[go: up one dir, main page]

JPH0576178B2 - - Google Patents

Info

Publication number
JPH0576178B2
JPH0576178B2 JP59207300A JP20730084A JPH0576178B2 JP H0576178 B2 JPH0576178 B2 JP H0576178B2 JP 59207300 A JP59207300 A JP 59207300A JP 20730084 A JP20730084 A JP 20730084A JP H0576178 B2 JPH0576178 B2 JP H0576178B2
Authority
JP
Japan
Prior art keywords
sic
type
silicon carbide
heterojunction
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59207300A
Other languages
Japanese (ja)
Other versions
JPS6184873A (en
Inventor
Sadaji Yoshida
Eiichiro Sakuma
Shunji Misawa
Shunichi Gonda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59207300A priority Critical patent/JPS6184873A/en
Publication of JPS6184873A publication Critical patent/JPS6184873A/en
Publication of JPH0576178B2 publication Critical patent/JPH0576178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • H10D62/832Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
    • H10D62/8325Silicon carbide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/80FETs having rectifying junction gate electrodes

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は炭化硅素(SiC)のポリタイプの積
層によるヘテロ接合をゲートとする耐ゲート電圧
の大きい炭化硅素電界効果型トランジスタ素子に
関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a silicon carbide field effect transistor element having a high gate voltage withstand voltage and having a heterojunction formed by stacking silicon carbide (SiC) polytypes as a gate. .

〔従来の技術〕[Conventional technology]

従来、電界効果型トランジスタ(FET)素子
のゲートには、酸化物等の絶縁物を用いる方法
(例:Si−MOSFET)、金属/半導体接合による
シヨツトキー障壁を用いる方法(例:GaAs−
MESFET)がある。
Conventionally, the gates of field-effect transistors (FETs) have been made using an insulating material such as an oxide (e.g., Si-MOSFET), or using a Schottky barrier with a metal/semiconductor junction (e.g., GaAs-MOSFET).
MESFET).

炭化硅素(SiC)はSiやGaAsに比して大きな
禁制帯幅を持ち、耐熱、耐薬品性に優れ、耐環境
電子素子用材料として適している。SiCを用いた
FET素子を作る場合、MOS型とMES型とが考え
られる。しかし、SiCは非常に酸化しにくく、酸
化層の形成には飽和水蒸気中1000℃以上の加熱が
必要である。この方法でも酸化速度は毎分1nm程
度と極めて遅く、また再現性も悪い。また酸化層
の耐圧は約2×106V/cm程度であり、40nmの酸
化層に対して耐圧は約8Vである(参考文献:A.
Suzuki他、Appl.Phys.Lett.,39,89(1981))。
Silicon carbide (SiC) has a larger forbidden band width than Si or GaAs, and has excellent heat and chemical resistance, making it suitable as a material for environmentally resistant electronic devices. Using SiC
When making FET elements, MOS type and MES type can be considered. However, SiC is extremely difficult to oxidize and requires heating to over 1000°C in saturated steam to form an oxidized layer. Even with this method, the oxidation rate is extremely slow at about 1 nm per minute, and the reproducibility is also poor. The breakdown voltage of the oxide layer is approximately 2×10 6 V/cm, and the breakdown voltage for a 40 nm oxide layer is approximately 8V (Reference: A.
Suzuki et al., Appl. Phys. Lett., 39 , 89 (1981)).

シヨツトキー電極としてAu,Ag,Alなどが試
みられているが、金属蒸着前のSiC表面処理に難
点がある。即ち、Hagen(J.Appl.Phys.39,1458
(1968))の実験では、超高真空中劈解した6H型
SiC面に金属を蒸着した場合のみしか良好なシヨ
ツトキー障壁が得られなかつた。真空中結晶の劈
解、真空蒸着のプロセスは素子作製プロセスとし
ては使えない。第1図は3C型SiCにAuを蒸着し
た場合の電流−電圧特性を示す図で、耐圧は4〜
5Vである。
Au, Ag, Al, etc. have been tried as shot key electrodes, but there are difficulties in treating the SiC surface before metal deposition. That is, Hagen (J.Appl.Phys. 39 , 1458
(1968)), the 6H type was cleaved in an ultra-high vacuum.
A good Schottky barrier could only be obtained when metal was deposited on the SiC surface. The processes of cleaving crystals in vacuum and vacuum evaporation cannot be used as device fabrication processes. Figure 1 shows the current-voltage characteristics when Au is deposited on 3C type SiC.
It is 5V.

〔発明の概要〕[Summary of the invention]

この発明はMOS構造あるいはMES構造の代り
に禁制帯幅の異なる炭化硅素のポリタイプのヘテ
ロ接合をゲートとすることにより、高い耐ゲート
電圧を持つ炭化硅素電界効果型トランジスタ素子
を提供するものである。
This invention provides a silicon carbide field effect transistor element with high gate voltage resistance by using a silicon carbide polytype heterojunction with different forbidden band widths as the gate instead of the MOS structure or MES structure. .

炭化硅素には数多くの結晶形(以下「ポリタイ
プ」という。)が存在する。そのポリタイプには
立方晶系のものと、六方晶系、菱面体晶系のもの
とがある。ここでは、これらのポリタイプの内、
唯一の立方晶系であるポリタイプ(以下「3C−
SiC」という。)をチヤンネルに、六方晶系の中
で繰り返し周期が6であるポリタイプ(以下
「6H−SiC」という。)をゲートとする場合を例に
して、本発明の原理について説明する。
Silicon carbide has many crystal forms (hereinafter referred to as "polytypes"). The polytypes include cubic, hexagonal, and rhombohedral polytypes. Here, among these polytypes,
Polytype (hereinafter referred to as "3C-
It is called "SiC". ) is used as a channel and a polytype (hereinafter referred to as "6H-SiC") having a repeating period of 6 in a hexagonal crystal system is used as an example to explain the principle of the present invention.

第2図はn型3C−SiC2(禁制帯幅Eg=2.2eV)
とn型6H−SiC1(Eg=2.8eV)が接合している時
のエネルギー帯図である。接合界面に界面準位が
形成され、接合近傍でエネルギー帯の曲りが生じ
る。この結果、接合に二重シヨツトキー障壁が形
成される。このヘテロ接合をゲートとして用い、
n型6H−SiC1に負電圧を印加すれば、印加電圧
によつてn型3C−SiC2中の担体電子の数を制御
することができる。
Figure 2 shows n-type 3C-SiC2 (forbidden band width Eg = 2.2eV)
It is an energy band diagram when and n-type 6H-SiC1 (Eg = 2.8eV) are joined. Interface states are formed at the junction interface, and the energy band bends near the junction. This results in the formation of a double Schottky barrier at the junction. Using this heterojunction as a gate,
By applying a negative voltage to n-type 6H-SiC1, the number of carrier electrons in n-type 3C-SiC2 can be controlled by the applied voltage.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例により高耐ゲート電圧の炭化硅素
FET素子の化学気相成長法による作製法につい
て説明する。
In the following, silicon carbide with high gate voltage resistance is shown in examples.
A method for manufacturing FET devices using chemical vapor deposition will be explained.

第3図a〜dは、この化学気相成長法による
3C−SiC/6H−SiCヘテロ接合結晶を用いたFET
の作製手順を示した図である。
Figures 3a to 3d are obtained by this chemical vapor deposition method.
FET using 3C-SiC/6H-SiC heterojunction crystal
FIG.

アチソン法で作製された6H−SiC(0001)面を
カーボランダム、ダイヤモンドペーストで研摩し
て鏡面にしたものを基板として用いる。弗化水素
により表面酸化層を除去した後、反応管中のグラ
フアイトサセプター上に置く。シラン、プロパン
反応ガス及び水素キヤリアガスを流し、基板温度
1750℃で6H−SiCをホモエピタキシヤル成長させ
る。次に基板温度を1400〜1500℃に下げて3C−
SiCを6H−SiC上にヘテロエピタキシヤル成長さ
せる〔第3図a〕。6H−SiC上の3C−SiCは
(0001)6H(111)3Cとなるような結晶方位で
エピタキシヤル成長する。この面方位での格子不
整は0.34%と極めて小さいため、良質のヘテロエ
ピタキシヤル成長が得られる。なお、両SiCは共
にノンドープでn型であり、電子濃度は1017cm-3
オーダである。
A 6H-SiC (0001) surface prepared by the Acheson method is polished to a mirror surface with carborundum and diamond paste and used as a substrate. After removing the surface oxidation layer with hydrogen fluoride, it is placed on a graphite susceptor in a reaction tube. Flow silane, propane reaction gas, and hydrogen carrier gas to increase the substrate temperature.
Homoepitaxial growth of 6H-SiC at 1750℃. Next, lower the board temperature to 1400~1500℃ to 3C−
SiC is grown heteroepitaxially on 6H-SiC [Figure 3a]. 3C-SiC on 6H-SiC grows epitaxially with a crystal orientation of (0001)6H(111)3C. Since the lattice misalignment in this plane orientation is extremely small at 0.34%, high-quality heteroepitaxial growth can be obtained. Both SiCs are non-doped and n-type, and the electron concentration is 10 17 cm -3
It is an order.

SiCヘテロエピタキシヤル成長結晶の6H−SiC
基板6を除去し〔第3図b〕、6H−SiC成長層5
の一部をエツチング〔第3図c〕したのち、ソー
ス8、ゲート9、ドレイン10に相当する電極と
して、ニツケルを真空蒸着し、アルゴン中1050℃
で5分間焼鈍しオーミツク接触を得る〔第3図
d〕。
6H−SiC of SiC heteroepitaxial growth crystal
The substrate 6 is removed [Fig. 3b], and the 6H-SiC growth layer 5 is removed.
After etching a part (Fig. 3c), nickel was vacuum-deposited as electrodes corresponding to the source 8, gate 9, and drain 10, and heated at 1050°C in argon.
Anneal for 5 minutes to obtain ohmic contact (Fig. 3d).

第4図はn型3C−SiC/n型6H−SiCヘテロ接
合の電流−電圧特性を示す図である。また、第5
図は3C−SiCに正、6H−SiCに負電圧を印加した
時の容量Cの印加電圧Va依存から求めた1/C2
とVaとの関係を示した図である。印加電圧20V
までほぼ直線となつており、耐圧が20V以上であ
ることを示している。
FIG. 4 is a diagram showing current-voltage characteristics of an n-type 3C-SiC/n-type 6H-SiC heterojunction. Also, the fifth
The figure shows 1/C 2 obtained from the dependence of the capacitance C on the applied voltage Va when a positive voltage is applied to 3C-SiC and a negative voltage is applied to 6H-SiC.
FIG. 3 is a diagram showing the relationship between and Va. Applied voltage 20V
It is almost a straight line up to , indicating that the withstand voltage is 20V or higher.

化学気相成長法においてn型ドーパントとして
アンモニアあるいは窒素、p型ドーパントとして
ジボラン、トリメチルアルミニウムなどを用いて
n型及びp型のSiCを作製することができる。第
6〜9図はn及びp型SiCを用いた種々のFETの
構造を示した図である。第6,7図はn−n及び
p−p接合を用いたそれぞれ(a)はデイプレツシヨ
ン型及び同じく(b)はエンハンスメント型FETの
構造である。また、第8,9図はn型3C−SiC/
p型6H−SiC及びp型3C−SiC/n型6H−SiCヘ
テロ接合を用いたそれぞれ(a)はデイブレツシヨン
型、同じく(b)はエンハンスメント型FETの構造
である。以上では、3C−SiCをチヤンネルに、
6H−SiCをゲートとする場合について本発明を説
明してきたが、これはあくまでも本発明の一実施
例であり、本発明は、禁制帯幅の異なるいかなる
ポリタイプの組み合わせにも適用して有効なもの
である。
In a chemical vapor deposition method, n-type and p-type SiC can be produced using ammonia or nitrogen as an n-type dopant, and diborane, trimethylaluminum, or the like as a p-type dopant. 6 to 9 are diagrams showing the structures of various FETs using n- and p-type SiC. 6 and 7 show the structures of (a) a depletion type FET and (b) an enhancement type FET using nn and pp junctions, respectively. Also, Figures 8 and 9 show n-type 3C-SiC/
(a) uses a p-type 6H-SiC and a p-type 3C-SiC/n-type 6H-SiC heterojunction, and (a) is a deblection type FET, and (b) is an enhancement type FET. In the above, 3C−SiC is used as a channel,
Although the present invention has been described with respect to the case where 6H-SiC is used as the gate, this is just one embodiment of the present invention, and the present invention can be applied effectively to any combination of polytypes with different forbidden band widths. It is something.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は炭化硅素のポ
リタイプのヘテロ接合をゲートとして用いた電界
効果型トランジスタ素子である。これは従来炭化
硅素を用いたトランジスタ素子で、MOS型でも
MES型でも問題のあつた耐ゲート電圧を高める
ことを可能にし、耐熱、耐薬品性に優れた耐環境
電子素子が提供できる。
As explained above, the present invention is a field effect transistor element using a silicon carbide polytype heterojunction as a gate. This is a transistor element that conventionally uses silicon carbide, and even MOS type
This makes it possible to increase the gate voltage resistance, which was a problem even with the MES type, and provides environmentally resistant electronic devices with excellent heat and chemical resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はAu/3C−SiCシヨツトキー障壁の電
流−電圧特性を説明するための図、第2図はn型
3C/SiC/n型6H−SiCヘテロ接合のエネルギー
帯図、第3図は化学気相成長法による3C−SiC/
6H−SiCヘテロ接合結晶を用いたFETの作製手
順を示したもので、第3図aは3C−SiC/6H−
SiCヘテロ接合結晶の概略構成図、同図bは基板
を除去した概略構成図、cは6H−SiC成長層の一
部をエツチングした概略構成図、dはソース、ゲ
ート、ドレイン電極を着けたFET構造の概略構
成図、第4図は化学気相成長法で作製したn型
3C−SiC/n型−SiCヘテロ接合の電流電圧特性
を説明するための図、第5図は同ヘテロ接合の
3C−SiCに正、6H−SiCに負電圧を印加した時の
容量Cの印加電圧Va依存から求めた1/C2とVa
との関係を説明するための図、第6図、第7図は
n−n及びp−p接合を用いたもので第6図a,
第7図aはデイプレツシヨン型構造の概略構成
図、同じくbはエンハンスメント型FET構造の
概略構成図、第8図、第9図はn型3C−SiC/p
型6H−SiC及びp型3C−SiC/n型6H−SiCヘテ
ロ接合を用いたもので第8図a,第9図aはデイ
プレツシヨン型構造の概略構成図、同じくbはエ
ンハンスメント型FET構造の概略構成図である。 図中1はn型6H−SiC、2はn型3C−SiC、3
は界面準位、4は3C−SiC成長層、5は6H−SiC
成長層、6は6H−SiC基板、7は絶縁体、8はソ
ース電極(Ni)、9はゲート電極(Ni)、10は
ドレイン電極(Ni)、11はn型6H−SiC、12
は3C−SiC nチヤンネル、13はn+3C−SiC、
14はp型あるいは半絶縁3C−SiC、15はn型
3C−SiCでVa=0でのデイプレツシヨン層、1
6はソース電極(Al−Si)、17はゲート電極
(Al−Si)、18はドレイン電極(Al−Si)、19
はp型6H−SiC、20は3C−SiC pチヤンネル、
21はp+3C−SiC、22はn型あるいは半絶縁
3C−SiC、23はp型3C−SiCでVa=0でのデイ
プレツシヨン層である。
Figure 1 is a diagram to explain the current-voltage characteristics of the Au/3C-SiC Schottky barrier, and Figure 2 is an n-type diagram.
Energy band diagram of 3C/SiC/n-type 6H-SiC heterojunction, Figure 3 shows 3C-SiC/n-type 6H-SiC heterojunction by chemical vapor deposition.
The fabrication procedure of FET using 6H-SiC heterojunction crystal is shown in Figure 3a.
Schematic diagram of the SiC heterojunction crystal; Fig. b is a schematic diagram with the substrate removed; c is a schematic diagram with a part of the 6H-SiC growth layer etched; d is a FET with source, gate, and drain electrodes. Schematic diagram of the structure, Figure 4 is an n-type fabricated by chemical vapor deposition method.
Figure 5 is a diagram to explain the current-voltage characteristics of a 3C-SiC/n-type-SiC heterojunction.
1/C 2 and Va obtained from the dependence of the capacitance C on the applied voltage Va when a positive voltage is applied to 3C-SiC and a negative voltage is applied to 6H-SiC.
Figures 6 and 7 are diagrams for explaining the relationship between
Figure 7a is a schematic diagram of the depletion type structure, b is a schematic diagram of the enhancement type FET structure, and Figures 8 and 9 are n-type 3C-SiC/p
It uses type 6H-SiC and p-type 3C-SiC/n-type 6H-SiC heterojunction. Figures 8a and 9a are schematic diagrams of the depletion type structure, and figure b is a schematic diagram of the enhancement type FET structure. FIG. In the figure, 1 is n-type 6H-SiC, 2 is n-type 3C-SiC, and 3
is the interface level, 4 is the 3C-SiC growth layer, 5 is the 6H-SiC
Growth layer, 6 is 6H-SiC substrate, 7 is insulator, 8 is source electrode (Ni), 9 is gate electrode (Ni), 10 is drain electrode (Ni), 11 is n-type 6H-SiC, 12
is 3C−SiC n channel, 13 is n + 3C−SiC,
14 is p-type or semi-insulating 3C-SiC, 15 is n-type
Depression layer at Va=0 in 3C-SiC, 1
6 is a source electrode (Al-Si), 17 is a gate electrode (Al-Si), 18 is a drain electrode (Al-Si), 19
is p-type 6H-SiC, 20 is 3C-SiC p channel,
21 is p + 3C-SiC, 22 is n-type or semi-insulating
3C-SiC, 23 is p-type 3C-SiC and is a depletion layer at Va=0.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の結晶形を有する第1の炭化硅素と該第
1の結晶形と異なる第2の結晶形を有する第2の
炭化硅素とのヘテロ接合からなるゲートと、前記
第1および第2の炭化硅素の一方の炭化硅素上に
設けられたゲート電極と、他方の炭化硅素上に設
けられたソース電極およびドレイン電極とを有す
ることを特徴とする炭化硅素電界効果トランジス
タ。
1 a gate consisting of a heterojunction of a first silicon carbide having a first crystal form and a second silicon carbide having a second crystal form different from the first crystal form; A silicon carbide field effect transistor characterized by having a gate electrode provided on one silicon carbide, and a source electrode and a drain electrode provided on the other silicon carbide.
JP59207300A 1984-10-03 1984-10-03 Semiconductor device using silicon carbide Granted JPS6184873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59207300A JPS6184873A (en) 1984-10-03 1984-10-03 Semiconductor device using silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59207300A JPS6184873A (en) 1984-10-03 1984-10-03 Semiconductor device using silicon carbide

Publications (2)

Publication Number Publication Date
JPS6184873A JPS6184873A (en) 1986-04-30
JPH0576178B2 true JPH0576178B2 (en) 1993-10-22

Family

ID=16537495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59207300A Granted JPS6184873A (en) 1984-10-03 1984-10-03 Semiconductor device using silicon carbide

Country Status (1)

Country Link
JP (1) JPS6184873A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185978A (en) * 1988-01-20 1989-07-25 Sharp Corp Silicon carbide semiconductor element
JP3440861B2 (en) * 1999-01-19 2003-08-25 松下電器産業株式会社 Method for manufacturing field effect transistor

Also Published As

Publication number Publication date
JPS6184873A (en) 1986-04-30

Similar Documents

Publication Publication Date Title
US5170231A (en) Silicon carbide field-effect transistor with improved breakdown voltage and low leakage current
US5391895A (en) Double diamond mesa vertical field effect transistor
US11967616B2 (en) Vertical silicon carbide power MOSFET and IGBT and a method of manufacturing the same
US4966860A (en) Process for producing a SiC semiconductor device
JP4224737B2 (en) Semiconductor element
JPH039568A (en) Silicon carbide semiconductor device
GB2267781A (en) Vertical diamond field effect transistor and method for making same
US20110006310A1 (en) Semiconductor device and semiconductor device manufacturing method
US5229625A (en) Schottky barrier gate type field effect transistor
KR20030092143A (en) Group-ⅲ nitride based high electron mobility transistor(hemt) with barrier/spacer layer
US5216264A (en) Silicon carbide MOS type field-effect transistor with at least one of the source and drain regions is formed by the use of a schottky contact
US7635877B2 (en) Nitride semiconductor device and manufacturing method thereof
JP2612040B2 (en) MOS-FET using β-SiC and manufacturing method thereof
CA1313571C (en) Metal oxide semiconductor field-effect transistor formed in silicon carbide
JP2000133819A (en) Silicon carbide Schottky barrier diode and method of manufacturing the same
KR100516252B1 (en) ARTICLE COMPRISING AN OXIDE LAYER ON GaN, AND METHOD OF MAKING THE ARTICLE
JPH09321323A (en) Silicon carbide semiconductor substrate, method of manufacturing the same, and silicon carbide semiconductor device using the substrate
Fujimori et al. Diamond devices made of epitaxial diamond films
JP3721588B2 (en) Method for manufacturing silicon carbide semiconductor device
Hara et al. Pinning-controlled ohmic contacts: Application to SiC (0001)
JPH0576178B2 (en)
JP2004193578A (en) SiC-MISFET and manufacturing method thereof
JPH0770695B2 (en) Method for manufacturing silicon carbide semiconductor device
JP4410531B2 (en) Silicon carbide semiconductor substrate and method for manufacturing the same
JP2000106350A (en) Manufacture of ohmic electrode and semiconductor element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term