JPH0577967B2 - - Google Patents
Info
- Publication number
- JPH0577967B2 JPH0577967B2 JP4262688A JP4262688A JPH0577967B2 JP H0577967 B2 JPH0577967 B2 JP H0577967B2 JP 4262688 A JP4262688 A JP 4262688A JP 4262688 A JP4262688 A JP 4262688A JP H0577967 B2 JPH0577967 B2 JP H0577967B2
- Authority
- JP
- Japan
- Prior art keywords
- grating
- light source
- ray
- light
- diffused light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 claims description 32
- 238000001514 detection method Methods 0.000 claims description 24
- 238000006073 displacement reaction Methods 0.000 claims description 23
- 230000001427 coherent effect Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 5
- 238000005286 illumination Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Optical Transform (AREA)
Description
【産業上の利用分野】
本発明は、光学式変位検出器に係り、特に、二
つの部材の相対位置を、光学的な格子の形成され
たメインスケールと対応する光学的な格子を形成
した参照スケールとの相対変位によつて生ずる光
電変換信号の変化から検出する光学式変位検出器
の改良に関するものである。[Industrial Application Field] The present invention relates to an optical displacement detector, and in particular, the relative position of two members can be detected using a main scale formed with an optical grating and a reference scale formed with a corresponding optical grating. This invention relates to an improvement in an optical displacement detector that detects changes in photoelectric conversion signals caused by relative displacement with a scale.
対峙する部材の一方に、第1格子が形成された
メインスケールを固定し、他方の部材に、第2格
子が形成された参照スケールと、光源を含む照明
系と、受光素子とを固定し、両部材の相対移動に
応じて周期的に変化する検出信号を生成する光学
式変位検出器が、工作機械の工具の送り量等を測
定する分野で普及している。
従来の光学式変位検出器は、一般に平行照明系
を使用し、第1格子と第2格子のピツチは同一と
されていた。
これに対して本出願人は、特願昭61−191532に
おいて、第2格子のピツチが、第1格子のピツチ
の1/n(nは自然数)である検出器を提案して
おり、その中で、nが偶数の検出器は、例えば第
7図に示す如く構成されている。
この第7図に示した光学式変位検出器は、発光
ダイオード(LED)12及びコリメータレンズ
14から成る、有効波長λの平行照明系10と、
ピツチPの第1格子18が形成されたメインスケ
ール16と、前記第1格子18からの間隔(ギヤ
ツプ)がvでピツチQ=P/(2n)(nは自然
数)の第2格子22が形成された参照スケール2
0と、前記第1及び第2の格子18,22で濾波
された前記平行照明系10の光を光電変換する受
光素子24と、その出力信号を増幅して検出信号
aを得るプリアンプ26とから主に構成されてい
る。
A main scale on which a first grating is formed is fixed to one of the facing members, and a reference scale on which a second grating is formed, an illumination system including a light source, and a light receiving element are fixed to the other member, 2. Description of the Related Art Optical displacement detectors that generate detection signals that periodically change according to the relative movement of two members are widely used in the field of measuring the feed rate of tools in machine tools. Conventional optical displacement detectors generally use a parallel illumination system, and the pitch of the first grating and the second grating are the same. In contrast, the present applicant has proposed a detector in which the pitch of the second grating is 1/n (n is a natural number) of the pitch of the first grating in Japanese Patent Application No. 61-191532. The detector where n is an even number is constructed as shown in FIG. 7, for example. The optical displacement detector shown in FIG. 7 includes a collimated illumination system 10 with an effective wavelength λ, consisting of a light emitting diode (LED) 12 and a collimator lens 14;
A main scale 16 on which a first grating 18 of pitch P is formed, and a second grating 22 with a gap of v from the first grating 18 and pitch Q=P/(2n) (n is a natural number) are formed. reference scale 2
0, a light receiving element 24 that photoelectrically converts the light from the parallel illumination system 10 filtered by the first and second gratings 18 and 22, and a preamplifier 26 that amplifies its output signal to obtain a detection signal a. It mainly consists of
前記検出信号aのS/N比は、通常、振幅PP
と直流分DCとの比=PP/DCで表わされる。ピ
ツチQ=P/2の場合で、格子間隔vを変えた時
の実験結果の例を第8図に実線Aで示す。
第8図から明らかなように、検出信号aのS/
N比(=PP/DC)がが、格子間隔vによつて変
動しているため、検出器を組み立てるときに、
PP/DC最小のところに参照スケール20を固定
してしまうと、検出信号aのS/N比が悪くな
り、耐ノイズ性が悪化してしまう。従つて、位置
決め精度が厳しくなり、検出器のコストが高くな
るという問題点を有していた。
The S/N ratio of the detection signal a is usually equal to the amplitude PP
and the direct current component DC = PP/DC. An example of the experimental results obtained when the lattice spacing v is varied in the case of pitch Q=P/2 is shown by a solid line A in FIG. As is clear from FIG. 8, the S/
Since the N ratio (=PP/DC) varies depending on the grid spacing v, when assembling the detector,
If the reference scale 20 is fixed at the minimum PP/DC, the S/N ratio of the detection signal a will deteriorate, and the noise resistance will deteriorate. Therefore, there have been problems in that positioning accuracy becomes strict and the cost of the detector increases.
本発明は、前記従来の問題点を解消するべくな
されたもので、検出信号のS/N比のギヤツプ依
存性が従来よりも少ない光学式変位検出器を提供
することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide an optical displacement detector in which the S/N ratio of a detection signal has less gap dependence than the conventional one.
本発明は、有効波長λのコヒーレントが拡散光
源と、該拡散光源からの距離がuの位置に配設さ
れる、ピツチPの第1格子が形成されたメインス
ケールと、該第1格子からの距離がvの位置に配
設される、第2格子が形成された参照スケール
と、前記第1及び第2の格子で濾波された前記拡
散光源からの光を光電変換する受光素子とを含
み、前記メインスケールと参照スケールの相対変
位に応じて周期的に変化する検出信号を生成する
光学式変位検出器において、前記受光素子が、前
記検出信号中における、第1格子の幾何学的像の
格子間隔による変動分を除去するべく、次式の関
係
{u2v2/(u2+v2)}
−{u1v1/(u1+v1)}≒mP2/λ …(1)
W≒n{(u2+v2)sinθ2
−(u1+v1)sinθ1} ……(2)
(但しm,nは整数、u1,u2は、拡散光源と第
1格子間の各光線の光路長、v1,v2は、第1格子
と第2格子間の各光線の光路長、Wは、各光線の
第2格子上の中心間隔、θ1,θ2は、拡散光源から
格子に下した垂線に対して各光線がなす角度)を
満足する2本の光線を共に見込んで受光するよう
にして、前記目的を達成したものである。
又、本発明は、同様の光学式変位検出器におい
て、前記受光素子を2個設け、各受光素子、次式
の関係
(u2v2)/(u2+v2)
−(u1v1)/(u1+v1)≒mP2/2λ …(3)
L≒n{(u2+v2)sinθ2
−(u1+v1)sinθ1} ……(4)
(但しm,nは整数、u1,u2は、拡散光源と第
1格子間の各光線の光路長、v1,v2は、第1格子
と第2格子間の各光線の光路長、Lは、各光線の
第2格子上の中心間隔、θ1,θ2は、拡散光源から
格子に下した垂線に対して各光線がなす角度)を
満足する、2本の光線をそれぞれ受光するように
し、各受光素子の出力の和をもつて前記検出信号
として、前記目的を達成したものである。
The present invention provides a main scale with a coherent diffused light source having an effective wavelength λ, a main scale provided with a first grating of pitch P disposed at a distance u from the diffused light source, and a main scale formed with a first grating of pitch P; a reference scale on which a second grating is formed, disposed at a distance of v, and a light receiving element that photoelectrically converts light from the diffused light source filtered by the first and second gratings, In the optical displacement detector that generates a detection signal that periodically changes depending on the relative displacement between the main scale and the reference scale, the light receiving element detects a grating of a geometric image of the first grating in the detection signal. In order to remove the variation due to the interval, the following relationship is established: {u 2 v 2 / (u 2 + v 2 )} − {u 1 v 1 / (u 1 + v 1 )}≒mP 2 /λ...(1) W ≒n {(u 2 + v 2 ) sin θ 2 − (u 1 + v 1 ) sin θ 1 } ...(2) (However, m and n are integers, and u 1 and u 2 are the respective values between the diffused light source and the first grating. The optical path lengths of the light rays, v 1 and v 2 are the optical path lengths of each ray between the first grating and the second grating, W is the center distance of each ray on the second grating, θ 1 and θ 2 are the diffused light source The above object is achieved by receiving two light rays that satisfy the following angles (angles each light ray makes with respect to the perpendicular to the grid). Further, in the present invention, in a similar optical displacement detector, two light receiving elements are provided, and each light receiving element has the following relationship (u 2 v 2 )/(u 2 +v 2 ) −(u 1 v 1 ) / (u 1 + v 1 )≒mP 2 /2λ ...(3) L≒n {(u 2 + v 2 ) sin θ 2 − (u 1 + v 1 ) sin θ 1 } ... (4) (However, m, n are The integers, u 1 and u 2 are the optical path length of each ray between the diffused light source and the first grating, v 1 and v 2 are the optical path length of each ray between the first grating and the second grating, and L is the optical path length of each ray between the first grating and the second grating. The distance between the centers on the second grating, θ 1 and θ 2 , is the angle that each ray makes with respect to the perpendicular line drawn from the diffused light source to the grating. The above objective is achieved by using the sum of the outputs of the elements as the detection signal.
フレネルの回折の理論より、ピツチPの光学格
子を、可干渉性のある、即ちコヒーレントな平行
光線又は拡散光源で照明すると、その光学格子か
ら間隔(ギヤツプ)vのところには、ピツチが原
格子と同じPの幾何学的像(geometric image)
と、ピツチが原格子の1/2即ちP/2の回折効
果像(diffractive image)が形成されることが
知られている。このうち、幾何学的像のS/N比
は、格子間隔vの変化によつて大きく周期的に変
化する。
更に、一般に光学格子は明暗の縦縞状目盛とさ
れ、フーリエ解析すると、高調波成分を多く含ん
でいる。これらの高調波成分にも、それぞれ幾何
学的像と回折効果像があることが、本出願人によ
る特願昭61−208554等で明らかにされている。
このことから、第8図の実験結果(実線A)を
考察すると、このPP/DC曲線は、第1格子の原
格子(ピツチP)の回折効果像(ピツチP/2)
のS/N比(第8図の破線B)と、第1格子の2
次高調波(ピツチP/2)の幾何学的像(ピツチ
P/2)のS/N比(第8図の一点鎖線C)が合
成されたものであることがわかる。
第8図から明らかな如く、幾何学的像(一点鎖
線C)のS/N比は、ギヤツプ依存性があり、格
子間隔vがQ2/λの整数倍のところにピークG1,
G2,G3,G4,…があり、且つ、各ピークG1,
G2,G3,G4,…等では位相が反転している。
従つて、平行照明系の場合であれば、出願人が
特願昭62−231755で提案したように、第9図に示
す如く、参照スケール20に、変動の周期の整数
倍の傾斜量δ=mQ2/λ(mは自然数)を与える
と、幾何学的像がS/N比が変化する周期分だけ
積分されて、変化分が除去される。このため、検
出信号のS/N比における格子間隔vへの依存性
がほぼなくなることになる。
しかしながら、レーザダイオードのような拡散
光源を、そのまま用いる場合には、特に方向弁別
や位相分割等の目的で第2格子22及び受光素子
24が参照スケール20の幅方向に複数段設けら
れていると、参照スケール20の全体を傾斜させ
てしまつたのでは、各受光素子24間の距離の相
違が大きくなり過ぎ、受光量がアンバランスにな
つてうまくいかない。又、第2格子のみを傾ける
ことができない反射型の検出器には適用できない
等の問題点が残つていた。
これに対して、本発明では参照スケールを傾斜
させず、例えば第1図に示す如く、受光素子24
の位置を、レーザダイオード等の拡散光源30か
ら第1格子18及び第2格子22に下した垂線の
足の位置Z0からオフセツトさせ、且つ、受光素子
24が変動の周期分を同時に受光できるように、
そのスケール幅方向のサイズ(W)を、次式の関
係を満足する2本の光線B1,B2を共に見込んで
受光できる大きさとしている。
{u2v2/(u2+v2)}
−{u1v1/(u1+v1)}≒mP2/λ …(1)
W≒n{(u2+v2)sinθ2
−(u1+v1)sinθ1} ……(2)
ここで、m,nは整数(1,2,3,…)、P
は、第1格子18のピツチ、λは、拡散光源30
の有効波長、u1,u2は、拡散光源30と第1格子
18間の各光線B1,B2の光路長、v1,v2は、第
1格子18と第2格子22間の各光線B1,B2の
光路長、Wは、各光線B1,B2の第2格子22上
の中心間隔(=Z2−Z1≒受光素子24のスケール
幅方向サイズ)、θ1,θ2は、各光線B1,B2が拡散
光源30から格子18,22に下した垂線に対し
てなす角度である。
特に反射式検出器のときは、u2=v2、u1=v1で
あるから、これらをu2=v2=d2、u1=v1=d1とお
くと、前出(1),(2)式は次式に示す如くとなる。
(d1−d1)/2=mP2/λ ……(5)
W≒2n(d2sinθ2−d1sinθ1) ……(6)
幾何学的像のギヤツプ依存項の係数はcos
[πλuv/{P2(u+v)}]であるので、拡散光源
30からの2本の光線B1,B2の光学的距離u1,
u2,v1,v2の関係が、前出(1),(2)式又は(5),(6)式
を満足するように決定すれば、変動の周期分を同
時に受光して、幾何学的像をほぼ相殺することが
できる。これは実験でも確認している。
従つて、参照スケールを傾斜させる必要がなく
なり、拡散光源を用いた場合や反射式の検出器で
あつても、検出信号のS/N比のギヤツプ依存性
を減らすことができる。
なお、本発明で肝要なのは、受光素子24が前
出(1),(2)式を満足する2本の光線B1,B2を共に
見込んで受光することであり、この条件が満足さ
れていれば、受光素子24の位置を、必ずしも前
記垂線の足の位置Z0からオフセツトさせる必要は
なく、該垂線の足の位置Z0を含む位置に配設する
ことも可能である。又、一方の光線、例えばB1
を前記垂線と一致させてもよい。なお、第1図の
例のように、受光素子24の位置を前記垂線の足
の位置Z0から完全にオフセツトさせた場合には、
後出第1実施例のように、対称位置に、受光信号
レベルが略同一の、もう一組の第2格子22及び
受光素子24を設けることができ、方向弁別や位
相分割等の目的で、位相の異なる第2格子22を
計2組設けることが容易にできる。
又、受光素子24のサイズは、必ずしも前記光
線B1,B2を単一の受光素子24で同時に受光で
きるサイズとする必要はなく、例えば第2図に示
す如く、単一の検出信号を作成するために受光素
子を所定の中心間隔(L)で2個(24A,24
B)設けて、それぞれで、互いにギヤツプ依存性
の周期が半周期異なり、次式の関係を満足する2
本の光線C1,C2を受光した後、和を求めて検出
信号とすることもできる。
(u2v2)/(u2+v2)
−(u1v1)/(u1+v1)≒mP2/2λ …(3)
L≒n{(u2+v2)sinθ2
−(u1+v1)sinθ1} ……(4)
ここでは、Lは、各光線C1,C2の第2格子2
2上の中心間隔(≒受光素子24A,24Bの中
心間隔)、他の記号は前出(1),(2)式の場合とほぼ
同じである。
特に反射式検出器のときは、先の場合と同様に
して、前出(3),(4)式が、次式に示す如くとなる。
d2−d1=mP2/λ ……(7)
L≒2n(d2sinθ2−d1sinθ1) …(8)
従つて、これらの場合は、半周期異なる各受光
素子24,24Bの出力の和を検出信号とするこ
とによつて、幾何学的像をほぼ相殺することがで
きる。
According to Fresnel's theory of diffraction, when an optical grating with a pitch P is illuminated with coherent parallel light or a diffuse light source, the pitch becomes the original grating at a gap v from the optical grating. The geometric image of P, which is the same as
It is known that a diffractive image with a pitch of 1/2 of the original grating, ie, P/2, is formed. Among these, the S/N ratio of the geometric image changes greatly and periodically due to changes in the grating interval v. Furthermore, optical gratings are generally scaled in the form of bright and dark vertical stripes, and when analyzed by Fourier analysis, they contain many harmonic components. It has been clarified in Japanese Patent Application No. 61-208554 filed by the present applicant that these harmonic components also have a geometric image and a diffraction effect image, respectively. From this, considering the experimental results (solid line A) in Figure 8, this PP/DC curve is the diffraction effect image (pitch P/2) of the original lattice (pitch P) of the first grating.
(dashed line B in Figure 8) and the S/N ratio of 2 of the first grid.
It can be seen that the S/N ratio (dotted chain line C in FIG. 8) of the geometric image (pitch P/2) of the harmonic (pitch P/2) is synthesized. As is clear from FIG . 8, the S/N ratio of the geometric image (dotted chain line C) has a gap dependence, with peaks G 1 ,
There are G 2 , G 3 , G 4 , ..., and each peak G 1 ,
The phases are reversed in G 2 , G 3 , G 4 , etc. Therefore, in the case of a parallel illumination system, as the applicant proposed in Japanese Patent Application No. 62-231755, as shown in FIG. When mQ 2 /λ (m is a natural number) is given, the geometric image is integrated by the period in which the S/N ratio changes, and the variation is removed. Therefore, the dependence of the S/N ratio of the detection signal on the grid spacing v is almost eliminated. However, when using a diffused light source such as a laser diode as is, the second grating 22 and the light receiving element 24 are provided in multiple stages in the width direction of the reference scale 20, especially for the purpose of direction discrimination or phase division. If the entire reference scale 20 is tilted, the difference in distance between the respective light receiving elements 24 will become too large, and the amount of light received will become unbalanced, which will not work. Further, there still remain problems such as the inability to apply this method to a reflection type detector in which only the second grating cannot be tilted. In contrast, in the present invention, the reference scale is not tilted, and the light receiving element 24 is
is offset from the position Z 0 of the foot of the perpendicular line drawn from the diffused light source 30 such as a laser diode to the first grating 18 and the second grating 22, and so that the light receiving element 24 can simultaneously receive light corresponding to the period of fluctuation. To,
The size (W) in the scale width direction is set to a size that can receive both light beams B 1 and B 2 that satisfy the following equation. {u 2 v 2 / (u 2 + v 2 )} − {u 1 v 1 / (u 1 + v 1 )}≒mP 2 /λ …(1) W≒n {(u 2 +v 2 ) sinθ 2 −( u 1 + v 1 ) sinθ 1 } ...(2) Here, m and n are integers (1, 2, 3,...), P
is the pitch of the first grating 18, and λ is the diffused light source 30.
, u 1 and u 2 are the optical path lengths of the respective rays B 1 and B 2 between the diffused light source 30 and the first grating 18, and v 1 and v 2 are the effective wavelengths of the beams B 1 and B 2 between the first grating 18 and the second grating 22. The optical path length, W, of each light beam B 1 , B 2 is the center distance of each light beam B 1 , B 2 on the second grating 22 (=Z 2 −Z 1 ≒ size of the light receiving element 24 in the scale width direction), θ 1 , θ 2 are the angles that each ray B 1 , B 2 makes with respect to the normal from the diffused light source 30 to the gratings 18 , 22 . Especially in the case of a reflection type detector, since u 2 = v 2 and u 1 = v 1 , if we set these as u 2 = v 2 = d 2 and u 1 = v 1 = d 1 , we can obtain the above ( Equations 1) and (2) are as shown below. (d 1 − d 1 )/2=mP 2 /λ ……(5) W≒2n(d 2 sin θ 2 − d 1 sin θ 1 ) ……(6) The coefficient of the gap dependent term of the geometric image is cos
[πλuv/{P 2 (u+v)}], so the optical distance u 1 of the two light rays B 1 and B 2 from the diffused light source 30 is
If the relationship between u 2 , v 1 , and v 2 is determined to satisfy the above equations (1) and (2) or (5) and (6), the period of fluctuation can be received simultaneously, Geometric images can be almost canceled out. This has also been confirmed through experiments. Therefore, there is no need to tilt the reference scale, and even when a diffused light source is used or a reflection type detector is used, the dependence of the S/N ratio of the detection signal on the gap can be reduced. What is important in the present invention is that the light-receiving element 24 receives the two light beams B 1 and B 2 that satisfy the above-mentioned formulas (1) and ( 2 ) together, and that this condition is not satisfied. In this case, the position of the light receiving element 24 does not necessarily need to be offset from the position Z 0 of the leg of the perpendicular line, and it is also possible to arrange it at a position that includes the position Z 0 of the leg of the perpendicular line. Also, one ray, e.g. B 1
may coincide with the perpendicular line. If the position of the light receiving element 24 is completely offset from the foot position Z0 of the perpendicular line as in the example of FIG.
As in the first embodiment described later, another set of second grating 22 and light receiving element 24 having substantially the same light receiving signal level can be provided at symmetrical positions, and for the purpose of direction discrimination, phase division, etc. A total of two sets of second gratings 22 having different phases can be easily provided. Furthermore, the size of the light receiving element 24 does not necessarily have to be such that the light beams B 1 and B 2 can be received simultaneously by a single light receiving element 24, and for example, as shown in FIG. 2, a single detection signal can be generated. To achieve this, two light receiving elements (24A, 24
B) are provided, and the period of the gap dependence is different from each other by half a period, and the relationship of the following equation is satisfied.
After receiving the book's light beams C 1 and C 2 , the sum can be calculated and used as a detection signal. (u 2 v 2 )/(u 2 +v 2 ) −(u 1 v 1 )/(u 1 +v 1 )≒mP 2 /2λ…(3) L≒n{(u 2 +v 2 ) sinθ 2 −( u 1 + v 1 ) sin θ 1 } ...(4) Here, L is the second lattice 2 of each ray C 1 and C 2
The center spacing on 2 (≒center spacing of the light receiving elements 24A, 24B) and other symbols are almost the same as in the above equations (1) and (2). In particular, in the case of a reflection type detector, the above equations (3) and (4) become as shown in the following equation, as in the previous case. d 2 - d 1 = mP 2 / λ ... (7) L≒2n (d 2 sin θ 2 - d 1 sin θ 1 ) ... (8) Therefore, in these cases, each light receiving element 24, 24B with a different half period By using the sum of the outputs as the detection signal, the geometrical image can be almost canceled out.
以下、図面を参照して、反射型検出器に適用し
た本発明の実施例を詳細に説明する。
本発明の第1実施例は、第3図乃至第5図に示
す如く、収納容器32内に収納されたLDチツプ
34(第4図参照)を含む拡散光源30と、ピツ
チPの第1格子18が形成されたメインスケール
16と、対応する4個の第2格子22A〜22D
(第5図参照)が形成された光透過性の参照スケ
ール20と、前記第1格子18で反射されて各第
2格子22A〜22Dを通過してきた前記拡散光
源30からの光を光電変換する4個の受光素子2
4(第4図参照)を含み、前記メインスケール1
6と参照スケール20の相対変位に応じて周期的
な検出信号a,bを生成する反射型直線変位検出
器において、各受光素子24のスケール幅方向の
サイズを、各第2格子22A〜22Dの位置で前
出(5),(6)式の関係を満足する中心間隔Wの2本の
光線B1,B2(第1図を共に見込んで受光できる大
きさとしたものである。
前記拡散光源30は、第4図に詳細に示す如
く、1次点光源としての前記LDチツプ34と、
該LDチツプ34からの発散光を集束して2次点
光源を生成するコンデンサレンズとしての、円柱
状の分布屈折率型レンズ40とを含んで構成さ
れ、前記2次点光源が、前記参照スケール20の
前記第2格子形成面(クローム蒸着面)42上に
集束するようにされている。
前記メインスケール16は、ガラス製のプレー
トからなり、第3図に示す如く、1面(外側面)
に、ピツチPの縦縞状の周期的な目盛からなる前
記第1格子18が形成されている。
前記参照スケール20には、第5図に詳細に示
す如く、前記クローム蒸着面42の中に、同一ピ
ツチで位相が0゜,180゜,90゜,270゜に対応する四区
画に区分されて田型に配置された前記第2格子2
2A,22B,22C,22Dと、2次点光源が
集束されて通過する中央の開口52とが形成され
ている。
該中央の開口52は、例えば高さ0.4mm、幅0.1
mmの大きさとされ、この中に前記分布屈折率型レ
ンズ40(例えば日本板ガラス(株)の商標名セルフ
オツクレンズ)によつて、前記LDチツプ34の
発散光が集束され、2次点光源54が形成されて
いる(第4図参照)。
前記第2格子22A〜22Dにそれぞれ対応す
る計4個の受光素子24は、第4図に示す如く、
受光基板56上に配設され、これらは、第5図に
破線で示すような位置関係にあり、2個ずつ対を
なして、差動増幅器60,62でそれぞれ検出信
号a,bとなる。
前記受光基板56の中央には、前記分布屈折率
型レンズ40も挿入されている。
この第1実施例において、例えば格子ピツチP
=8μm、光源波長λ≒0.8μm、m=n=1、u=
v=d=5mm、θ1=8゜の場合、前出(5),(6)式の
d1,d2,θ2は、それぞれ次の如くとなる。
d1=d/cosθ1≒5.049mm
d2=2P2/λ+d1≒5.209mm
cosθ2≒5/5.209であるから、θ2≒16.3゜
これらを(6)式に代入するとW≒1.518≒1.5mmと
なるので、各受光素子24のスケール幅方向のサ
イズが、各第2格子22A〜22Dの位置で中心
間隔W≒1.5mmの2本の光線B1,B2を共に見込ん
で受光できる大きさ、又は、その整数倍とするこ
とによつて、幾何学的像をほぼ相殺できる。
本実施例においては、受光素子数を増加させる
必要がなく、構成が簡略である。
又、本実施例においては、分布屈折率型レンズ
40を用いて2次点光源54を形成しているの
で、ほぼ理想的な拡散光源が得られる。なお、拡
散光源30を形成する方法は、これに限定され
ず、レーザダイオードを直接、拡散光源とした
り、レーザダイオード以外のタングステンランプ
や発光ダイオードを用いることもできる。
次に、本発明の第2実施例を該細に説明する。
この第2実施例は、前記第1実施例と同様の反
射型変位検出器において、第6図に示す如く、前
記受光素子24を各第2格子22A〜22Dに対
して2個24A,24Bずつ設け、各受光素子2
4A,24Bのスケール幅方向の中心間隔を、対
応する第2格子22A〜22Dの位置で前出(7),
(8)式を満足する2本の光線C1,C2(第2図)をそ
れぞれ受光するように、(8)式の間隔Lに対応する
大きさとし、更に、加算器64A〜64Dで各受
光素子24A,24Bの出力の和を求めた上で、
第1実施例と同様の差動増幅器60,62で差動
増幅して、方向弁別や位相分割等を行うための検
出信号a,bとしたものである。
この第2実施例においては、例えば格子ピツチ
P=8μm、光源波長λ≒0.8μm、m=n=1、u
=v=d=5mm、θ1=8゜の場合、前出(7),(8)式の
d1,d2,θ2は、それぞれ次の如くとなる。
d1≒5.049mm
d2≒5.129mm
θ2≒12.9゜
これらを(8)式に代入すると、L≒0.884≒0.9mm
となるので、各受光素子24A,24Bのスケー
ル幅方向の中心間隔が、第2格子22A〜22D
の位置で約0.9mm、又は、その整数倍であれば、
その出力の和をとることによつて、幾何学的像が
ほぼ相殺される。
なお、前記実施例においては、いずれも、本発
明が、ガラス製の反射スケールを含む反射型の直
線変位検出器に適用されていたが、本発明の適用
範囲は、これに限定されず、金属製の反射スケー
ルを含むものや、透過型の検出器、回転変位検出
器にも同様に適用可能である。
Hereinafter, embodiments of the present invention applied to a reflection type detector will be described in detail with reference to the drawings. As shown in FIGS. 3 to 5, the first embodiment of the present invention includes a diffused light source 30 including an LD chip 34 (see FIG. 4) housed in a storage container 32, and a first grating of pitch P. 18 and four corresponding second gratings 22A to 22D.
(See FIG. 5) Photoelectrically converts the light from the diffused light source 30 that has been reflected by the first grating 18 and passed through each of the second gratings 22A to 22D. 4 light receiving elements 2
4 (see FIG. 4), the main scale 1
In the reflective linear displacement detector that generates periodic detection signals a and b according to the relative displacement between the reference scale 20 and the reference scale 20, the size of each light receiving element 24 in the scale width direction is determined by the size of each second grating 22A to 22D. Two light rays B 1 and B 2 with a center spacing W that satisfies the relationships of equations (5) and (6) above in terms of position (they are sized to be able to receive light taking into account both figures in Fig. 1). The above-mentioned diffused light source 30, as shown in detail in FIG. 4, the LD chip 34 as a primary point light source;
It is configured to include a cylindrical distributed index lens 40 as a condenser lens that converges the diverging light from the LD chip 34 to generate a secondary point light source, and the secondary point light source is connected to the reference scale. 20 of the second grating forming surfaces (chromium-deposited surfaces) 42. The main scale 16 is made of a glass plate, and as shown in FIG.
The first grating 18 is formed of a periodic scale with a pitch P in the form of vertical stripes. As shown in detail in FIG. 5, the reference scale 20 has four divisions on the chrome-deposited surface 42 corresponding to phases of 0°, 180°, 90°, and 270° at the same pitch. The second lattice 2 arranged in a field shape
2A, 22B, 22C, 22D and a central opening 52 through which the secondary point light source is focused and passes. The central opening 52 has a height of 0.4 mm and a width of 0.1 mm, for example.
mm, into which the diverging light of the LD chip 34 is focused by the distributed index lens 40 (for example, self-occurring lens manufactured by Nippon Sheet Glass Co., Ltd.), and the secondary point light source 54 is formed (see Figure 4). A total of four light receiving elements 24 respectively corresponding to the second gratings 22A to 22D are as shown in FIG.
They are arranged on the light receiving board 56, and have a positional relationship as shown by broken lines in FIG. 5, and form a pair of two, and the detection signals a and b are generated by the differential amplifiers 60 and 62, respectively. The gradient refractive index lens 40 is also inserted into the center of the light receiving substrate 56. In this first embodiment, for example, the grid pitch P
=8μm, light source wavelength λ≒0.8μm, m=n=1, u=
When v=d=5mm and θ 1 =8°, the equations (5) and (6) above are
d 1 , d 2 , and θ 2 are respectively as follows. d 1 = d/cosθ 1 ≒5.049mm d 2 = 2P 2 /λ+d 1 ≒5.209mm cosθ 2 ≒5/5.209, so θ 2 ≒16.3゜ Substituting these into equation (6), W≒1.518≒1.5 mm, the size of each light receiving element 24 in the scale width direction is large enough to receive two light beams B 1 and B 2 with a center spacing W≒1.5 mm at the positions of each second grating 22A to 22D. The geometrical image can be almost canceled out by setting the value to 1 or an integer multiple thereof. In this embodiment, there is no need to increase the number of light receiving elements, and the configuration is simple. Further, in this embodiment, since the distributed index lens 40 is used to form the secondary point light source 54, an almost ideal diffused light source can be obtained. Note that the method for forming the diffused light source 30 is not limited to this, and it is also possible to directly use a laser diode as the diffused light source, or to use a tungsten lamp or a light emitting diode other than the laser diode. Next, a second embodiment of the present invention will be described in detail. In the second embodiment, in a reflection type displacement detector similar to the first embodiment, two light receiving elements 24, 24A and 24B are provided for each of the second gratings 22A to 22D, as shown in FIG. Provided, each light receiving element 2
4A and 24B in the scale width direction at the positions of the corresponding second gratings 22A to 22D (7),
In order to receive the two light beams C 1 and C 2 (Fig. 2) that satisfy the equation (8), the size is set to correspond to the interval L in the equation (8), and adders 64A to 64D are used to each After finding the sum of the outputs of the light receiving elements 24A and 24B,
Differential amplification is performed by differential amplifiers 60 and 62 similar to those in the first embodiment, and the detection signals a and b are used for direction discrimination, phase division, etc. In this second embodiment, for example, the grating pitch P=8 μm, the light source wavelength λ≒0.8 μm, m=n=1, u
= v = d = 5 mm, θ 1 = 8°, the above equations (7) and (8)
d 1 , d 2 , and θ 2 are respectively as follows. d 1 ≒5.049mm d 2 ≒5.129mm θ 2 ≒12.9゜ Substituting these into equation (8), L≒0.884≒0.9mm
Therefore, the center spacing in the scale width direction of each light receiving element 24A, 24B is equal to the second grating 22A to 22D.
If it is approximately 0.9mm at the position or an integral multiple thereof,
By summing the outputs, the geometric images are approximately canceled. In each of the above embodiments, the present invention was applied to a reflective linear displacement detector including a reflective scale made of glass, but the scope of application of the present invention is not limited to this, and The present invention can be similarly applied to a transmissive detector, a transmissive detector, and a rotational displacement detector.
以上説明した通り、本発明によれば、拡散光源
を使用した場合や、反射型であつても、検出信号
中の幾何学的像による信号を除去することがで
き、検出信号のS/N比における格子間隔への依
存性がほぼ解消される。従つて、位置決め精度が
厳しくなくなり、検出器のコストを低下できる等
の優れた効果を有する。
As explained above, according to the present invention, even when a diffused light source is used or a reflective type, it is possible to remove the signal due to the geometric image in the detection signal, and the S/N ratio of the detection signal is The dependence on the lattice spacing is almost eliminated. Therefore, the positioning accuracy is not strict, and the cost of the detector can be reduced, which is an excellent effect.
第1図及び第2図は、本発明の原理を説明する
ための線図、第3図は、本発明に係る光学式変位
検出器の第1実施例の全体構成を示す斜視図、第
4図は、第3図の−線に沿う横断面図、第5
図は、第4図の−線に沿う横断面図、第6図
は、本発明の第2実施例の要部構成を示す断面
図、第7図は、本出願人が特願昭61−191532で提
案した比較例の構成を示す平面図、第8図は、前
記比較例における、検出信号のS/N比の格子間
隔に対する依存性を示す線図、第9図は、本出願
人が特願昭62−231755で提案した比較例の構成を
示す断面図である。
16…メインスケール、18…第1格子、20
…参照スケール、22,22A〜22D…第2格
子、24,24A,24B…受光素子、a,b…
検出信号、30…拡散光源、34…レーザダイオ
ード(LD)チツプ、54…2次点光源、64A
〜64D…加算器。
1 and 2 are diagrams for explaining the principle of the present invention, FIG. 3 is a perspective view showing the overall configuration of the first embodiment of the optical displacement detector according to the present invention, and FIG. The figure is a cross-sectional view taken along the - line in Figure 3;
The figure is a cross-sectional view taken along the - line in FIG. 191532, FIG. 8 is a diagram showing the dependence of the S/N ratio of the detection signal on the grid spacing in the comparative example, and FIG. 9 is a plan view showing the configuration of the comparative example proposed by the applicant. FIG. 2 is a sectional view showing the configuration of a comparative example proposed in Japanese Patent Application No. 62-231755. 16...Main scale, 18...First grid, 20
...Reference scale, 22, 22A to 22D... Second grating, 24, 24A, 24B... Light receiving element, a, b...
Detection signal, 30... Diffuse light source, 34... Laser diode (LD) chip, 54... Secondary point light source, 64A
~64D...Adder.
Claims (1)
る、ピツチPの第1格子が形成されたメインスケ
ールと、 該第1格子からの距離がvの位置に配設され
る、第2格子が形成された参照スケールと、 前記第1及び第2の格子で濾波された前記拡散
光源からの光を光電変換する受光素子とを含み、 前記メインスケールと参照スケールの相対変位
に応じて周期的に変化する検出信号を生成する光
学式変位検出器において、 前記受光素子が、前記検出信号中における、第
1格子の幾何学的像の格子間隔による変動分を除
去するべく、次式の関係 {u2v2/(u2+v2)} −{u1v1/(u1+v1)}≒mP2/λ W≒n{(u2+v2)sinθ2 −(u1+v1)sinθ1} (但しm,nは整数、u1,u2は、拡散光源と第
1格子間の各光線の光路長、v1,v2は、第1格子
と第2格子間の各光線の光路長、Wは、各光線の
第2格子上の中心間隔、θ1,θ2は、拡散光源から
格子に下した垂線に対して各光線がなす角度)を
満足する2本の光線を共に見込んで受光するよう
にしたことを特徴とする光学式変位検出器。 2 有効波長λのコヒーレントな拡散光源と、 該拡散光源からの距離がuの位置に配設され
る、ピツチPの第1格子が形成されたメインスケ
ールと、 該第1格子からの距離がvの位置に配設され
る、第2格子が形成された参照スケールと、 前記第1及び第2の格子で濾波された前記拡散
光源からの光を光電変換する受光素子とを含み、 前記メインスケールと参照スケールの相対変位
に応じて周期的に変化する検出信号を生成する光
学式変位検出器において、 前記受光素子を2個設け、 各受光素子が、次式の関係 (u2v2)/(u2+v2) −(u1v1)/(u1+v1)≒mP2/2λ L≒n{(u2+v2)sinθ2 −(u1+v1)sinθ1} (但しm,nは整数、u1,u2は、拡散光源と第
1格子間の各光線の光路長、v1,v2は、第1格子
と第2格子間の各光線の光路長、Lは、各光線の
第2格子上の中心間隔、θ1,θ2は、拡散光源から
格子に下した垂線に対して各光線がなす角度)を
満足する、2本の光線をそれぞれ受光するように
し、 各受光素子の出力の和をもつて前記検出信号と
したことを特徴とする光学式変位検出器。[Claims] 1. A coherent diffused light source with an effective wavelength λ; a main scale disposed at a distance u from the diffused light source and on which a first grating of pitch P is formed; a reference scale on which a second grating is formed, which is disposed at a distance v from the grating; and a light receiving element that photoelectrically converts light from the diffused light source filtered by the first and second gratings. In the optical displacement detector that generates a detection signal that periodically changes according to the relative displacement between the main scale and the reference scale, the light-receiving element detects the geometrical shape of the first grating in the detection signal. In order to remove the variation due to the image grid spacing, the following relationship is established: {u 2 v 2 / (u 2 + v 2 )} − {u 1 v 1 / (u 1 + v 1 )}≒mP 2 /λ W≒ n {(u 2 + v 2 ) sin θ 2 − (u 1 + v 1 ) sin θ 1 } (where m and n are integers, u 1 and u 2 are the optical path lengths of each ray between the diffused light source and the first grating, v 1 , v2 are the optical path lengths of each ray between the first grating and the second grating, W is the center distance of each ray on the second grating, θ1 , θ2 are the perpendicular lines drawn from the diffused light source to the grating What is claimed is: 1. An optical displacement detector characterized in that the optical displacement detector is configured to receive two light beams that both satisfy the angle (the angle that each light beam makes with respect to the angle that each light beam makes). 2. A coherent diffused light source with an effective wavelength λ, a main scale on which a first grating of pitch P is formed, which is disposed at a distance u from the diffused light source, and a distance v from the first grating. a reference scale on which a second grating is formed, and a light receiving element that photoelectrically converts light from the diffused light source that has been filtered by the first and second gratings; In an optical displacement detector that generates a detection signal that periodically changes according to the relative displacement of a reference scale and a reference scale, two of the light receiving elements are provided, and each light receiving element has the following relationship (u 2 v 2 )/ (u 2 +v 2 ) −(u 1 v 1 )/(u 1 +v 1 )≒mP 2 /2λ L≒n {(u 2 +v 2 ) sinθ 2 − (u 1 +v 1 ) sinθ 1 } (however, m , n are integers, u 1 , u 2 are the optical path lengths of each ray between the diffused light source and the first grating, v 1 , v 2 are the optical path lengths of each ray between the first grating and the second grating, and L is the optical path length of each ray between the first grating and the second grating. , the distance between the centers of each light ray on the second grid, θ 1 and θ 2 are the angles each light ray makes with respect to the perpendicular line drawn from the diffused light source to the grid), and two light rays are received respectively. , An optical displacement detector characterized in that the detection signal is the sum of outputs of each light receiving element.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4262688A JPH01216213A (en) | 1988-02-25 | 1988-02-25 | Optical displacement detector |
US07/298,430 US4943716A (en) | 1988-01-22 | 1989-01-18 | Diffraction-type optical encoder with improved detection signal insensitivity to optical grating gap variations |
IN56CA1989 IN172342B (en) | 1987-09-16 | 1989-01-18 | |
GB8901266A GB2216650B (en) | 1988-01-22 | 1989-01-20 | Optical encoder |
CN89101060.2A CN1014935B (en) | 1988-01-22 | 1989-01-21 | Optical encoder |
CN 91105460 CN1017658B (en) | 1988-01-22 | 1989-01-21 | Optical encoder |
DE3901869A DE3901869C2 (en) | 1988-01-22 | 1989-01-23 | Optical encoder |
US07/490,463 US4983825A (en) | 1988-01-22 | 1990-03-08 | Diffraction type optical encoder with improved detection signal insensitivity to optical grating gap variations |
US07/490,389 US4985623A (en) | 1988-01-22 | 1990-03-08 | Diffraction-type optical encoder with improved detection signal insensitivity to optical grating gap variations |
GB9117368A GB2246431B (en) | 1988-01-22 | 1991-08-12 | Optical encoder |
GB9117366A GB2246430B (en) | 1988-01-22 | 1991-08-12 | Optical encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4262688A JPH01216213A (en) | 1988-02-25 | 1988-02-25 | Optical displacement detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01216213A JPH01216213A (en) | 1989-08-30 |
JPH0577967B2 true JPH0577967B2 (en) | 1993-10-27 |
Family
ID=12641225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4262688A Granted JPH01216213A (en) | 1987-09-16 | 1988-02-25 | Optical displacement detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01216213A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6369042B2 (en) * | 2013-11-05 | 2018-08-08 | 日本精工株式会社 | Optical encoder unit and optical encoder |
JP6785092B2 (en) * | 2016-08-19 | 2020-11-18 | 株式会社Screenホールディングス | Displacement detection device, displacement detection method and substrate processing device |
-
1988
- 1988-02-25 JP JP4262688A patent/JPH01216213A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01216213A (en) | 1989-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4943716A (en) | Diffraction-type optical encoder with improved detection signal insensitivity to optical grating gap variations | |
US4850673A (en) | Optical scanning apparatus which detects scanning spot focus error | |
JPH0697171B2 (en) | Displacement measuring device | |
US5696373A (en) | Optical encoder with dual diffraction grating | |
JP3170902B2 (en) | Signal processing method and encoder using the same | |
US20070187581A1 (en) | Optical encoder | |
US20090279100A1 (en) | Scale and readhead | |
JPH0130089B2 (en) | ||
KR890005674A (en) | Optical scanning device | |
US6723980B2 (en) | Position sensor with grating to detect moving object with periodic pattern | |
JPH0577967B2 (en) | ||
KR910020663A (en) | Optical head | |
JPH0638048B2 (en) | Reflective encoder | |
KR910020667A (en) | Optical head unit | |
GB2246430A (en) | Optical encoder | |
EP0428641A1 (en) | Opto-electronic scale-reading apparatus | |
JP3294684B2 (en) | Photoelectric encoder | |
JPS60190812A (en) | Position detector | |
JPH0620969Y2 (en) | Grating interference displacement detector | |
KR930002162B1 (en) | Tracking error detecting apparatus for an optical head | |
JPH05340767A (en) | Optical displacement detector | |
JPH02103416A (en) | Photoelectric displacement detector | |
JPS61285404A (en) | Optical device | |
JPS6363917A (en) | Optical type displacement detector | |
JPH02304313A (en) | Optical displacement meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |