特許2,985,628号明細書)、BAMCと脂肪
酸からのポリアミド(米国特許3,249,629号明
細書)、BAMCとエーテル結合を含むジアミンからの
ポリアミド(米国特許2,939,862号明細書)等
が挙げられる。
On the other hand, bis (aminomethyl) cyclohexane (hereinafter referred to as BAMC) type polyamides have also been studied so far. For example, polyamide from BAMC and an aliphatic or aromatic dicarboxylic acid (Japanese Patent Publication No.
8-648, U.S. Patent 3,012,994, British Patent 976,094, West Germany 1,49.
5,556), polyamides from BAMC and ε-caprolactam and phthalic acid or an aliphatic dicarboxylic acid (Japanese Patent Publication Nos. 49-2369 and 49-345).
3 and 49-4011), polyamides derived from BAMC and aliphatic diamines and dicarboxylic acids (JP-A-49-55796 and 50-145492), BAMC and ω-aminocarboxylic acids and terephthalates. Polyamides from acids (US Pat. No. 2,985,626), BAMC and polyamides from ω-aminocarboxylic acids and cyclohexane 1,4-dicarboxylic acids (US Pat. No. 2,985,628), BAMC Examples thereof include polyamides derived from fatty acids (US Pat. No. 3,249,629), polyamides derived from BAMC and diamines containing an ether bond (US Pat. No. 2,939,862), and the like.

【0008】また、BAMCを用いたMXD系ポリアミ
ドの改質についても報告がなされている。例えば、MX
D系ポリアミドのジアミンの一成分にBAMCを用いる
ことにより耐熱性改良を目的とした米国特許2,91
6,476号明細書等が挙げられる。このBAMC系ポ
リアミドは、使用するBAMCの異性体により得られる
ポリアミド樹脂の性質が異なるという特徴がある。構造
異性体として1,2−ビス(アミノメチル)シクロヘキ
サン(以後、1,2−BAMCと称す。)、1,3−ビ
ス(アミノメチル)シクロヘキサン(以後、1,3−B
AMCと称す。)、1,4−ビス(アミノメチル)シク
ロヘキサン(以後、1,4−BAMCと称す。)の3種
類が存在する上、それぞれのBAMCに幾何異性体とし
てトランス体、シス体の2種類が存在し、合計6種類の
異性体が存在する。しかし、高耐熱性で、優れた機械的
性質を有するポリアミド樹脂を得るには、BAMCの構
造異性体として1,4−BAMCが最も優れているこ
と、幾何異性体としては、トランス体がシス体よりも優
れていることが知られている。また同時にトランス体、
シス体の組成比により結晶融点等の熱的特性が大きく変
化することも知られている〔例えば、フランク・アール
・プリンス(Frank R.Prince)ら,ジャ
ーナル・オブ・ポリマー・サイエンス・パート・A−1
(J.Polymer.Sci;Part A−1)1
0,465(1972)など〕。
[0008] In addition, modification of MXD type polyamide using BAMC has also been reported. For example, MX
US Pat. No. 2,91 for the purpose of improving heat resistance by using BAMC as a component of diamine of D-based polyamide
6,476 specification etc. are mentioned. This BAMC-based polyamide is characterized in that the polyamide resin obtained has different properties depending on the BAMC isomer used. 1,2-bis (aminomethyl) cyclohexane (hereinafter referred to as 1,2-BAMC) and 1,3-bis (aminomethyl) cyclohexane (hereinafter referred to as 1,3-B) as structural isomers.
It is called AMC. ), 1,4-bis (aminomethyl) cyclohexane (hereinafter referred to as 1,4-BAMC), and each BAMC has two types of geometric isomers, a trans isomer and a cis isomer. However, there are a total of 6 isomers. However, in order to obtain a polyamide resin having high heat resistance and excellent mechanical properties, 1,4-BAMC is the most superior structural isomer of BAMC, and the trans isomer is a cis isomer as a geometrical isomer. Is known to be better than. At the same time, the transformer body,
It is also known that the thermal characteristics such as the crystal melting point greatly change depending on the composition ratio of the cis isomer [eg, Frank R. Prince et al., Journal of Polymer Science Part A]. -1
(J. Polymer. Sci; Part A-1) 1
0,465 (1972), etc.].

【0009】一方この1,4−BAMCを合成するに
は、PXDの還元(例えば、特開昭53−79840号
公報、同54−16452号公報)、ブタジエンとアク
リロニトリルの付加体を合成しオキソ反応、還元アミノ
化反応を経由して得る方法(例えば、米国特許第3,0
12,994号明細書)等が挙げられるが、これらの方
法で合成されたBAMCはトランス体、シス体の混合物
(トランス/シス(モル比);10/90〜90/1
0)で得られる。従って、所望の性能を発現させるため
にはトランス体とシス体の比を制御しなければならない
という煩雑さがある。特に、高耐熱性で優れた機械的性
質を発現させるポリアミド樹脂の原料として、95%以
上のトランス体BAMCを得るには、更に高度な分離・
異性化等の処理が必要であり、経済的に大きく不利であ
った。
On the other hand, in order to synthesize 1,4-BAMC, reduction of PXD (for example, JP-A-53-79840 and JP-A-54-16452), synthesis of an adduct of butadiene and acrylonitrile, and oxo reaction. , A method obtained via a reductive amination reaction (for example, US Pat. No. 3,0
12, 1994) and the like, but BAMC synthesized by these methods is a mixture of trans isomer and cis isomer (trans / cis (molar ratio); 10/90 to 90/1).
0). Therefore, there is a complication that the ratio of trans form to cis form must be controlled in order to express the desired performance. In particular, in order to obtain 95% or more of trans BAMC as a raw material of polyamide resin that exhibits high heat resistance and excellent mechanical properties, a higher degree of separation /
It required a treatment such as isomerization, which was economically disadvantageous.

【0010】尚、本明細書中で述べる高耐熱性とは、ポ
リマーの結晶融点が少なくとも280%以上、330℃
以下を意味する。330℃より高い結晶融点を有するポ
リアミド樹脂も知られているが、ポリマーの分解温度に
近いため、合成または成形中に分解・発泡あるいは着色
を伴うという問題がある。また、成形温度が高いため、
通常の成形機では成形が難しい等の問題があり、熱可塑
性ポリアミド樹脂としては好ましくない。低吸水性と
は、一般に市販されているNylon6.6の無充填で
射出成形用標準グレード(例えば、昭和電工品テクニー
ルA216)を比較材料として、常温〜100℃・常温
下で通常試験されている同一条件(例えば、ASTM法
・JIS法など)で測定した値が、少なくともNylo
n6.6の値より小さいことを意味する。また、低吸湿
性という用語も存在するが、試験方法が異なるだけで低
吸水性と本質的に同等と見なす。また、易成形加工とは
380℃以下の通常の溶融成形(例えば、射出成形、押
出成形など)が可能なことを意味する。更に、湿潤時の
機械的特性とは、成形直後もしくは乾燥時の成形品が、
常温〜100℃での水中また任意の湿度を有する雰囲気
下またはその温度の水と接触する可能性がある環境下に
少なくとも10時間以上置かれた場合の機械的特性を意
味する。
The high heat resistance mentioned in this specification means that the polymer has a crystalline melting point of at least 280% or more and 330 ° C.
It means the following. Polyamide resins having a crystalline melting point higher than 330 ° C. are also known, but since they are close to the decomposition temperature of polymers, there is a problem that decomposition / foaming or coloring is accompanied during synthesis or molding. Also, since the molding temperature is high,
It is not preferable as a thermoplastic polyamide resin because of problems such as difficulty in molding with an ordinary molding machine. Low water absorption is generally tested at room temperature to 100 ° C at room temperature using Nylon 6.6 non-filled standard injection molding standard grade (for example, Showa Denko technyl A216) as a comparative material. The value measured under the same condition (for example, ASTM method / JIS method) is at least Nylo.
It is smaller than the value of n6.6. Although the term low hygroscopicity also exists, it is considered to be essentially equivalent to low hygroscopicity only by the difference in the test method. Further, the easy molding process means that ordinary melt molding at 380 ° C. or lower (for example, injection molding, extrusion molding, etc.) is possible. Furthermore, the mechanical properties when wet means that the molded product immediately after molding or when dried is
It means the mechanical properties when placed in water at room temperature to 100 ° C. or in an atmosphere having an arbitrary humidity or in an environment where it may come into contact with water at that temperature for at least 10 hours or more.

【0011】[0011]

【発明が解決しようとする課題】PXD系ポリアミド
は、優れた耐熱性、機械的特性、低吸水性、化学的安定
性を有する反面、330℃以上の高い結晶融点を有する
ので合成、成形時に高温を必要とし、分解あるいは劣化
等を引き起こし易い。共重合等により結晶融点を下げる
検討も種々行われているが、結晶融点が下がり過ぎると
共に結晶性、機械的特性が大幅に低下するなどの問題点
がある。
The PXD type polyamide has excellent heat resistance, mechanical properties, low water absorption, and chemical stability, but has a high crystal melting point of 330 ° C. or higher, so that it can be used at high temperatures during synthesis and molding. Is required, and it is easy to cause decomposition or deterioration. Various studies have been made to lower the crystal melting point by copolymerization and the like, but there is a problem that the crystal melting point and mechanical properties are significantly lowered when the crystal melting point is lowered too much.

【0012】一方BAMC系ポリアミドは、ポリアミド
樹脂として良好な性能を発現させるのに、製造が煩雑で
高価格な95%以上トランス体を含むBAMCを使用す
る、またトランス体、シス体の異性体比により結晶融点
等の熱的特性が大きく変化するという問題点がある。
On the other hand, BAMC-based polyamide uses BAMC containing 95% or more of trans isomer, which is complicated to manufacture and expensive, in order to exhibit good performance as a polyamide resin, and the isomer ratio of trans isomer and cis isomer is used. Therefore, there is a problem that the thermal characteristics such as the melting point of the crystal change greatly.

【0013】[0013]

【課題を解決するための手段】本発明者は、前記従来技
術の欠点を解決すべく鋭意研究を重ねた結果、PXDと
経済的に有利なトランス1,4−BAMCとシス1,4
−BAMCの混合物およびアジピン酸のある特定の組成
範囲より得られるポリアミド樹脂が、優れた耐熱性、機
械的特性、低吸水性、易成形加工性を有し、しかも湿潤
時の機械的特性が優れていることを見い出し、本発明を
完成するに至った。また本発明者らは、ポリアミド樹脂
の成分として使用される1,4−BAMCにおいて、性
能を低下させると予測されるシス体を適度に含む経済的
に有利な1,4−BAMCが、意外にも優れた耐熱性、
機械的特性、低吸水性、易成形加工性を有し、しかも湿
潤時の機械的特性が良好なポリアミド樹脂を与えること
を見い出し、本発明に到達した。
As a result of intensive studies to solve the above-mentioned drawbacks of the prior art, the present inventor has found that PXD and economically advantageous transformer 1,4-BAMC and cis 1,4.
-A mixture of BAMC and a polyamide resin obtained from a certain composition range of adipic acid have excellent heat resistance, mechanical properties, low water absorption, easy moldability, and excellent mechanical properties when wet. Therefore, the present invention has been completed. In addition, the present inventors have surprisingly found that in 1,4-BAMC used as a component of a polyamide resin, economically advantageous 1,4-BAMC containing a moderate amount of cis-form that is predicted to reduce the performance is Also has excellent heat resistance,
The present invention was found by providing a polyamide resin having mechanical properties, low water absorption, easy moldability and good mechanical properties when wet.

【0014】すなわち本発明は、構造式(I)That is, the present invention provides structural formula (I)

【0015】[0015]

【化4】 で表わされる構成単位(A)と構造式(II)[Chemical 4] Structural unit (A) and structural formula (II)

【0016】[0016]

【化5】 (式中、X1 はトランス1,4−シクロヘキサン環残基
を表わす。)で表わされる構成単位(B)と構造式(II
I)
[Chemical 5] (In the formula, X 1 represents a trans 1,4-cyclohexane ring residue.) And the structural unit (B)
I)

【0017】[0017]

【化6】 (式中、X2 はシス1,4−シクロヘキサン環残基を表
わす。)で表わされる構成単位(C)とからなるポリア
ミド樹脂であって、 i)構成単位(A)と〔構成単位(B)+構成単位
(C)〕のモル比が50:50ないし90:10の範囲
にありかつ、 ii)構成単位(B)と構成単位(C)のモル比が10:
90ないし90:10の範囲にありかつ、 97%硫酸中、濃度1.0g/dl、温度30℃で測定し
た対数粘度が、0.4以上であることを特徴とする新規
な熱可塑性ポリアミド樹脂に関する。
[Chemical 6] (In the formula, X 2 represents a cis 1,4-cyclohexane ring residue.) A polyamide resin comprising a structural unit (C) represented by: i) a structural unit (A) and [a structural unit (B ) + Structural unit (C)] in the range of 50:50 to 90:10, and ii) the molar ratio of structural unit (B) to structural unit (C) is 10:
Novel thermoplastic polyamide resin in the range of 90 to 90:10 and having a logarithmic viscosity of 0.4 or more measured in 97% sulfuric acid at a concentration of 1.0 g / dl and a temperature of 30 ° C. Regarding

【0018】本発明で得られる新規な熱可塑性ポリアミ
ド樹脂の構成単位(A)は、PXDとアジピン酸とから
得られるポリアミド骨格を、構成単位(B)は、トラン
ス1,4−BAMCとアジピン酸とから得られるポリア
ミド骨格を、構成単位(C)は、シス1,4−BAMC
とアジピン酸とから得られるポリアミド骨格を表す。ま
た、〔構成単位(B)+構成単位(C)〕は、構成単位
(B)と構成単位(C)とを加えたものを意味し、1,
4−BAMCとアジピン酸とから得られるポリアミド骨
格を表す。
The structural unit (A) of the novel thermoplastic polyamide resin obtained in the present invention is a polyamide skeleton obtained from PXD and adipic acid, and the structural unit (B) is trans 1,4-BAMC and adipic acid. The polyamide skeleton obtained from and the structural unit (C) is cis-1,4-BAMC
And a polyamide skeleton obtained from adipic acid. [Structural unit (B) + Structural unit (C)] means that the structural unit (B) and the structural unit (C) are added.
It represents a polyamide skeleton obtained from 4-BAMC and adipic acid.

【0019】本発明で得られる新規な熱可塑性ポリアミ
ド樹脂の構成単位(A)と〔構成単位(B)+構成単位
(C)〕のモル比は、50:50ないし90:10の範
囲であり、更に好ましくは70:30ないし90:10
の範囲である。構成単位(B)と構成単位(C)のモル
比は、10:90ないし90:10の範囲であり、好ま
しくは、25:75ないし90:10の範囲であり、更
に好ましくは、40:60ないし80:20の範囲であ
る。この範囲を三角座標を用いて、模式的に表わすと図
1のP,Q,R,Sで囲まれた斜線で示される範囲とな
る。
The molar ratio of the structural unit (A) to the structural unit (B) + the structural unit (C) of the novel thermoplastic polyamide resin obtained in the present invention is in the range of 50:50 to 90:10. And more preferably 70:30 to 90:10
The range is. The molar ratio of the structural unit (B) to the structural unit (C) is in the range of 10:90 to 90:10, preferably 25:75 to 90:10, and more preferably 40:60. To 80:20. If this range is schematically expressed using triangular coordinates, it will be a range indicated by hatched lines surrounded by P, Q, R, and S in FIG.

【0020】構成単位(A)と〔構成単位(B)+構成
単位(C)〕のモル比が90:10を越えるか、もしく
は構成単位(B)と構成単位(C)のモル比が90:1
0を越えると結晶化温度が高くなるため、成形時の着色
および発泡が起り好ましくない。また構成単位(B)と
構成単位(C)のモル比が10:90以下になると得ら
れるポリアミド樹脂の耐熱性および特に湿潤時の機械的
特性が低下するので好ましくない。
The molar ratio of the structural unit (A) to [the structural unit (B) + the structural unit (C)] exceeds 90:10, or the molar ratio of the structural unit (B) to the structural unit (C) is 90. : 1
If it exceeds 0, the crystallization temperature becomes high, and coloring and foaming during molding occur, which is not preferable. Further, if the molar ratio of the structural unit (B) to the structural unit (C) is 10:90 or less, the heat resistance of the obtained polyamide resin and especially the mechanical properties when wet are deteriorated, which is not preferable.

【0021】さらに構成単位(A)と〔構成単位(B)
+構成単位(C)〕のモル比が70:30ないし90:
10の範囲にすると、構成単位(B)と構成単位(C)
のモル比、すなわち1,4−BAMCの幾何異性体の組
成比にほとんど依存することなく、優れた耐熱性、機械
的特性、低吸水性、湿潤時の機械的特性が得られる。し
たがって、この場合は従来利用価値の少ないとされてい
た構成単位(C)すなわちシス体を多く使えることにな
り、経済的に極めて有利となる。
Further, the structural unit (A) and the structural unit (B)
+ Structural unit (C)] in a molar ratio of 70:30 to 90:
When the range is 10, the structural unit (B) and the structural unit (C)
It has excellent heat resistance, mechanical properties, low water absorption, and mechanical properties when wet, almost without depending on the molar ratio of 1, 4, ie, the compositional ratio of geometric isomers of 1,4-BAMC. Therefore, in this case, it is possible to use a large amount of the structural unit (C), that is, the cis isomer, which has been considered to have a low utility value, which is extremely economically advantageous.

【0022】本発明で得られる新規な熱可塑性ポリアミ
ド樹脂は、97%濃硫酸中に溶解し、実質的にゲル分を
含まないものである。また、本発明の熱可塑性ポリアミ
ド樹脂の対数粘度(ηinh )は0.4以上、好ましくは
0.6以上である。本発明の熱可塑性ポリアミド樹脂の
対数粘度が0.4未満では、成形品あるいはフィルムに
した場合の強度が低く、実用物性を有さないものであ
る。
The novel thermoplastic polyamide resin obtained in the present invention is one which is dissolved in 97% concentrated sulfuric acid and contains substantially no gel component. The thermoplastic polyamide resin of the present invention has an inherent viscosity (η inh ) of 0.4 or more, preferably 0.6 or more. When the logarithmic viscosity of the thermoplastic polyamide resin of the present invention is less than 0.4, the strength of the molded product or film is low and it has no practical physical properties.

【0023】本発明で得られる新規な熱可塑性ポリアミ
ド樹脂の製造は、通常のポリアミド合成に使用される方
法が適用される。例えば、上記組成のポリアミド樹脂に
なるように仕込まれたPXDとアジピン酸の塩とトラン
ス1,4−BAMCとアジピン酸の塩とシス1,4−B
AMCとアジピン酸の塩、もしくはあらかじめトランス
/シスの異性体比が制御された1,4−BAMCとアジ
ピン酸の塩および一定量の精製水から加圧下、350℃
以下で合成する方法、溶媒としてフェノール系溶媒を用
いて常圧下で合成する方法などが挙げられる。
For the production of the novel thermoplastic polyamide resin obtained in the present invention, the method used in ordinary polyamide synthesis is applied. For example, PXD, adipic acid salt, trans 1,4-BAMC, adipic acid salt, and cis 1,4-B prepared so as to be a polyamide resin having the above composition.
350 ° C under pressure from AMC salt and adipic acid salt or 1,4-BAMC and adipic acid salt whose trans / cis isomer ratio was previously controlled and a certain amount of purified water
The method of synthesizing below, the method of synthesizing under normal pressure using a phenolic solvent as a solvent, and the like can be mentioned.

【0024】[0024]

【実施例】以下、実施例をあげて本発明をさらに詳しく
説明するが、本発明はこれらの実施例によって何ら限定
されるものではない。なお、本発明によって得られた新
規な熱可塑性ポリアミド樹脂は、一般の有機溶媒には極
めて溶解しにくいので平均分子量を求めることは困難で
ある。従って、濃硫酸中で測定した対数粘度をもって分
子量の尺度とした。得られたポリマーの対数粘度(η
inh )は、97%濃硫酸中、0.5g/dlの濃度で30
℃で測定し以下の算出式で求めた。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. Since the novel thermoplastic polyamide resin obtained by the present invention is extremely difficult to dissolve in a general organic solvent, it is difficult to determine the average molecular weight. Therefore, the logarithmic viscosity measured in concentrated sulfuric acid was used as a measure of the molecular weight. The logarithmic viscosity (η
inh ) is 30% at a concentration of 0.5 g / dl in 97% concentrated sulfuric acid.
It was measured at ° C and calculated by the following calculation formula.

【0025】[0025]

【数1】 但し、t0 ;粘度計中の溶媒の流出時間 t ;粘度計中のポリマー溶液の流出時間 c ;ポリマー溶液濃度、0.5g/dl[Equation 1] Here, t 0 : outflow time of solvent in viscometer t; outflow time of polymer solution in viscometer c; polymer solution concentration, 0.5 g / dl

【0026】また、ポリマーの物性は次のようにして測
定した。
The physical properties of the polymer were measured as follows.

【0027】1)熱的性質は、PERKIN−ELME
R社製7型シリーズを用いDSC測定を行なった。精秤
した約10mgのサンプルをDSC装置に装填し、不活性
ガス中20℃/分の昇温速度で340℃まで加熱し、そ
の後20℃/分の降温速度で冷却する。この操作を2回
繰り返した後、2回目のDSC曲線より結晶融点(T
m)、融解熱量(△Hm)、結晶化温度(Tc)を測定
した。Tmは融解ピーク温度、△Hmは融解ピークより
求めた単位重量当りの融解熱量、Tcは結晶化ピーク温
度を示す。
1) The thermal properties are PERKIN-ELME
DSC measurement was performed using a 7 type series manufactured by R company. About 10 mg of the precisely weighed sample is loaded into a DSC apparatus, heated to 340 ° C. in an inert gas at a temperature rising rate of 20 ° C./minute, and then cooled at a temperature lowering rate of 20 ° C./minute. After repeating this operation twice, the crystalline melting point (T
m), the heat of fusion (ΔHm), and the crystallization temperature (Tc) were measured. Tm represents a melting peak temperature, ΔHm represents a heat of fusion per unit weight obtained from the melting peak, and Tc represents a crystallization peak temperature.

【0028】2)吸水性は、成形後のサンプルを50℃
精製水中に24時間浸漬し、その重量変化率を以下の算
出式で求めた。
2) Water absorbency was measured at 50 ° C. for the sample after molding.
It was immersed in purified water for 24 hours, and the weight change rate was calculated by the following calculation formula.

【0029】[0029]

【数2】 但し、W1 :浸漬前の重量 W2 :50℃水中に24時間浸漬後の重量[Equation 2] However, W 1 : weight before immersion W 2 : weight after immersion in water at 50 ° C for 24 hours

【0030】3)乾燥時の機械的特性は、ポリマーを2
85℃〜350℃の温度でCSI社製 MINI MA
X成形機(MODEL CS−183)を用いて溶融成
形し、80℃で24時間真空乾燥した後、東洋ボールド
ウィン社製、TENSILON/UTM−1−2500
を用い、機械的強度試験測定を行なった。
3) The mechanical properties of the polymer when dried are 2
CINI MINI MA at a temperature of 85 ° C to 350 ° C
After melt-molding using an X molding machine (MODEL CS-183) and vacuum-drying at 80 ° C. for 24 hours, TENSILON / UTM-1-2500 manufactured by Toyo Baldwin Co., Ltd.
Was used for mechanical strength test measurement.

【0031】4)湿潤時の機械的特性は、ポリマーを2
85℃〜350℃の温度でCSI社製 MINI MA
X成形機(MODEL CS−183)を用いて溶融成
形した後、50℃の精製水に24時間浸漬後、東洋ボー
ルドウィン社製、TENSILON/UTM−1−25
00を用い機械的強度試験測定を行なった。また、寸法
変化率は成形後のサンプルを50℃精製水中に24時間
浸漬し、その寸法変化率を、成形時の樹脂の流れ方向
(MD)とそれに直角方向(TD)の各々について以下
の算出式で求めた。
4) The mechanical properties when wet are:
CINI MINI MA at a temperature of 85 ° C to 350 ° C
After melt molding using an X molding machine (MODEL CS-183), it was immersed in purified water at 50 ° C. for 24 hours and then manufactured by Toyo Baldwin Co., Ltd., TENSILON / UTM-1-25.
00 was used for the mechanical strength test measurement. The dimensional change rate was calculated by immersing the molded sample in purified water at 50 ° C for 24 hours, and calculating the dimensional change rate for each of the resin flow direction (MD) and the perpendicular direction (TD) during molding. I calculated by the formula.

【0032】[0032]

【数3】 但し、L1 :浸漬前の長さ L2 :50℃水中に24時間浸漬後の長さ[Equation 3] However, L 1 : length before immersion L 2 : length after immersion in water at 50 ° C for 24 hours

【0033】5)赤外吸光スペクトル分析(IR)は、
日立製作所社製270−50形赤外分光光度計を用いて
行なった。NMRスペクトル分析(13C−NMRおよび
1H−NMR)は、日本電子社製、GSX400核磁気
共鳴スペクトロメーターを使用し、測定はテトラメチル
シラン(TMS)を内標とし、重硫酸溶媒またはヘキサ
フルオロイソプロパノールを用いて行なった。
5) Infrared absorption spectrum analysis (IR)
It carried out using the Hitachi Ltd. 270-50 type infrared spectrophotometer. NMR spectrum analysis ( 13 C-NMR and
(1 H-NMR) was manufactured by JEOL Ltd. GSX400 nuclear magnetic resonance spectrometer, and the measurement was performed using tetramethylsilane (TMS) as an internal standard and a bisulfate solvent or hexafluoroisopropanol.

【0034】実施例1 攪拌機、温度計、窒素導入口を付したガラス容器に、パ
ラ−キシリレンジアミン(PXD)とアジピン酸の塩
9.882g(0.035モル)、トランス体55%・
シス体45%から成る1,4−ビス(アミノメチル)シ
クロヘキサン(1,4−BAMC)とアジピン酸の塩
4.326g(0.015モル)およびメタ−クレゾー
ル20mlを仕込み、窒素下で加圧−脱気を数回繰り返
し、窒素置換を十分に行った。攪拌しながら窒素気流
下、昇温を開始した。200℃で1.5時間反応させた
後、240℃まで昇温しこの温度で更に1時間反応させ
た。この間、生成水とメタ−クレゾールの大部分を溜去
した。更に320℃まで昇温し窒素を流すのを停止し、
5mmHg以下の減圧下で20分間反応を継続した。反応終
了後、室温まで冷却し系内を常圧に戻した。無臭で白色
のポリマー11.9g(収率95.3%)が得られた。
対数粘度は、1.45であった。IRおよびNMR分析
より、得られたポリマーの構造は、表1に示される構造
であることが判明した。
Example 1 In a glass container equipped with a stirrer, a thermometer and a nitrogen inlet, 9.882 g (0.035 mol) of para-xylylenediamine (PXD) and adipic acid salt, 55% of trans form were prepared.
1,4-Bis (aminomethyl) cyclohexane (1,4-BAMC) consisting of 45% cis isomer, 4.326 g (0.015 mol) of adipic acid salt and 20 ml of meta-cresol were charged and pressurized under nitrogen. -Deaeration was repeated several times to perform sufficient nitrogen replacement. Temperature rising was started under a nitrogen stream while stirring. After reacting at 200 ° C. for 1.5 hours, the temperature was raised to 240 ° C. and the reaction was continued for another hour at this temperature. During this time, most of the produced water and meta-cresol were distilled off. Further raise the temperature to 320 ° C and stop the flow of nitrogen,
The reaction was continued for 20 minutes under a reduced pressure of 5 mmHg or less. After the reaction was completed, the system was cooled to room temperature and the pressure inside the system was returned to normal pressure. 11.9 g (yield 95.3%) of an odorless white polymer was obtained.
The logarithmic viscosity was 1.45. From the IR and NMR analysis, the structure of the obtained polymer was found to be the structure shown in Table 1.

【0035】またDSC分析の結果、シャープな結晶ピ
ークを示し、結晶融点(Tm)306℃、融解熱12 C
al/g、結晶化温度(Tc)248℃の結晶性ポリアミ
ドであった。320〜330℃で溶融成形した後、性能
評価を行った結果、以下の性能を有していた。 吸水率 1.9% TD方向の寸法変化率 1.1% MD方向の寸法変化率 0.3% 乾燥時の引張強度 1,270kg/cm2 乾燥時の破断伸度 10% 乾燥時の曲げ弾性率 38,000kg/cm2 乾燥時の曲げ強度 1,980kg/cm2 湿潤時の引張強度 800kg/cm2 湿潤時の破断伸度 10% 湿潤時の曲げ弾性率 33,000kg/cm2 湿潤時の曲げ強度 1,400kg/cm2
As a result of DSC analysis, a sharp crystal peak was shown, with a crystal melting point (Tm) of 306 ° C. and a heat of fusion of 12 C.
It was a crystalline polyamide with al / g and a crystallization temperature (Tc) of 248 ° C. After melt-molding at 320 to 330 ° C., the performance was evaluated and as a result, it had the following performance. Water absorption 1.9% Dimensional change in TD direction 1.1% Dimensional change in MD direction 0.3% Tensile strength when dried 1,270 kg / cm 2 Breaking elongation when dried 10% Bending elasticity when dried rate 38,000kg / cm 2 dry flexural strength 1,980kg / cm 2 tensile strength 800 kg / cm 2 breaking elongation of 10% when wet wet the wet flexural modulus 33,000kg / cm 2 of wet Bending strength 1,400kg / cm 2

【0036】実施例2 攪拌機、温度計、窒素導入口を付した1Lオートクレー
ブに、PXDとアジピン酸の塩84.70g(0.3モ
ル)、トランス体55%・シス体45%から成る1,4
−BAMCとアジピン酸の塩57.68g(0.2モ
ル)、および精製水570mlを仕込み、窒素下で加圧−
脱気を数回繰り返し、窒素置換を十分に行った。密閉系
にした後、攪拌しながら昇温を開始した。185℃,8
kg/cm2 で保持しながら水を溜去し、3.5時間反応さ
せた。その後常圧に戻し、更に310℃まで昇温した。
この温度で5分間反応させた後、系内を3mmHg以下の減
圧に保ち、更に10分間反応を行った。反応終了後、白
色のポリマー111.6g(収率90.0%)が得られ
た。対数粘度は、1.32であった。IRおよび13C−
NMR分析より、得られたポリマーの構造は、表1に示
される構造であることが判明した。
Example 2 In a 1 L autoclave equipped with a stirrer, a thermometer and a nitrogen inlet, 84.70 g (0.3 mol) of PXD and adipic acid salt, 55% trans isomer and 45% cis isomer were prepared. Four
-BAMC and adipic acid salt 57.68 g (0.2 mol) and purified water 570 ml were charged and pressurized under nitrogen-
Degassing was repeated several times to sufficiently replace nitrogen. After making the system closed, the temperature rise was started while stirring. 185 ° C, 8
Water was distilled off while maintaining kg / cm 2 and the reaction was carried out for 3.5 hours. Thereafter, the pressure was returned to normal pressure, and the temperature was further raised to 310 ° C.
After reacting at this temperature for 5 minutes, the pressure inside the system was kept at 3 mmHg or less and the reaction was further performed for 10 minutes. After the reaction was completed, 111.6 g of white polymer (yield 90.0%) was obtained. The logarithmic viscosity was 1.32. IR and 13 C-
From the NMR analysis, the structure of the obtained polymer was found to be the structure shown in Table 1.

【0037】またDSC分析の結果、シャープな結晶ピ
ークを示し、結晶融点(Tm)303℃、融解熱10 C
al/g、結晶化温度(Tc)236℃の結晶性ポリアミ
ドであった。315〜325℃で溶融成形した後、性能
評価を行った結果、以下の性能を有していた。 吸水率 2.4% TD方向の寸法変化率 1.0% MD方向の寸法変化率 0.2% 乾燥時の引張強度 1,200kg/cm2 乾燥時の破断伸度 15% 乾燥時の曲げ弾性率 35,000kg/cm2 乾燥時の曲げ強度 1,800kg/cm2 湿潤時の引張強度 840kg/cm2 湿潤時の破断伸度 92% 湿潤時の曲げ弾性率 25,000kg/cm2 湿潤時の曲げ強度 1,350kg/cm2
As a result of DSC analysis, a sharp crystal peak was shown, with a crystal melting point (Tm) of 303 ° C. and a heat of fusion of 10 C.
It was a crystalline polyamide with al / g and a crystallization temperature (Tc) of 236 ° C. After melt-molding at 315 to 325 ° C., the performance was evaluated and as a result, it had the following performance. Water absorption rate 2.4% Dimensional change in TD direction 1.0% Dimensional change in MD direction 0.2% Tensile strength when dry 1,200 kg / cm 2 Breaking elongation when dry 15% Bending elasticity when dry Rate 35,000 kg / cm 2 Bending strength when dry 1,800 kg / cm 2 Tensile strength when wet 840 kg / cm 2 Breaking elongation when wet 92% Bending elastic modulus when wet 25,000 kg / cm 2 When wet Bending strength 1,350kg / cm 2

【0038】実施例3〜9 表1に示す仕込、重合条件で行った以外は実施例1また
は実施例2の方法に準じてポリアミドの合成を行った。
合成の結果も併せて表1および表2に示した。また、得
られたポリアミドを結晶融点より10〜20℃高目の温
度で実施例1と同様に溶融成形を行った。成形品につい
て性能評価を行った。結果を表3および表4に示した。
Examples 3 to 9 Polyamides were synthesized according to the method of Example 1 or Example 2 except that the charging and polymerization conditions shown in Table 1 were used.
The results of the synthesis are also shown in Tables 1 and 2. Further, the obtained polyamide was melt-molded in the same manner as in Example 1 at a temperature 10 to 20 ° C. higher than the crystal melting point. The performance of the molded product was evaluated. The results are shown in Tables 3 and 4.

【0039】比較例1 攪拌機、温度計、窒素導入口を付したガラス容器に、P
XDとアジピン酸の塩9.882g(0.035モ
ル)、トランス体95%・シス体5%から成る1,4−
ビス(アミノメチル)シクロヘキサン(1,4−BAM
C)とアジピン酸の塩4.326g(0.015モル)
およびメタ−クレゾール20mlを仕込み、窒素下で加圧
−脱気を数回繰り返し、窒素置換を十分に行った。攪拌
しながら窒素気流下、昇温を開始した。200℃で1.
5時間反応させた後、240℃まで昇温しこの温度で更
に1時間反応させた。この間、生成水とメタ−クレゾー
ルの大部分を溜去した。更に340℃まで昇温し窒素を
流すのを停止し、5mmHg以下の減圧下で20分間反応を
継続した。反応終了後、室温まで冷却し系内を常圧に戻
した。やや淡黄色のポリマー12.2g(収率96.7
%)が得られた。対数粘度は、1.42であった。IR
および13C−NMR分析より、得られたポリマーの構造
は、表2に示される構造であることが判明した。
Comparative Example 1 P was placed in a glass container equipped with a stirrer, a thermometer and a nitrogen inlet.
A salt of XD and adipic acid 9.882 g (0.035 mol), consisting of trans isomer 95% and cis isomer 5% 1,4-
Bis (aminomethyl) cyclohexane (1,4-BAM
C) and adipic acid salt 4.326 g (0.015 mol)
Then, 20 ml of meta-cresol was charged, and pressurization and deaeration were repeated under nitrogen several times to sufficiently replace nitrogen. Temperature rising was started under a nitrogen stream while stirring. 1. At 200 ° C
After reacting for 5 hours, the temperature was raised to 240 ° C. and further reacted at this temperature for 1 hour. During this time, most of the produced water and meta-cresol were distilled off. The temperature was further raised to 340 ° C., the flow of nitrogen was stopped, and the reaction was continued for 20 minutes under a reduced pressure of 5 mmHg or less. After the reaction was completed, the system was cooled to room temperature and the pressure inside the system was returned to normal pressure. 12.2 g of slightly pale yellow polymer (yield 96.7)
%)was gotten. The logarithmic viscosity was 1.42. IR
And 13 C-NMR analysis revealed that the structure of the obtained polymer was the structure shown in Table 2.

【0040】またDSC分析の結果、シャープな結晶ピ
ークを示し、結晶融点(Tm)331℃、融解熱15 C
al/g、結晶化温度(Tc)290℃の結晶性ポリアミ
ドであった。345〜355℃で溶融成形中ガス分の発
生が認められ、成形品も発泡あるいは着色していた。物
性測定を行った結果、以下の性能を有していた。 吸水率 2.0% TD方向の寸法変化率 1.2% MD方向の寸法変化率 0.2% 乾燥時の引張強度 700kg/cm2 乾燥時の破断伸度 3% 乾燥時の曲げ弾性率 27,000kg/cm2 乾燥時の曲げ強度 1,000kg/cm2 湿潤時の引張強度 530kg/cm2 湿潤時の破断伸度 16% 湿潤時の曲げ弾性率 25,000kg/cm2 湿潤時の曲げ強度 1,200kg/cm2
As a result of DSC analysis, a sharp crystal peak was shown, with a crystal melting point (Tm) of 331 ° C. and a heat of fusion of 15 C.
It was a crystalline polyamide with al / g and a crystallization temperature (Tc) of 290 ° C. Generation of a gas component was observed during melt molding at 345 to 355 ° C, and the molded product was also foamed or colored. As a result of measuring physical properties, it had the following properties. Water absorption rate 2.0% TD dimensional change rate 1.2% MD dimensional change rate 0.2% Dry tensile strength 700 kg / cm 2 Dry elongation at break 3% Bending elastic modulus 27 , 000kg / cm 2 dry flexural strength 1,000kg / cm 2 wet tensile strength 530 kg / cm 2 wet flexural bending strength at elastic modulus 25,000 kg / cm 2 wet elongation at break 16% wet during 1,200 kg / cm 2

【0041】比較例2 攪拌機、温度計、窒素導入口を付した1Lオートクレー
ブに、PXDとアジピン酸の塩134.11g(0.4
75モル)、トランス体95%・シス体5%から成る
1,4−BAMCとアジピン酸の塩7.210g(0.
025モル)、および精製水550mlを仕込み、窒素下
で加圧−脱気を数回繰り返し、窒素置換を十分に行っ
た。密閉系にした後、攪拌しながら昇温を開始した。2
20℃,8kg/cm2 で保持しながら水を溜去し、3.5
時間反応させた。その後常圧に戻し、更に345℃まで
昇温した。この温度で5分間反応させた後、系内を3mm
Hg以下の減圧に保ち、更に10分間反応を行った。反応
終了後、やや淡黄色のポリマー22.9g(収率93.
1%)が得られた。対数粘度は、0.87であった。I
Rおよび13C−NMR分析より、得られたポリマーの構
造は、表2に示される構造であることが判明した。また
DSC分析の結果、シャープな結晶ピークを示し、結晶
融点(Tm)335℃、融解熱18 Cal/g、結晶化温
度(Tc)295℃の結晶性ポリアミドであった。34
5〜355℃で溶融成形中ガス分の発生が認められ、得
られた成形品も発泡あるいは着色していた。また成形品
としてはやや脆い材料であった。性能評価を行った結果
を表4に示した。
Comparative Example 2 In a 1 L autoclave equipped with a stirrer, a thermometer and a nitrogen inlet, 134.11 g (0.4) of PXD and adipic acid salt was added.
75 mol), a salt of 1,4-BAMC and adipic acid consisting of 95% of trans isomer and 5% of cis isomer, 7.210 g (0.2.
(025 mol), and 550 ml of purified water were charged, and pressure-deaeration was repeated under nitrogen several times to sufficiently replace nitrogen. After making the system closed, the temperature rise was started while stirring. Two
Water is distilled off while maintaining at 20 ° C and 8 kg / cm 2 ,
Reacted for hours. Thereafter, the pressure was returned to normal pressure, and the temperature was further raised to 345 ° C. After reacting at this temperature for 5 minutes, the inside of the system is 3 mm
The pressure was maintained at Hg or less and the reaction was further performed for 10 minutes. After the completion of the reaction, 22.9 g of a slightly pale yellow polymer (yield 93.
1%) was obtained. The logarithmic viscosity was 0.87. I
From the R and 13 C-NMR analysis, the structure of the obtained polymer was found to be the structure shown in Table 2. As a result of DSC analysis, it was a crystalline polyamide showing a sharp crystal peak, a melting point (Tm) of 335 ° C, a heat of fusion of 18 Cal / g, and a crystallization temperature (Tc) of 295 ° C. 34
Generation of a gas component was observed during melt molding at 5 to 355 ° C, and the obtained molded product was also foamed or colored. The material was a little brittle as a molded product. The results of performance evaluation are shown in Table 4.

【0042】比較例3 攪拌機、温度計、窒素導入口を付したガラス容器に、P
XDとアジピン酸の塩7.059g(0.025モル)
トランス体5%・シス体95%から成る1,4−BAM
C7.210g(0.025モル)およびメタ−クレゾ
ール20mlを仕込み、窒素下で加圧−脱気を数回繰り返
し、窒素置換を十分に行った。攪拌しながら窒素気流
下、昇温を開始した。200℃で1.5時間反応させた
後、240℃まで昇温しこの温度で更に1時間反応させ
た。この間、生成水とメタ−クレゾールの大部分を溜去
した。更に300℃まで昇温し窒素を流すのを停止し、
5mmHg以下の減圧下で20分間反応を継続した。反応終
了後、室温まで冷却し系内を常圧に戻した。無臭で白色
のポリマー11.92g(収率96.2%)が得られ
た。対数粘度は、1.35であった。IRおよび13C−
NMR分析より、得られたポリマーの構造は、表2に示
される構造であることが判明した。またDSC分析の結
果、ややブロードな結晶ピークを示し、結晶融点(T
m)274℃、融解熱8 Cal/g、結晶化温度(Tc)
200℃の耐熱性および結晶性の低いポリアミドであっ
た。290〜300℃で溶融成形した後、性能評価を行
った。結果を表4に示した。
Comparative Example 3 A glass container equipped with a stirrer, a thermometer and a nitrogen inlet was charged with P.
XD and adipic acid salt 7.059 g (0.025 mol)
1,4-BAM consisting of 5% trans form and 95% cis form
C. 7.210 g (0.025 mol) and meta-cresol 20 ml were charged, and pressure-deaeration was repeated several times under nitrogen to sufficiently replace nitrogen. Temperature rising was started under a nitrogen stream while stirring. After reacting at 200 ° C. for 1.5 hours, the temperature was raised to 240 ° C. and the reaction was continued for another hour at this temperature. During this time, most of the produced water and meta-cresol were distilled off. Further raise the temperature to 300 ° C and stop the flow of nitrogen,
The reaction was continued for 20 minutes under a reduced pressure of 5 mmHg or less. After the reaction was completed, the system was cooled to room temperature and the pressure inside the system was returned to normal pressure. 11.92 g (yield 96.2%) of an odorless white polymer was obtained. The logarithmic viscosity was 1.35. IR and 13 C-
From the NMR analysis, the structure of the obtained polymer was found to be the structure shown in Table 2. In addition, as a result of DSC analysis, a slightly broad crystal peak was observed and the crystal melting point (T
m) 274 ° C, heat of fusion 8 Cal / g, crystallization temperature (Tc)
The polyamide had low heat resistance at 200 ° C. and low crystallinity. After melt molding at 290 to 300 ° C., performance evaluation was performed. The results are shown in Table 4.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】実施例10 (10−a)攪拌機、温度計、窒素導入口を付した1L
オートクレーブに、パラ−キシリレンジアミン(PX
D)とアジピン酸の塩105.9g(0.375モ
ル)、トランス体75%・シス体25%から成る1,4
−ビス(アミノメチル)シクロヘキサン(1,4−BA
MC)とアジピン酸の塩36.1g(0.125モ
ル)、および精製水580mlを仕込み、窒素下で加圧−
脱気を数回繰り返し、窒素置換を十分に行った。密閉系
にした後、攪拌しながら昇温を開始した。205℃,1
5kg/cm2 で保持しながら水を溜去し、3.5時間反応
させた。その後常圧に戻し、更に325℃まで昇温し
た。この温度で5分間反応させた後、系内を3mmHg以下
の減圧に保ち、更に10分間反応を行った。反応終了
後、白色のポリマー121.2g(収率97.1%)が
得られた。対数粘度は、1.37であった。IRおよび
13C−NMR分析より、得られたポリマーの構造は、表
5に示される構造であることが判明した。
Example 10 (10-a) 1 L equipped with a stirrer, thermometer, nitrogen inlet
Para-xylylenediamine (PX
D) and adipic acid salt 105.9 g (0.375 mol), trans isomer 75%, cis isomer 25% 1,4
-Bis (aminomethyl) cyclohexane (1,4-BA
MC) and 36.1 g (0.125 mol) of adipic acid salt and 580 ml of purified water were charged, and pressurized under nitrogen.
Degassing was repeated several times to sufficiently replace nitrogen. After making the system closed, the temperature rise was started while stirring. 205 ° C, 1
Water was distilled off while maintaining the rate at 5 kg / cm 2 , and the reaction was carried out for 3.5 hours. Thereafter, the pressure was returned to normal pressure, and the temperature was further raised to 325 ° C. After reacting at this temperature for 5 minutes, the pressure inside the system was kept at 3 mmHg or less and the reaction was further performed for 10 minutes. After the reaction was completed, 121.2 g of white polymer (yield 97.1%) was obtained. The logarithmic viscosity was 1.37. IR and
From 13 C-NMR analysis, the structure of the obtained polymer was found to be the structure shown in Table 5.

【0048】またDSC分析の結果、シャープな結晶ピ
ークを示し、結晶融点(Tm)316℃、融解熱14 C
al/g、結晶化温度(Tc)265℃の結晶性ポリアミ
ドであった。325〜335℃で溶融成形した後、性能
評価を行った結果、以下の性能を有していた。 吸水率 2.1% TD方向の寸法変化率 1.0% MD方向の寸法変化率 0.2% 乾燥時の引張強度 1,200kg/cm2 乾燥時の破断伸度 11% 乾燥時の曲げ弾性率 37,000kg/cm2 乾燥時の曲げ強度 1,600kg/cm2 湿潤時の引張強度 800kg/cm2 湿潤時の破断伸度 10% 湿潤時の曲げ弾性率 30,000kg/cm2 湿潤時の曲げ強度 1,380kg/cm2
As a result of DSC analysis, a sharp crystal peak was shown, with a crystal melting point (Tm) of 316 ° C. and a heat of fusion of 14 C.
It was a crystalline polyamide with al / g and a crystallization temperature (Tc) of 265 ° C. After melt-molding at 325 to 335 ° C., the performance was evaluated and as a result, it had the following performance. Water absorption 2.1% Dimensional change in TD direction 1.0% Dimensional change in MD direction 0.2% Tensile strength when dry 1,200 kg / cm 2 Breaking elongation when dry 11% Bending elasticity when dry rate 37,000kg / cm 2 dry flexural strength up to 1,600 kg / cm 2 tensile strength 800 kg / cm 2 breaking elongation of 10% when wet wet the wet flexural modulus 30,000 / cm 2 of wet Bending strength 1,380kg / cm 2

【0049】次に1,4−BAMCのトランス体、シス
体の異性体モル比を表5のように変えた以外は、上記合
成法と同様にして更に2種類のポリアミド樹脂(10−
b,10−c)を得た。結果を表5及び表6に示した。
結果より、1,4−BAMCの異性体モル比に依存しな
い高耐熱性、高強度、低吸水性、易成形加工性、かつ湿
潤時の機械的特性が優れたポリアミド樹脂が得られるこ
とがわかった。
Next, two different types of polyamide resin (10-) were prepared in the same manner as in the above synthetic method except that the molar ratio of 1,4-BAMC trans isomer and cis isomer was changed as shown in Table 5.
b, 10-c) was obtained. The results are shown in Tables 5 and 6.
From the results, it was found that a polyamide resin having high heat resistance, high strength, low water absorption, easy moldability, and excellent mechanical properties when wet independent of the isomer molar ratio of 1,4-BAMC was obtained. It was

【0050】実施例11 (11−a)攪拌機、温度計、窒素導入口を付したガラ
ス容器に、PXDとアジピン酸の塩12.0g(0.0
425モル)、トランス体75%・シス体25%から成
る1,4−BAMCとアジピン酸の塩2.16g(0.
0075モル)、およびメタ−クレゾール20mlを仕込
み、窒素下で加圧−脱気を数回繰り返し、窒素置換を十
分に行った。攪拌しながら窒素気流下、昇温を開始し
た。200℃で1.5時間反応させた後、240℃まで
昇温しこの温度で更に1時間反応させた。この間、生成
水とメタ−クレゾールの大部分を溜去した。更に330
℃まで昇温し窒素を流すのを停止し、5mmHg以下の減圧
下で20分間反応を継続した。反応終了後、室温まで冷
却し系内を常圧に戻した。無臭で白色のポリマー11.
9g(収率95.3%)が得られた。対数粘度は、1.
27であった。IRおよび13C−NMR分析より、得ら
れたポリマーの構造は、表5に示される構造であること
が判明した。
Example 11 (11-a) 12.0 g (0.0) of PXD and adipic acid salt was placed in a glass container equipped with a stirrer, a thermometer and a nitrogen inlet.
425 mol), 1,4-BAMC consisting of 75% trans isomer and 25% cis isomer, and 2.16 g (0.
(0075 mol) and 20 ml of meta-cresol were charged, and pressure-deaeration was repeated several times under nitrogen to sufficiently replace nitrogen. Temperature rising was started under a nitrogen stream while stirring. After reacting at 200 ° C. for 1.5 hours, the temperature was raised to 240 ° C. and the reaction was continued for another hour at this temperature. During this time, most of the produced water and meta-cresol were distilled off. Further 330
The temperature was raised to ℃ and the flow of nitrogen was stopped, and the reaction was continued for 20 minutes under a reduced pressure of 5 mmHg or less. After the reaction was completed, the system was cooled to room temperature and the pressure inside the system was returned to normal pressure. Odorless white polymer 11.
9 g (yield 95.3%) was obtained. The logarithmic viscosity is 1.
It was 27. From the IR and 13 C-NMR analysis, the structure of the obtained polymer was found to be the structure shown in Table 5.

【0051】またDSC分析の結果、シャープな結晶ピ
ークを示し、結晶融点(Tm)320℃、融解熱16 C
al/g、結晶化温度(Tc)270℃の結晶性ポリアミ
ドであった。330〜340℃で溶融成形した後、性能
評価を行った結果、以下の性能を有していた。 吸水率 2.0% TD方向の寸法変化率 1.0% MD方向の寸法変化率 0.2% 乾燥時の引張強度 1,350kg/cm2 乾燥時の破断伸度 15% 乾燥時の曲げ弾性率 37,000kg/cm2 乾燥時の曲げ強度 1,650kg/cm2 湿潤時の引張強度 800kg/cm2 湿潤時の破断伸度 10% 湿潤時の曲げ弾性率 32,000kg/cm2 湿潤時の曲げ強度 1,400kg/cm2
As a result of DSC analysis, a sharp crystal peak was shown, and the crystal melting point (Tm) was 320 ° C. and the heat of fusion was 16 C.
It was a crystalline polyamide with al / g and a crystallization temperature (Tc) of 270 ° C. After melt-molding at 330 to 340 ° C., the performance was evaluated and as a result, it had the following performance. Water absorption rate 2.0% TD dimensional change rate 1.0% MD dimensional change rate 0.2% Dry tensile strength 1,350kg / cm 2 Dry elongation at break 15% Bending elasticity rate 37,000kg / cm 2 dry flexural strength 1,650kg / cm 2 tensile strength 800 kg / cm 2 breaking elongation of 10% when wet wet the wet flexural modulus 32,000kg / cm 2 of wet Bending strength 1,400kg / cm 2

【0052】次に1,4−BAMCのトランス体、シス
体の異性体モル比を表5のように変えた以外は、上記合
成法と同様にして更に2種類(11−b,11−c)の
ポリアミド樹脂を得た。結果を表5及び表6に示した。
結果より、1,4−BAMCの異性体モル比に依存しな
い高耐熱性、高強度、低吸水性、易成形加工性、かつ湿
潤時の機械的特性が優れたポリアミド樹脂が得られるこ
とがわかった。
Next, two more kinds (11-b, 11-c) were prepared in the same manner as in the above synthetic method except that the molar ratio of 1,4-BAMC trans isomer and cis isomer was changed as shown in Table 5. ) Was obtained. The results are shown in Tables 5 and 6.
From the results, it was found that a polyamide resin having high heat resistance, high strength, low water absorption, easy moldability, and excellent mechanical properties when wet independent of the isomer molar ratio of 1,4-BAMC was obtained. It was

【0053】[0053]

【表5】 [Table 5]

【0054】[0054]

【表6】 [Table 6]

【0055】[0055]

【発明の効果】実施例からも明らかなように、本発明の
新規な熱可塑性ポリアミド樹脂は、優れた高耐熱性、低
吸水性、高強度および成形加工が容易に行える樹脂であ
り、エンジニアリングプラスチックス等として産業上有
用である。
As is clear from the examples, the novel thermoplastic polyamide resin of the present invention is a resin having excellent high heat resistance, low water absorption, high strength and easy molding process, and is an engineering plastic. It is industrially useful as a device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱可塑性樹脂における構成単位
(A)、構成単位(B)、構成単位(C)の組成割合を
示す三角図である。
FIG. 1 is a triangular diagram showing composition ratios of a structural unit (A), a structural unit (B) and a structural unit (C) in a thermoplastic resin of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1)構造式(I) 【化1】 で表わされる構成単位(A)と構造式(II) 【化2】 (式中、X1 はトランス1,4−シクロヘキサン環残基
を表わす。)で表わされる構成単位(B)と構造式(II
I) 【化3】 (式中、X2 はシス1,4−シクロヘキサン環残基を表
わす。)で表わされる構成単位(C)とからなるポリア
ミド樹脂であって、 i)構成単位(A)と〔構成単位(B)+構成単位
(C)〕のモル比が50:50ないし90:10の範囲
にありかつ、 ii)構成単位(B)と構成単位(C)のモル比が10:
90ないし90:10の範囲にありかつ、 97%硫酸中、濃度1.0g/dl、温度30℃で測定し
た対数粘度が、0.4以上であることを特徴とする新規
な熱可塑性ポリアミド樹脂。
1. A structural formula (I): Structural unit (A) represented by and structural formula (II) (In the formula, X 1 represents a trans 1,4-cyclohexane ring residue.) And the structural unit (B)
I) [Chemical 3] (In the formula, X 2 represents a cis 1,4-cyclohexane ring residue.) A polyamide resin comprising a structural unit (C) represented by: i) a structural unit (A) and [a structural unit (B ) + Structural unit (C)] in the range of 50:50 to 90:10, and ii) the molar ratio of structural unit (B) to structural unit (C) is 10:
Novel thermoplastic polyamide resin in the range of 90 to 90:10 and having a logarithmic viscosity of 0.4 or more measured in 97% sulfuric acid at a concentration of 1.0 g / dl and a temperature of 30 ° C. ..
【請求項2】 構成単位(A)と〔構成単位(B)+構
成単位(C)〕のモル比が70:30ないし90:10
の範囲にある請求項1記載の新規な熱可塑性ポリアミド
樹脂。
2. The molar ratio of the structural unit (A) to [the structural unit (B) + the structural unit (C)] is 70:30 to 90:10.
The novel thermoplastic polyamide resin according to claim 1, which is in the range of.
JP8090991A 1991-03-19 1991-03-19 New polyamide resin Pending JPH0578474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8090991A JPH0578474A (en) 1991-03-19 1991-03-19 New polyamide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8090991A JPH0578474A (en) 1991-03-19 1991-03-19 New polyamide resin

Publications (1)

Publication Number Publication Date
JPH0578474A true JPH0578474A (en) 1993-03-30

Family

ID=13731514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8090991A Pending JPH0578474A (en) 1991-03-19 1991-03-19 New polyamide resin

Country Status (1)

Country Link
JP (1) JPH0578474A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1277783A1 (en) * 2001-07-19 2003-01-22 Mitsubishi Gas Chemical Company, Inc. Polyamide resins and process for producing the same
JP2003096188A (en) * 2001-07-19 2003-04-03 Mitsubishi Gas Chem Co Inc Polyamide resin and its production method
JP2014105315A (en) * 2012-11-29 2014-06-09 Cheil Industries Inc Polyamide resin and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1277783A1 (en) * 2001-07-19 2003-01-22 Mitsubishi Gas Chemical Company, Inc. Polyamide resins and process for producing the same
JP2003096188A (en) * 2001-07-19 2003-04-03 Mitsubishi Gas Chem Co Inc Polyamide resin and its production method
US6750318B2 (en) * 2001-07-19 2004-06-15 Mitsubishi Gas Chemical Company, Inc. Polyamide resins and process for producing the same
JP2014105315A (en) * 2012-11-29 2014-06-09 Cheil Industries Inc Polyamide resin and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US9938377B2 (en) Polyamide, preparation process therefor and uses thereof
US5422418A (en) Polyamides and objects obtained from them
CN108530618B (en) Copolyamides containing dimerized fatty acids as monomers
US4018746A (en) Transparent copolyamides from m-xylylene diamine, an aliphatic diamine and terephthalic acid
US3150117A (en) Amorphous polyamides based on aromatic dicarboxylic acids with alkyl substituted hexamethylenediamine
CN105431471B (en) Polyamide containing ME-BHT, the composition containing such polyamide, the formed article containing such polyamide or such composition
CN108530886B (en) Microwave-resistant moulded part
US4937315A (en) Transparent amorphous polyamide having high Tg from hindered aromatic diamine and branched chain aliphatic diamine
KR101319663B1 (en) Reinforced polyamide composition
US4072665A (en) Polyamide from arylene diamine, isophthalic acid and alkylene dicarboxylic acid
EP0073557B1 (en) Copolyamide, process for producing thereof and copolyamide molding composition comprising thereof
WO2019121824A1 (en) Piperidine-containing semi-aromatic copolyamide
JPH06192416A (en) Production of polyamide resin
US4978734A (en) Polyamide-polyamide and polybenzoxazole-polyamide polymer
JPH0578474A (en) New polyamide resin
JPH05170897A (en) Crystalline polyamide resin of high molecular weight
CN106916296A (en) The preparation method and aliphatic transparent polyamide of a kind of aliphatic transparent polyamide
US4418189A (en) Polyamides from itaconic acid and diamines
JP2003138012A (en) Polyamide with excellent stretchability
US2836579A (en) Polycarbonamide from hexamethylene diamine and 2, 2-bis-(carboxyphenyl) propane
US5214125A (en) Polyamide from 3,5-tricyclo[5.2.1.02.6 ]decane dicarboxylic acid
JP2018521189A (en) Crosslinking of polyamides in the melt
JPS61108511A (en) Degassing method of aromatic polyamide solution
JPH037730A (en) Polyamide polymer having bonding group containing 12-f fluorine
US4654178A (en) Process for production of highly rigid shaped product of polymer containing therein diacetylene group