JPH0576870B2 - - Google Patents
Info
- Publication number
- JPH0576870B2 JPH0576870B2 JP63064811A JP6481188A JPH0576870B2 JP H0576870 B2 JPH0576870 B2 JP H0576870B2 JP 63064811 A JP63064811 A JP 63064811A JP 6481188 A JP6481188 A JP 6481188A JP H0576870 B2 JPH0576870 B2 JP H0576870B2
- Authority
- JP
- Japan
- Prior art keywords
- dialysate
- circuit
- chamber
- dialyzer
- water removal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- External Artificial Organs (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は血液透析における体内貯溜の水分除去
を計画的に行う装置において、透析器に供給する
透析液の量を計測し、透析器を通過した後の増加
量を指定して血液中からの除水を計画的に施行す
る血液透析における除水量制御方法及び除水量制
御装置に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is an apparatus for systematically removing water stored in the body in hemodialysis, which measures the amount of dialysate supplied to a dialyzer and measures the amount of dialysate that passes through the dialyzer. The present invention relates to a water removal amount control method and a water removal amount control device in hemodialysis, in which water is systematically removed from blood by specifying an increase amount after the water is removed.
血液透析中の除水量の精度管理は極めて重要で
あり、従来より限外濾過により透析器を介して血
液側の圧力と透析液側の圧力を調節して行う種々
の方法が採られている。
Accurate control of the amount of water removed during hemodialysis is extremely important, and various methods have been used in the past to control the pressure on the blood side and the pressure on the dialysate side via a dialyzer using ultrafiltration.
然るに血液透析における除水は透析液の流量に
比較して除水量が極めて少量であるため、高精度
の除水管理を行うためには、例えば間欠的に限外
濾過率を知り、除水量を制御する方法があるが、
一般に限外濾過率は透析器の種類に係る物理的特
性の相違や、透析する血液の組成の相違及び経時
的変動等の多数の変数要素による影響をうけるた
め、指定除水量を高精度に管理することは困難で
あつた。また透析の臨床では透析器より排出され
た液の中にタンパク質や脂肪等が含まれ、液通路
及び計量構造にも付着して計測誤差を生じさせ、
可動部分を持つピストンポンプ等を使用して除水
量を制御する方法においては、可動抵抗の増加と
摩耗を促進させて経年の誤差を発生させる問題を
有していた。
However, in hemodialysis, the amount of water removed is extremely small compared to the flow rate of the dialysate, so in order to manage water removal with high precision, it is necessary, for example, to know the ultrafiltration rate intermittently and measure the amount of water removed. There are ways to control it, but
In general, the ultrafiltration rate is affected by many variables such as differences in the physical characteristics of the type of dialyzer, differences in the composition of the blood to be dialyzed, and changes over time, so the specified amount of water removed must be managed with high precision. It was difficult to do so. In addition, in clinical dialysis, proteins and fats are contained in the fluid discharged from the dialyzer, and they adhere to the fluid passages and metering structures, causing measurement errors.
The method of controlling the amount of water removed using a piston pump or the like having a movable part has the problem of increasing movable resistance and accelerating wear, resulting in errors over time.
本発明は上記問題に鑑みてなされたもので、血
液透析において高精度に除水量を管理補正するこ
とができる新規除水量制御方法を提唱すると共
に、この方法を実施し高精度の除水管理を行うこ
とができる除水量制御装置を提供することを目的
とするものである。 The present invention has been made in view of the above problems, and proposes a new water removal amount control method that can manage and correct the water removal amount with high precision in hemodialysis, and also implements this method to perform highly accurate water removal management. The object of the present invention is to provide a water removal amount control device that can perform the following steps.
本発明に係る血液透析における除水量制御方法
及び水量制御装置は、以下に示す基本的概念によ
つて課題を全うしている。
The method and device for controlling the amount of water removed in hemodialysis according to the present invention accomplishes the tasks based on the basic concept shown below.
構造における基本概念
第1図に示すように、本発明の血液透析におけ
る除水量制御装置は、
(1) 透析液回路の給排液側にそれぞれ独立した透
析液計量チヤンバMCi,MCoを設けてなる。 Basic concept of structure As shown in Fig. 1, the water removal rate control device for hemodialysis of the present invention includes (1) independent dialysate measuring chambers MCi and MCo provided on the supply/drain side of the dialysate circuit. .
(2) 排液側計量チヤンバMCoの下流に吸引ポン
プPUを設けてなる。(2) A suction pump PU is installed downstream of the drain side metering chamber MCo.
(3) 透析液計量チヤンバはダイヤフラムにより区
画されて左右2個の隔室を有し、該チヤンバの
導通口に設けられた切換バルブSVi,SVoによ
り上記左右の隔室を交互に吸入側と排出側に切
り換えること。(3) The dialysate measuring chamber is divided by a diaphragm and has two left and right compartments, and the left and right compartments are alternately switched between the suction side and the discharge side by switching valves SVi and SVi installed at the communication port of the chamber. To switch to the side.
(4) 透析液供給側回路と排液側にそれぞれ圧力検
知器PSi,PSoを設け、その入力情報に基づい
て吸引ポンプPU及び前記切換バルブSVi,
SVoを制御駆動する中央制御装置CPUを設け
てなる。(4) Pressure detectors PSi and PSo are provided on the dialysate supply side circuit and the drainage side, respectively, and based on the input information, the suction pump PU and the switching valve SVi,
A central controller CPU is provided to control and drive the SVo.
血液透析回路において、
(5) 透析器DLの給液側或は排液側の少なくとも
何れか一方の透析液計量チヤンバ内のダイヤフ
ラムを2枚とし、該ダイヤフラム間の中央室の
容量が増減可能な構造になる。 In the hemodialysis circuit, (5) there are two diaphragms in the dialysate measuring chamber on at least either the supply side or the drain side of the dialyzer DL, and the capacity of the central chamber between the diaphragms can be increased or decreased. Becomes a structure.
(6) 透析器DLへの透析液流通を停止し、該透析
DLと並設したバイパス回路を導通することの
できる電磁弁Vi,Vo,VBを具備してなる。(6) Stop the flow of dialysate to the dialyzer DL, and
It is equipped with solenoid valves Vi, Vo, and VB that can conduct the bypass circuit installed in parallel with the DL.
ことを要旨するものである。This is the gist of the matter.
制御方法における基本概念
また、前記血液透析における除水量制御装置に
よる除水制御方法は、
(1) 透析器DLの給排液側にそれぞれ設けられた
独立した透析液計量チヤンバMCi,MCo出入
口の切換バルブSVo,SViを圧力検知器PSo,
PSiからの圧力情報に基づき中央制御装置CPU
により、それぞれ切り換える。 Basic concept of control method In addition, the water removal control method using the water removal amount control device in hemodialysis is as follows: (1) Switching of the inlets and outlets of independent dialysate measuring chambers MCi and MCo provided on the supply and drain sides of the dialyzer DL. Valve SVo, SVi pressure sensor PSo,
Central control unit CPU based on pressure information from PSi
Switch between them.
(2) 該圧力検知器PSo,PSiから得られる信号の
微分値を中央制御装置CPUにより算出し、そ
の値が一定範囲内になつた時に切換バルブ
SVo,SViを動作させる。(2) The central controller CPU calculates the differential value of the signal obtained from the pressure detectors PSo and PSi, and when the value falls within a certain range, the switching valve is activated.
Operate SVo and SVi.
(3) 給排液側の各切換バルブSVo,SVi周期を中
央制御装置CPUにより検知し、給排液側の周
期の差を算出する。(3) The central control unit CPU detects the cycle of each switching valve SVo and SVi on the liquid supply/drainage side, and calculates the difference between the cycles on the liquid supply/drainage side.
(4) その周期の差より除水量を算出し、要求され
た量と等しくなるように吸引ポンプPUを制御
する。(4) Calculate the amount of water removed from the difference in the cycles, and control the suction pump PU so that it is equal to the requested amount.
(5) 給液側と排液側の計量チヤンバMCi,MCo
容量は、材質上の精度限界及び透析中に血液か
らの老廃物がチヤンバ内部に付着することなど
により、厳密に等しくすることは困難である。
従つて定期的に(1回の透析に2乃至3回程
度)バイパス用電磁弁VBを開き、電磁弁Vi,
Voを閉止して透析器DLへの透析液流通を停止
した状態で、上記それぞれの切換バルブSVi,
SVoの切換周期を検知し、補正値を算出するこ
とにより計量チヤンバ容量の差による誤差を補
正する。(5) Measuring chambers MCi, MCo on the supply side and drain side
It is difficult to make the volumes exactly equal due to limitations in accuracy due to the materials and the fact that waste products from blood adhere to the inside of the chamber during dialysis.
Therefore, periodically (about 2 to 3 times per dialysis) the bypass solenoid valve VB is opened, and the solenoid valves Vi,
With Vo closed and dialysate flow to the dialyzer DL stopped, each of the above switching valves SVi,
By detecting the switching cycle of SVo and calculating a correction value, errors due to differences in weighing chamber capacity are corrected.
上記計量チヤンバの容量差による誤差の補正
は、透析器DLの給液側或は排液側の少なくと
も何れか一方の透析液計量チヤンバ内のダイヤ
フラムを2枚とし、該ダイヤフラム間の中央室
の容量を増減可能な構造にすることによつて、
補正値を算出しなくとも直接的に行うことがで
きる。 To correct the error due to the difference in the capacity of the measuring chambers, two diaphragms are installed in the dialysate measuring chamber on at least one of the supply side and the drain side of the dialyzer DL, and the volume of the central chamber between the diaphragms is adjusted. By making it possible to increase or decrease the
This can be done directly without calculating the correction value.
(6) 即ち、定期的にバイパス用電磁弁VBを開
き、電磁弁Vi,Voを閉止して透析器DLへの透
析液流通を停止した状態で、排液側計測チヤン
バMCoに設けられた容量調整弁SVmを開く。
給排液側ともに切換バルブSVi,SVoの切り換
え動作を一時停止させ、給液側計測チヤンバ
MCiの透析器DLに給液する側の室にあつた透
析液を全てバイパス用電磁弁VBを通じて排液
側計量チヤンバMCoに送り込み、しばらくし
て容量調整弁SVmを閉止する。(6) That is, with the bypass solenoid valve VB periodically opened and the solenoid valves Vi and Vo closed to stop the flow of dialysate to the dialyzer DL, the capacity provided in the drain side measurement chamber MCo is Open regulating valve SVm.
The switching operation of the switching valves SVi and SVo on both the liquid supply and drain sides is temporarily stopped, and the measurement chamber on the liquid supply side is
All the dialysate in the chamber on the side that supplies fluid to the dialyzer DL of MCi is sent to the drain side metering chamber MCo through the bypass solenoid valve VB, and after a while, the volume adjustment valve SVm is closed.
その後、切り換え動作を再開させ、バイパス
状態を解除する。 Thereafter, the switching operation is restarted and the bypass state is released.
上記操作によつて給液側計測チヤンバMCiと
と排液側計測チヤンバMCoの容量差は、排液
側計測チヤンバMCoのダイヤフラム間に流れ
込んだ液により補正される。 By the above operation, the difference in capacity between the liquid supply side measurement chamber MCi and the liquid discharge side measurement chamber MCo is corrected by the liquid that has flowed between the diaphragms of the liquid side measurement chamber MCo.
上記制御方法について詳細に説明する。 The above control method will be explained in detail.
排液側透析液計量チヤンバMCoの容積を
Vo、給液側透析液計量チヤンバMCiの容積を
Vi、透析液流量をAとしバイパス状態下にお
いて、給液側切換バルブSViの周期をTi、排液
側切換バルブSVoの周期をToとすると、
Ti=Vi/A …(1)
To=Vo/A
よつて
Vo=(To/Ti)*Vi
従つて補正係数をβとすると、
β=To/Tl …(2)
となる。 Drain side dialysate measuring chamber MCo volume
Vo, the volume of the dialysate metering chamber MCi on the fluid supply side.
Vi, the dialysate flow rate is A, under bypass condition, the cycle of the fluid supply side switching valve SVi is Ti, and the cycle of the drain side switching valve SVo is To: Ti=Vi/A...(1) To=Vo/ A Therefore, Vo=(To/Ti)*Vi Therefore, if the correction coefficient is β, β=To/Tl…(2).
通常の透析状態において、給液側切換バルブ
SViの周期をTi、排液側切換バルブSVoの周期
をToとし、周期の差をTとすると、除水速度
αとの関係は、
T=Ti−To
=(Vi/A)−{β*Vi/(A+α)}
=Vi*{A*(1−β)+α}/{A*(A
+α)} …(3)
(1)式より
A=Vi/Ti
であるから、(3)式よりAを消去して除去速度α
の式に変形すると、
α=[Vi*{(1−β)−T/Ti}]/(T−
Ti)
となり、TとTiを測定することにより、除水
速度αを求めることができる。従つて除水総量
は、除水速度αと透析時間の積として求められ
る。 Under normal dialysis conditions, the fluid supply side switching valve
Assuming that the period of SVi is Ti, the period of the drain side switching valve SVo is To, and the difference between the periods is T, the relationship with water removal rate α is as follows: T=Ti−To=(Vi/A)−{β* Vi/(A+α)} =Vi*{A*(1-β)+α}/{A*(A
+α)} …(3) From equation (1), A=Vi/Ti, so from equation (3), remove A and find the removal rate α
When transformed into the formula, α=[Vi*{(1-β)-T/Ti}]/(T-
Ti), and by measuring T and Ti, the water removal rate α can be determined. Therefore, the total amount of water removed is determined as the product of the water removal rate α and the dialysis time.
また、ダイアフラム間の中央室の容量を増減
可能な構造にして直接的に排液側計測チヤンバ
MCoと排液側計測チヤンバMCoの容量を一致
させておけば、
Vi=Vo
であり、β=1となるため、(3)式は
α=Vi*(−T/Ti)/(T−Ti) …(4)
となる。 In addition, the capacity of the central chamber between the diaphragms can be increased or decreased, allowing direct access to the drainage side measurement chamber.
If the capacities of MCo and the drain side measurement chamber MCo are matched, Vi=Vo and β=1, so equation (3) becomes α=Vi*(-T/Ti)/(T-Ti ) …(4) becomes.
従つて上記のように廃液側計測チヤンバと給
液側計測チヤンバの容量を等しく調整すること
ができることは、計量時器の温度膨張による容
量変化や機解摩耗による誤差等を常時修正する
ことができることを意味し、精度機能を保証す
ることができる。 Therefore, being able to adjust the capacity of the waste liquid side measuring chamber and the liquid supply side measuring chamber to be equal as described above means that it is possible to constantly correct errors in capacity changes due to temperature expansion of the measuring timer and mechanical wear. This means that the accuracy function can be guaranteed.
又、計量機構がダイヤフラムによつて構成さ
れているため、作動上の計量誤差を完全に解消
することができ、除水精度を改善することがで
きるものであり、計量回路の摩耗と気泡発生の
ない構成と相まつて血液透析における高精度の
除水管理制御を達成することができる。 In addition, since the metering mechanism is composed of a diaphragm, it is possible to completely eliminate measurement errors during operation, improve water removal accuracy, and prevent wear of the metering circuit and generation of air bubbles. Coupled with this configuration, highly accurate water removal management control in hemodialysis can be achieved.
以下、図面に従つて本発明の血液透析におけ
る除水量制御方式及び除水量制御装置を説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The water removal amount control method and water removal amount control device in hemodialysis of the present invention will be described below with reference to the drawings.
第1図は本発明に係る除水速度制御装置の透
析液回路を示すものであり、透析器DLのA側
が透析液側、B側が血液側である。符号Viと
Voはそれぞれ透析器DLの透析液供給側と排出
側流路に設けた流入側電磁弁と排出側電磁弁で
あり、バイパス用電磁弁VBを持つバイパス流
路1を構成すると共に、流入側電磁弁Viは切
換バルブSViを介して新鮮透析液供給側INに
設けた脱気装置DGと接続して透析液供給側回
路2を構成してなる。又、排出側電磁弁Voは
切換バルブSVoを介して廃透析液排出側
DRAINの上流に設けた吸引ポンプPUと接続
して廃液回路3を構成すると共にに、両切換バ
ルブSVi,SVoを透析液供給側回路2と廃液回
路3にそれぞれ設けた圧力検知器PSi,PSoか
らの入力情報によつて制御し、更にそれらの切
換時間を検知して該吸引ポンプPUを制御する
中央制御装置CPUによつて駆動してなる。符
号MCiは上記切換バルブSViに分岐接続した給
液側計量チヤンバーであり、ダイヤフラム4に
よつて区画され、切換バルブSViによつて吸入
側と排出側が逆転する左右2個の隔室(第2図
参照)を有しており、該ダイヤフラム4はチヤ
ンバー内壁に貼着することなく密着するシリコ
ンラバー薄膜等の滑性膜で相対する内壁の左右
に展沿する構造になる。またMCoは上記切換
バルブSVoに分岐接接続した排液側計量チヤン
バーであり、切換バルブSVoによつて吸入側と
排出側が逆転する2枚のダイヤフラム5,5′
によつて区画された左右2個の隔室とダイヤフ
ラム5,5′間の中央室6を有しており、該ダ
イヤフラム5,5′は前記給液側計量チヤンバ
ーMCiと同様に、チヤンバー内壁に貼着するこ
となく密着するシリコンラバー薄膜等の滑性膜
で構成され、相対する内壁の左右に展沿する構
造になる。該排液側計量チヤンバーMCoは、
中央室6を容量調整弁SVmを介して液溜め7
と連通する構造になる。又、前記脱気装置DG
から供給される透析液供給側回路2の一部に
は、気泡検知器ADとフロートFLを構成してな
る。 FIG. 1 shows the dialysate circuit of the water removal rate control device according to the present invention, in which the A side of the dialyzer DL is the dialysate side, and the B side is the blood side. With the sign Vi
Vo is an inflow side solenoid valve and a discharge side solenoid valve provided in the dialysate supply side and discharge side flow path of the dialyzer DL, respectively, and constitutes a bypass flow path 1 having a bypass solenoid valve VB, and an inflow side solenoid valve The valve Vi is connected to a deaerator DG provided on the fresh dialysate supply side IN via a switching valve SVi, thereby forming a dialysate supply side circuit 2. In addition, the discharge side solenoid valve Vo is connected to the waste dialysate discharge side via the switching valve SVo.
It is connected to the suction pump PU installed upstream of DRAIN to form the waste liquid circuit 3, and the switching valves SVi and SVo are connected to the pressure sensors PSi and PSo installed in the dialysate supply side circuit 2 and the waste liquid circuit 3, respectively. The suction pump PU is controlled by the input information of the suction pump PU, and is driven by a central control unit CPU that detects the switching time and controls the suction pump PU. The symbol MCi is a metering chamber on the liquid supply side that is branch-connected to the switching valve SVi, and is partitioned by a diaphragm 4, and consists of two compartments on the left and right whose suction and discharge sides are reversed by the switching valve SVi (Fig. 2). The diaphragm 4 has a structure in which the diaphragm 4 is a slippery film such as a thin silicone rubber film that adheres to the inner wall of the chamber without adhesion, and extends along the left and right sides of the inner wall facing each other. Furthermore, MCo is a drain side metering chamber branched and connected to the switching valve SVo, and two diaphragms 5, 5' whose suction side and discharge side are reversed by the switching valve SVo.
It has a central chamber 6 between two left and right compartments divided by diaphragms 5 and 5', and the diaphragms 5 and 5' are connected to the inner wall of the chamber similarly to the liquid supply side metering chamber MCi. It is composed of a slippery film such as a thin silicone rubber film that adheres without sticking, and has a structure that extends along the left and right sides of the opposing inner walls. The drain side metering chamber MCo is
The central chamber 6 is connected to the liquid reservoir 7 via the volume adjustment valve SVm.
It becomes a structure that communicates with Moreover, the deaerator DG
A part of the dialysate supply side circuit 2 supplied from the dialysate is configured with an air bubble detector AD and a float FL.
上記構成の除水量制御装置は、脱気装置DG
によつて脱気された新鮮な透析液を給液側計量
チヤンバーMCiの片側室に切換バルブSVi通路
を介して流入させ、該チヤンバーを仕切つてい
るダイヤフラム4を拡張移動させて満杯に充填
(第2図参照)する。 The water removal amount control device with the above configuration is the deaerator DG.
The fresh dialysate degassed by the pump is introduced into one side chamber of the supply side metering chamber MCi through the switching valve SVi passage, and the diaphragm 4 that partitions the chamber is expanded and moved to fill the chamber to its full capacity. (See Figure 2).
該ダイヤフラム4は相対する内壁の左右に展
沿する形状になつているため、流入した透析液
は給液側計量チヤンバーMCiの片側室が充満に
達した瞬間に流れが停止すると流入側管路の圧
力が急上昇する。該圧力上昇現象は圧力検知器
PSiで検出することができ、その電気信号で切
換バルブSViを動作させることができる。。該
切換バルブSViを動作させると透析液は該給液
側計量チヤンバーMCiの反対側室に流入し、圧
力検知器PSiで検出する透析液供給側回路2の
圧力も元に戻る。このような片側室の充満の検
出から流入路の変までは一瞬の動作であり、切
換バルブSViによつて両隔室の液通路を同時に
変更すると共に、切換前に流入されていた片側
室は通路の切り換わりに依り透析器DFの回路
に新鮮透析液を送るようになる。またた透析器
DFを通つた廃液は前記給液側計量チヤンバー
MCiと同容量の排液側計量チヤンバーMCoに
導かれ、左右室の交互の廃液流入と排出で作動
し、吸引ポンプPUによつて積極的に液を吸引
する。 Since the diaphragm 4 is shaped to extend along the left and right sides of the opposing inner walls, when the inflowing dialysate stops flowing at the moment when one chamber of the fluid supply side metering chamber MCi reaches fullness, it flows into the inflow side pipe. Pressure rises rapidly. This pressure increase phenomenon is detected by a pressure detector.
It can be detected by PSi, and the electrical signal can be used to operate the switching valve SVi. . When the switching valve SVi is operated, the dialysate flows into the chamber on the opposite side of the metering chamber MCi on the liquid supply side, and the pressure in the dialysate supply side circuit 2 detected by the pressure detector PSi also returns to the original level. The process from detecting the fullness of one side chamber to changing the inflow path is an instantaneous operation, and the switching valve SVi changes the liquid path of both compartments at the same time, and the one side chamber that was being filled before switching is The switching of the passages allows fresh dialysate to be sent to the circuit of the dialyzer DF. Dialysis machine
The waste liquid that has passed through the DF is transferred to the metering chamber on the liquid supply side.
It is guided by the drain side measuring chamber MCo, which has the same capacity as the MCi, and operates by alternately inflowing and discharging waste liquid from the left and right chambers, and actively sucks the liquid using the suction pump PU.
該排液側計量チヤンバーMCoの中央室6に
は気泡や溶解気体のない無揮発性の液体(シリ
コーン油、パラフイン油等)を充満させてあ
り、容量調整弁SVmを開閉して液溜め7と中
央室6間を連通閉塞し、該中央室6内の容量を
増減調節して排液側計量チヤンバーMCoの容
量を調節する。また該排液側計量チヤンバー
MCoと吸引ポンプ間PUに装備した圧力検知器
PSoによつて該チヤンバーの左右室流入・充満
の圧力信号を検出し、切換バルブSVoを動作さ
せて計量する。 The central chamber 6 of the drain side metering chamber MCo is filled with a non-volatile liquid (silicone oil, paraffin oil, etc.) free of bubbles and dissolved gases, and the liquid reservoir 7 is filled by opening and closing the volume adjustment valve SVm. The central chambers 6 are communicated and closed, and the volume of the central chamber 6 is increased or decreased to adjust the volume of the drain side metering chamber MCo. Also, the drain side metering chamber
Pressure detector installed in PU between MCo and suction pump
PSo detects the pressure signals of inflow and filling of the left and right chambers of the chamber, and operates the switching valve SVo to measure the volume.
計量等の温度膨張による容量変化や機械的摩
耗による誤差等を常時修正することができるこ
とは精度機能を保証する重要な要素である。 Being able to constantly correct for capacitance changes due to temperature expansion during measurement, errors due to mechanical wear, etc. is an important element for guaranteeing precision functions.
人工透析の機能は、血液中より尿毒症性物質
である老廃物を除去することであり、透析液と
の濃度差により拡散させる処置と水分の除去を
目的としており、前項は透析器の特性によつて
決定されるが、水分の除去は透析器の膜を介し
た血液と透析液との圧力差により物理的に行わ
れる。生理的にみて体内水分の量は重要な生命
の要素であり、適正な推進管理が透析装置に要
求されている。又、近年では透析器の膜製造技
術が向上し、除水特性の改善が著しく、計画的
除水管理の実行とその精度及び装置保守管理が
重要となつている。 The function of artificial dialysis is to remove waste products, which are uremic substances, from the blood, and the purpose is to diffuse them through the difference in concentration with the dialysate and remove water. Therefore, the removal of water is performed physically by the pressure difference between the blood and the dialysate across the membrane of the dialyzer. Physiologically, the amount of water in the body is an important element of life, and appropriate promotion management is required for dialysis machines. In addition, in recent years, membrane manufacturing technology for dialyzers has improved, and the water removal characteristics have significantly improved, making it important to carry out planned water removal management, its accuracy, and equipment maintenance management.
現在において、臨床に用いられている装置に
おいても計測除水する中心的機能部分に摩耗等
で誤差もを生じるピストンポンプリンク機構、
加えて計量器間の液回路にギヤーポンプ等の気
泡発生要因の構造を用いるなど、除水制御を行
うには安全性、安定性の上で問題がある。 Currently, even in devices used clinically, the piston pump link mechanism causes errors due to wear etc. in the central functional part that measures and removes water.
In addition, there are safety and stability problems in controlling water removal, such as using a structure that causes air bubbles, such as a gear pump, in the liquid circuit between the measuring instruments.
しかし本発明では透析開始時に給液側計量チ
ヤンバーMCiと廃液側計量チヤンバーMCoの
容量を等しくなるように調整することにより、
計量器の温度膨張による容量変化や機械的摩耗
による誤差等を常時修正することができること
は精度機能を保証する重要な要素となり、これ
によつて装置が永年に亘つて高精度を維持し、
殊に低除水量指定時の誤差を抑制することがで
きる。 However, in the present invention, by adjusting the capacity of the supply side measuring chamber MCi and the waste side measuring chamber MCo to be equal at the start of dialysis,
Being able to constantly correct for capacitance changes due to temperature expansion and errors due to mechanical wear of the measuring instrument is an important factor in guaranteeing accuracy functions, and this allows the device to maintain high accuracy for many years.
In particular, errors when specifying a low water removal amount can be suppressed.
以上述べたように本発明に係る除水量制御御
装置は、計量機構にダイヤフラムを用いたこと
により該部分の作動上の計量誤差を解消するこ
とができ、除水精度を改善することができるも
のであり、本発明実施後の効果は極めて大き
い。
As described above, the water removal amount control device according to the present invention uses a diaphragm in the metering mechanism, so that it is possible to eliminate measurement errors caused by the operation of this part, and it is possible to improve water removal accuracy. Therefore, the effects after implementing the present invention are extremely large.
第1図は本発明に係る除水量制御装置の透析
液回路図、第2図は給液側計量チヤンバーの作
動説明図であり、aは右室流入、左室送液状
態、bは切換弁作動状態、cは左室流入、右室
送液状態を示す、第3図は排液側計量チヤンバ
ーの右室流入、左室送液状態を示す作動説明図
である。
DL…透析器、Vi,Vo…電磁弁、SVi,SVo
…切換バルブ、VB…バイパス用電磁弁、SVm
…容量調整弁、DG…脱気装置、PU…吸引ポ
ンプ、PSi,PSo…圧力検知器、CPU…中央制
御装置、MCi…給液側計量チヤンバー、MCo
…排液側計量チヤンバー、AD…気泡検知器、
4,5…ダイヤフラム、7…液溜り。
Fig. 1 is a dialysate circuit diagram of the water removal rate control device according to the present invention, and Fig. 2 is an explanatory diagram of the operation of the liquid supply side metering chamber, where a is a right ventricular inflow state, a left ventricular fluid feeding state, and b is a switching valve. In the operating state, c shows the left ventricular inflow state and the right ventricular fluid delivery state. FIG. 3 is an explanatory diagram of the operation showing the right ventricular inflow state and the left ventricular fluid delivery state of the drain side measuring chamber. DL...Dylyzer, Vi, Vo...Solenoid valve, SVi, SVo
…Switching valve, VB…Bypass solenoid valve, SVm
…capacity adjustment valve, DG…deaerator, PU…suction pump, PSi, PSo…pressure detector, CPU…central control unit, MCi…liquid supply side metering chamber, MCo
…Drain side metering chamber, AD…Air bubble detector,
4, 5...Diaphragm, 7...Liquid pool.
Claims (1)
けられ、それぞれダイヤフラムにより区画された
左右2個の隔室を有すると共に、各入出口に設け
られた切換バルブSVi,SVoにより2室を交互に
吸入側と排出側に切り換える構造になる透析液計
量チヤンバMCi,MCoと、 該排液側計量チヤンバMCoの下流に設けた吸
引ポンプPUと、 前記透析器DLの透析液供給側回路と排液側に
それぞれ設けた圧力検知器PSi,PSoの入力情報
に基づいて吸引ポンプPU及び前記両切換バルブ
SVi,SVoを制御駆動する中央制御装置CPUとか
らなる血液透析回路において、 前記透折器DLの給液側或は排液側のの少なく
とも何れか一方の透析液計量チヤンバ内のダイヤ
フラムを2枚にし、該ダイヤフラム間の中央室の
容量が増減可能な構造にすると共に、前記透析器
DLと平行するバイパス回路を構成し、該透析器
DLへの透析液流通を停止し、バイパス回路を導
通することを可能にする3個の電磁弁Vi,Vo,
VBを構成してなる、前記2個の計量チヤンバの
容量の差になる誤差を補正することを特徴とする
血液透析における除水量制御装置。 2 透析液供給側回路の圧力検知器PSiの前記回
路中に気泡検知器を有する脱気装置を設けて成る
請求項1記載の血液透析における除水量制御装
置。[Scope of Claims] 1. A switching valve SVi provided independently on the supply/drainage side of the dialysate circuit, having two left and right compartments each partitioned by a diaphragm, and provided at each inlet and outlet. Dialysate measuring chambers MCi and MCo have a structure in which the two chambers are alternately switched to the suction side and the discharge side by SVo, a suction pump PU installed downstream of the drainage side measuring chamber MCo, and the dialysate of the dialyzer DL. The suction pump PU and both switching valves are activated based on input information from pressure detectors PSi and PSo installed on the supply side circuit and drain side, respectively.
In a hemodialysis circuit consisting of a central controller CPU that controls and drives SVi and SVo, two diaphragms are installed in the dialysate measuring chamber on at least one of the supply side and the drain side of the diaphragm DL. The dialyzer has a structure in which the capacity of the central chamber between the diaphragms can be increased or decreased, and
A bypass circuit parallel to the DL is constructed, and the dialyzer
Three solenoid valves Vi, Vo, which make it possible to stop the flow of dialysate to the DL and connect the bypass circuit.
A water removal amount control device for hemodialysis, characterized in that it corrects an error resulting from a difference in capacity between the two measuring chambers forming a VB. 2. The water removal amount control device for hemodialysis according to claim 1, further comprising a deaeration device having a bubble detector in the circuit of the pressure sensor PSi of the dialysate supply side circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63064811A JPH01238870A (en) | 1988-03-18 | 1988-03-18 | Dewatering quantity controlling method in blood dialysis and controller thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63064811A JPH01238870A (en) | 1988-03-18 | 1988-03-18 | Dewatering quantity controlling method in blood dialysis and controller thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01238870A JPH01238870A (en) | 1989-09-25 |
JPH0576870B2 true JPH0576870B2 (en) | 1993-10-25 |
Family
ID=13269002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63064811A Granted JPH01238870A (en) | 1988-03-18 | 1988-03-18 | Dewatering quantity controlling method in blood dialysis and controller thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01238870A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7531073B2 (en) * | 2022-06-28 | 2024-08-08 | 日機装株式会社 | Blood purification device and method for controlling fluid delivery pump |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4178240A (en) * | 1976-05-17 | 1979-12-11 | Pinkerton Harry E | Fluid handling system |
-
1988
- 1988-03-18 JP JP63064811A patent/JPH01238870A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01238870A (en) | 1989-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4971700A (en) | Method of controlling amount of removed water by ultrafiltration and control device for controlling amount of removed water by ultrafiltration in hemodialysis | |
US4267040A (en) | Hemodialysis apparatus | |
US4728433A (en) | Ultrafiltration regulation by differential weighing | |
US8235931B2 (en) | Waste balancing for extracorporeal blood treatment systems | |
US3990973A (en) | Apparatus for measuring ultrafiltration rate | |
WO2004014463A1 (en) | Blood purifying device and method of operating the same | |
JPH0213586B2 (en) | ||
JPH0364148B2 (en) | ||
US4334988A (en) | Control of dialysis and ultrafiltration | |
JPH0576870B2 (en) | ||
US5009775A (en) | Method of controlling amount of removed water by ultrafiltration and control device for controlling amount of removed water by ultrafiltration in hemodialysis | |
JP2769514B2 (en) | Water removal control device for hemodialysis machine | |
KR940002244B1 (en) | Method of controlling amount of removed water by ultrafiltration and control devcie for controlling amount of removed water | |
JPS62155859A (en) | Ultrafiltration amount controller in blood dialyser | |
JP3187938B2 (en) | Hemodialysis machine | |
CA1315702C (en) | Method of controlling amount of removed water by ultrafiltration and control device for controlling amount of removed water by ultrafiltration in hemodialysis | |
JPH0519074Y2 (en) | ||
JPH0470909B2 (en) | ||
JPH0522181Y2 (en) | ||
JPH069670Y2 (en) | Water removal controller for hemodialysis machine | |
CN101590296B (en) | Online continuous volume control system for hemodialysis machine | |
JPH0630201Y2 (en) | Water removal controller for hemodialysis machine | |
JPH04259468A (en) | Dialysis device with moisture removal control | |
JPH0212109B2 (en) | ||
JPS586504B2 (en) | Ultrafiltration measurement device |