JPH0575978B2 - - Google Patents
Info
- Publication number
- JPH0575978B2 JPH0575978B2 JP58182015A JP18201583A JPH0575978B2 JP H0575978 B2 JPH0575978 B2 JP H0575978B2 JP 58182015 A JP58182015 A JP 58182015A JP 18201583 A JP18201583 A JP 18201583A JP H0575978 B2 JPH0575978 B2 JP H0575978B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- measured
- input signal
- signal line
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measurement Of Current Or Voltage (AREA)
Description
【発明の詳細な説明】
(1) 発明の技術分野
本発明は超伝導体回路に係り、特にジヨセフソ
ン集積回路内の超伝導電流測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to superconductor circuits, and more particularly to a superconducting current measuring device in a Josephson integrated circuit.
(2) 技術の背景
超伝導体としてのジヨセフソン素子は超高速計
算機等への応用を目的とした研究が成され、素子
の形態としてはトンネル型、ポイントコンタクト
型、ブリツジ型等が知られている。これら素子の
例えば2枚の超伝導膜のPbやNbの間に酸化膜を
はさんだトンネル型等では酸化膜の厚さによつて
結合の度合を調整している。この結合部分を流れ
る電流は所定の一定値I0(臨界電流)以下の時電
圧が生じないことはよく知られている。上記臨界
電流は外部から加えた磁界と共に第1図に示すよ
うな減衰振動を示すことも知られている。一般
に、これらジヨセフソン素子を用いた集積回路内
の電流を測定する場合には磁界結合型ジヨセフソ
ン素子を磁気センサとして用いて測定を行なつて
いた。(2) Background of the technology Research has been carried out on Josephson devices as superconductors with the aim of applying them to ultra-high-speed computers, etc., and known device configurations include tunnel, point contact, and bridge types. . For example, in tunnel type devices in which an oxide film is sandwiched between two superconducting films of Pb and Nb, the degree of bonding is adjusted by adjusting the thickness of the oxide film. It is well known that no voltage is generated when the current flowing through this coupling portion is less than a predetermined constant value I 0 (critical current). It is also known that the critical current exhibits a damped oscillation as shown in FIG. 1 in conjunction with an externally applied magnetic field. Generally, when measuring the current in an integrated circuit using these Josephson devices, a magnetically coupled Josephson device has been used as a magnetic sensor.
(3) 従来技術の問題点
例えば第2図に示すジヨセフソン素子J1,J2で
構成されたループ内の被測定電流Ixを測定するた
めには磁界結合型のジヨセフソン素子Jの1本の
入力信号線2に被測定電流Ixを流した時と、被測
定電流を流さなかつた時の閾値特性を磁気センサ
DETの磁界結合型ジヨセフソン素子の端子間電
圧Vjを得て、第3図の実線と破線で示すバイア
ス電流IBと制御電流ICとの関係を示す2つの閾値
特性のずれから被測定電流Ixを求めていた。上記
閾値特性はオシロスコープで表示するが実際に第
3図に示すような波形を正確に得るためには10秒
程度のスイープ状態を写真撮影する必要があるた
めに測定装置にオシロスコープや写真機等を必要
とするだけでなく2つの閾値特性、即ち被測定電
流を流す場合と流さない場合を測定するので測定
に長時間費す欠点を有していた。(3) Problems with the prior art For example, in order to measure the current to be measured Ix in a loop composed of Josephson elements J 1 and J 2 shown in Fig. 2, one input of the Josephson element J of the magnetic field coupling type is required. The magnetic sensor measures the threshold characteristics when the current to be measured Ix flows through the signal line 2 and when the current to be measured does not flow.
Obtain the voltage Vj between the terminals of the DET's magnetically coupled Josephson element, and calculate the measured current Ix from the difference between the two threshold characteristics showing the relationship between the bias current I B and the control current I C shown by the solid line and the broken line in Figure 3. was looking for. The above threshold characteristics are displayed using an oscilloscope, but in order to accurately obtain the waveform shown in Figure 3, it is necessary to photograph the sweep state for about 10 seconds, so an oscilloscope or camera is used as the measurement device. Not only is this necessary, but it also has the drawback of requiring a long time for measurement because it measures two threshold characteristics, ie, when the current to be measured is flowing and when it is not flowing.
(4) 発明の目的
本発明は上記従来の欠点に鑑みなされたもので
測定素子のスイツチング電圧波形を平滑化し、上
記測定素子であるジヨセフソン素子の第1の入力
信号線(制御線)に負帰還をかけることで測定素
子が常に閾値特性上の1点で電圧状態にスイツチ
するようにし、この時の帰還電流が被測定電流と
同じ値であることを利用して超伝導電流を簡単な
装置で測定するようにした超伝導回路の電流測定
装置を提供することを目的とするものである。(4) Purpose of the Invention The present invention was developed in view of the above-mentioned drawbacks of the conventional art, and it smoothes the switching voltage waveform of the measurement element and provides negative feedback to the first input signal line (control line) of the Josephson element, which is the measurement element. By applying this voltage, the measuring element always switches to a voltage state at one point on the threshold characteristic, and by using the fact that the feedback current at this time is the same value as the current to be measured, it is possible to measure the superconducting current with a simple device. It is an object of the present invention to provide a current measuring device for a superconducting circuit.
(5) 発明の構成
上記目的は本発明によれば、入力信号線を2本
以上有するジヨセフソン素子の超伝導体に於て、
該超伝導体のバイアス電流端子と第1の入力信号
線に発振器により駆動される電流発生源を接続
し、上記超伝導体両端には電圧の平均値を得る装
置を接続し、該装置出力を介して上記第1の入力
信号線に帰還電流を与え、上記超伝導体の第2の
入力信号線に流れる被測定用の超伝導電流を上記
装置からの帰還電流によつて打ち消すように負帰
還して、上記帰還系の出力により被測定用の超伝
導電流を測定することにより達成される。(5) Structure of the Invention According to the present invention, the above object is to provide a superconductor of a Josephson element having two or more input signal lines.
A current generation source driven by an oscillator is connected to the bias current terminal of the superconductor and the first input signal line, a device for obtaining an average value of voltage is connected to both ends of the superconductor, and the output of the device is A feedback current is applied to the first input signal line through the superconductor, and negative feedback is applied so that the superconducting current to be measured flowing to the second input signal line of the superconductor is canceled by the feedback current from the device. This is achieved by measuring the superconducting current to be measured using the output of the feedback system.
(6) 発明の実施例
以下、本発明の一実施例を第4図について詳記
する。尚、第1〜第3図と同一部分には同一符号
を付して示す。第4図は本発明の超伝導体の電流
測定装置の回路図を示すものである。Jは磁界結
合型のジヨセフソン素子であり、測定素子のジヨ
セフソン素子Jの第2の入力信号線2及び第1の
入力信号線1(制御線)は端子T1,T2,T3,T4
に導出され、ジヨセフソン素子Jの両端は出力端
子T5,T6に接続されている。4は冷却装置でジ
ヨセフソン素子Jは該装置内で冷却されている。
第1の入力信号線1の端子T2とジヨセフソン素
子Jの一端T1には抵抗RC,RBの一端が接続され、
該抵抗RB,RCの他端は共通に接続されて発振器
5に接続され、該発振器5とジヨセフソン素子J
の一端は接地されている。発振器5の出力として
は鋸歯状波形を出力するものが適している。(6) Embodiment of the Invention Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG. Note that the same parts as in FIGS. 1 to 3 are designated by the same reference numerals. FIG. 4 shows a circuit diagram of a superconductor current measuring device according to the present invention. J is a magnetic field coupling type Josephson element, and the second input signal line 2 and first input signal line 1 (control line) of the Josephson element J as a measurement element are terminals T 1 , T 2 , T 3 , T 4
Both ends of Josephson element J are connected to output terminals T 5 and T 6 . 4 is a cooling device, and the Josephson element J is cooled within the cooling device.
One ends of resistors R C and R B are connected to the terminal T 2 of the first input signal line 1 and one end T 1 of the Josephson element J,
The other ends of the resistors R B and R C are commonly connected to the oscillator 5, and the oscillator 5 and Josephson element J
One end of is grounded. As the output of the oscillator 5, one that outputs a sawtooth waveform is suitable.
第2の入力信号線2には被測定電流Ixが流れ、
出力端子T5,T6のジヨセフソン素子J両端には
差動増幅器よりなる第1の増幅器A1が接続され、
該第1の増幅器A1の出力は第2の増幅器A2に与
えられると共に該第2の増幅器A2の他の入力端
子には基準電圧Esからの基準電圧が与えられて、
レベルシフトされた第2の増幅器A2の出力は積
分器6に加えられる。該積分器の出力は測定出力
端子T7並びに抵抗Rfを介して第1の入力信号線
1に負帰還され、第2の入力信号線2に流れる被
測定電流Ixを上記負帰還電流Ifでキヤンセルさせ
るようにする。尚、上記実施例で抵抗RB,RC,
Rfは電圧−電流変換のために用いられるもので
あり発振器5及び積分器6が電流出力されるもの
であれば上記抵抗RB,RC,Rfは不要であること
は勿論である。また増幅器A1,A2及び積分器
が電圧の平均値を得る装置の一例であり、他の方
式によつても良い。 The current to be measured Ix flows through the second input signal line 2,
A first amplifier A 1 consisting of a differential amplifier is connected to both ends of Josephson element J of output terminals T 5 and T 6 .
The output of the first amplifier A1 is given to a second amplifier A2 , and the other input terminal of the second amplifier A2 is given a reference voltage from the reference voltage Es,
The level-shifted output of the second amplifier A2 is applied to an integrator 6. The output of the integrator is negatively fed back to the first input signal line 1 via the measurement output terminal T 7 and the resistor R f , and the current to be measured Ix flowing to the second input signal line 2 is changed to the negative feedback current If. Try to cancel it. In addition, in the above embodiment, the resistances R B , R C ,
Rf is used for voltage-current conversion, and if the oscillator 5 and integrator 6 output current, it goes without saying that the resistors R B , R C and Rf are unnecessary. Further, the amplifiers A1, A2 and the integrator are an example of a device for obtaining an average voltage value, and other methods may be used.
第5図はジヨセフソン素子Jの閾値特性と特性
上での電流の与え方を示したものであり、
SQUID(super conduicting quantum
interference devices)超電導量子干渉計の閾値
特性であり、縦軸にバイアス電流IB(抵抗RBとジ
ヨセフソン素子Jに流れる電流)を横軸に制御電
流(第1の入力信号線1に流れる電流)をとつた
もので発振器5の出力としては第6図aのような
鋸歯状波が第1の入力信号線1並びにジヨセフソ
ン素子Jに与えられる。上記鋸歯状波により第5
図の第1象限に供給電流直線8で示すように電流
を振つたとする。 Figure 5 shows the threshold characteristics of Josephson element J and how to apply current based on the characteristics.
SQUID (super conduicting quantum
This is the threshold characteristic of a superconducting quantum interferometer (interference devices), where the vertical axis is the bias current I B (current flowing through the resistor R B and Josephson element J), and the horizontal axis is the control current (current flowing through the first input signal line 1). As the output of the oscillator 5, a sawtooth wave as shown in FIG. 6a is applied to the first input signal line 1 and Josephson element J. The fifth wave is caused by the sawtooth wave.
Assume that the current is applied in the first quadrant of the figure as shown by the supply current straight line 8.
今、第2入力信号線2に流れる被測定電流Ixが
零で、この時積分器6の出力が零(If=0)とな
るように第2の増幅器A2の基準電圧Esを選択し
たとすると、この状態ではジヨセフソン素子Jの
閾値特性は第5図の実線で示したものとなりジヨ
セフソン素子Jは供給電流直線8上で原点0から
符号9で示した点までは零電圧状態であり、その
後電圧状態となる。第2の入力信号線2にIxで示
す被測定電流が流れるとジヨセフソン素子Jの閾
値特性は第5図の破線で示すように被測定電流Ix
分だけずれる、この時の供給電流直線8上では原
点0から符号10で示される点までジヨセフソン
素子Jは零電圧状態であり、その後電圧状態とな
る。この状態を示したのが第6図a,bである。
第6図aは横軸に時間を縦軸にジヨセフソン素子
Jと第1の入力信号線1の抵抗RB,RC部分に流
れる電流IB,ICを取つた場合の鋸歯状波電流を示
し、第6図bはジヨセフソン素子Jの両端の電圧
Vjを縦軸にとり横軸に時間tをとつた波形であ
り第6図bに於て第2の入力信号線2に流れる被
測定電流Ixが零のときは9aで示す時間でジヨセ
フソン素子Jはスイツチングし、鋸歯状波の立ち
下がりでリセツトされ、被測定電流Ixが第2の入
力信号線2に加わつた時は10aで示す時間でス
イツチする。 Now, suppose that the current to be measured Ix flowing through the second input signal line 2 is zero, and the reference voltage Es of the second amplifier A 2 is selected so that the output of the integrator 6 is zero (If = 0) at this time. Then, in this state, the threshold characteristic of Josephson element J is as shown by the solid line in FIG. It becomes a voltage state. When a current to be measured indicated by Ix flows through the second input signal line 2, the threshold characteristic of Josephson element J is as shown by the broken line in FIG.
On the supply current straight line 8 at this time, the Josephson element J is in a zero voltage state from the origin 0 to a point indicated by the reference numeral 10, and then becomes a voltage state. This state is shown in FIGS. 6a and 6b.
Figure 6a shows the sawtooth wave current when the horizontal axis is time and the vertical axis is the currents I B and I C flowing through the Josephson element J and the resistors R B and R C of the first input signal line 1. 6b shows the voltage across Josephson element J.
It is a waveform in which Vj is plotted on the vertical axis and time t is plotted on the horizontal axis. In FIG. 6b, when the measured current Ix flowing through the second input signal line 2 is zero, the Josephson element J is It is switched and reset at the falling edge of the sawtooth wave, and when the current to be measured Ix is applied to the second input signal line 2, it is switched at the time indicated by 10a.
被測定電流Ixが流れた時は第6図bのハツチン
グで示した領域11部分だけ平均レベルが下がる
ために、これを反転して積分器6を通して第1の
入力信号線1に加えれば、抵抗Rf部分を流れる
電流Ifは被測定電流Ixを打ち消して、第5図に示
す符号9の点でジヨセフソン素子Jはスイツチす
る。 When the current to be measured Ix flows, the average level decreases by the area 11 shown by the hatching in Figure 6b, so if this is inverted and applied to the first input signal line 1 through the integrator 6, The current If flowing through the Rf portion cancels the current to be measured Ix, and the Josephson element J switches at a point 9 shown in FIG.
この時の被測定電流Ixと第1の入力信号線1に
帰還される電流Ifとの関係はIf=Ixとなり積分器
6の出力はIf・Rfとなるので、この電圧値から被
測定電流Ixを求めることが出来る。即ち、抵抗器
Rfの両端の電圧を測定することで超電導被測定
電流Ifの表示が可能となる。 At this time, the relationship between the current to be measured Ix and the current If fed back to the first input signal line 1 is If = Ix, and the output of the integrator 6 is If・Rf. Therefore, from this voltage value, the current to be measured Ix can be found. i.e. resistor
By measuring the voltage across Rf, it is possible to display the superconducting current to be measured If.
上記した測定装置によればジヨセフソン素子J
の閾値特性の例えば点9で示す同一点でスイツチ
するように負帰還が掛り、積分器6で書く波形の
領域11が平均化されるので正確な超電導電流測
定が可能となる。 According to the above measuring device, Josephson element J
Negative feedback is applied so as to switch at the same point, for example, point 9, in the threshold characteristic of , and the region 11 of the waveform written by the integrator 6 is averaged, making it possible to accurately measure the superconducting current.
第7図は本発明の他の実施例を示すものであり
第5図と同様に対称2接合超電導量子干渉計を用
いた場合の二つのバイアス及び制御電流の与え方
を示すものであり、符号12で示すものは制御電
流ICとしては一定電流を流し、バイアス電流IBの
みを鋸歯状波にしてジヨセフソン素子Jに与えた
ものでこの場合も第4図と同様に被測定電流の測
定を行なうことが出来る。 FIG. 7 shows another embodiment of the present invention, and similarly to FIG. 5, it shows how to apply two biases and control currents when a symmetric two-junction superconducting quantum interferometer is used. In the case shown by 12, a constant current is passed as the control current I C , and only the bias current I B is made into a sawtooth wave and is applied to the Josephson element J. In this case as well, the current to be measured is measured in the same way as in Fig. 4. It can be done.
第7図の符号13で示す測定装置ではバイアス
電流IBとして第8図aに示すような一定の電流を
スイツチングさせながら与え、第1の入力信号線
1への制御電流ICとして第8図bの如き鋸歯状波
形を断続的に与えるようにしたもので、このよう
にしても被測定電流Ixの測定を行なうことが出来
る。 In the measuring device indicated by reference numeral 13 in FIG. 7, a constant current as shown in FIG. 8a is applied as a bias current I B while switching, and as a control current I C to the first input signal line 1 as shown in FIG. A sawtooth waveform as shown in b is applied intermittently, and the current to be measured Ix can also be measured in this manner.
上記した符号12で示す装置によるときは第7
図に示す閾値特性の0次モード波形とマイナス1
次モード波形16並びにプラス1次モード波形1
5との重なり部分15a,16aが大きくなるよ
うな素子では0次モードでスイツチするのかプラ
ス又はマイナス1次モードでスイツチするのか不
明となり被測定電流範囲は大きく取れない重なり
の小さなものでは十分に利用することが可能であ
る。 When using the device indicated by reference numeral 12 above, the seventh
The 0th mode waveform of the threshold characteristic shown in the figure and minus 1
Next mode waveform 16 and plus first mode waveform 1
If the overlapping portions 15a and 16a with 5 are large, it is unclear whether to switch in 0-order mode or in plus or minus 1st-order mode, and the measured current range cannot be large.Those with small overlaps can be used sufficiently. It is possible to do so.
又、符号13で示すものはバイアス電流を流す
発振器と制御電流を供給する発振器を必要とし、
バイアス電流IBの大きさによつて被測定電流の範
囲が変化するがこの値は比較的大きくとれる。然
し、上記第4図で示した構成によれば簡単な構成
で比較的大きな被測定電流範囲をとることができ
る。第9図に、第4図で示す被測定電流範囲を示
す。被測定電流範囲が正のIxの時には電流供給直
線8と0次モード曲線14の頂点17が交叉する
迄か、或いはマイナス1次モード曲線16の裾1
8が電流供給直線8と交差するうちの先に交差す
る方の値で定まる範囲が、又マイナスの被測定電
流−Ixの時は0次モード曲線14の裾19が電流
供給直線8と交差するまでの範囲が被測定電流の
測定範囲である。 Further, the one indicated by numeral 13 requires an oscillator that supplies a bias current and an oscillator that supplies a control current.
The range of the current to be measured changes depending on the magnitude of the bias current IB , but this value can be taken relatively large. However, according to the configuration shown in FIG. 4, a relatively large current range to be measured can be obtained with a simple configuration. FIG. 9 shows the measured current range shown in FIG. 4. When the current range to be measured is positive Ix, the current supply line 8 and the peak 17 of the zero-order mode curve 14 intersect, or until the tail 1 of the negative first-order mode curve 16.
8 intersects with the current supply line 8, and the range determined by the value that intersects first is, and when the measured current -Ix is negative, the tail 19 of the zero-order mode curve 14 intersects with the current supply line 8. The range up to is the measurement range of the current to be measured.
第10図は本発明の他の実施例を示すものであ
り第4図とは電流の与え方を異ならせて第1象限
及び第3象限に原点0を中心に正負にバイアス電
流IB及び制御電流ICを与えたものである。即ちバ
イアス電流IB又は制御電流ICとしては第11図a
に示すような正負に交番する鋸歯状波電流を与え
るようにしている。このときのジヨセフソン素子
J両端の電圧Vjは第11図bの如き波形となる。 FIG. 10 shows another embodiment of the present invention, in which the method of applying the current is different from that in FIG . The current I C is applied. In other words, the bias current I B or control current I C is as shown in Figure 11a.
A sawtooth wave current that alternates between positive and negative as shown in the figure is applied. At this time, the voltage Vj across the Josephson element J has a waveform as shown in FIG. 11b.
ジヨセフソン素子は閾値特性が原点0対称であ
るため第10図、第11図aの如き電流IBとICを
与えると被測定電流Ixが零のときには電流供給直
線8の対称点20と22で素子がスイツチし、第
11図bのジヨセフソン素子Jの両端電圧Vjは
20a,20b,でスイツチする。このためにジ
ヨセフソン素子Jの両端電圧Vjは正負で平均化
されて零となる。すなわち第4図で示したオフセ
ツト用の第2の増幅器A2は不要となる。次に被
測定電流Ixが流れると閾値は第10図の破線で示
す位置に動きスイツチ点は21及び23で示す位
置となる。この時には第11図bに於てジヨセフ
ソン素子Jの両端の電圧Vjが正の時にはスイツ
チする時刻が20aから21aに両端の電圧Vj
が負の時には22aから23aに動きVjの平均
値が負になるためこの成分を負帰還すれば第4図
に示した測定装置と同様に被測定電流Ixを求める
ことができる。 The Josephson element has a threshold characteristic that is symmetrical to the origin 0, so when currents I B and I C as shown in Figs. The device switches, and the voltage Vj across Josephson device J in FIG. 11b switches at 20a, 20b. For this reason, the voltage Vj across the Josephson element J is averaged between positive and negative voltages and becomes zero. In other words, the second offset amplifier A2 shown in FIG. 4 is not required. Next, when the current to be measured Ix flows, the threshold value moves to the position shown by the broken line in FIG. 10, and the switch points become the positions shown by 21 and 23. At this time, in FIG. 11b, when the voltage Vj across the Josephson element J is positive, the switching time changes from 20a to 21a.
When Vj is negative, it moves from 22a to 23a and the average value of Vj becomes negative, so if this component is fed back negatively, the current to be measured Ix can be determined in the same way as the measuring device shown in FIG.
この装置ではIx=0の時に基準電圧Esを加え
ずにIf=0とすることが出来るので回路を簡略化
できる。 In this device, when Ix=0, If=0 can be set without adding the reference voltage Es, so the circuit can be simplified.
第12図は第10図に示す構成を更に発展させ
たものでジヨセフソン素子Jに非対称素子を用い
るようにしたもので第10図では閾値特性曲線の
頂点に対し対称であるためずれ方向をどちらにず
れたかを判断するために制御電流Icを必要とする
が第12図に示す場合には頂点24に対し波形が
非対称になつているために制御電流ICを加えなく
ても非測定電流Ixを求めことが可能となる。 Figure 12 shows a further development of the configuration shown in Figure 10, in which an asymmetrical element is used for Josephson element J. In Figure 10, since it is symmetrical with respect to the apex of the threshold characteristic curve, the direction of deviation can be changed in either direction. A control current I c is required to determine whether the deviation has occurred, but in the case shown in Fig. 12, the waveform is asymmetrical with respect to the vertex 24, so the non-measurement current I It becomes possible to find.
(7) 発明の効果
本発明によれば超電導電流を帰還系を用いて平
均的に測定することができるので超電導電流を電
圧計で簡単に測定することができる特徴を有す
る。(7) Effects of the Invention According to the present invention, the superconducting current can be measured on the average using a feedback system, so the superconducting current can be easily measured with a voltmeter.
第1図は従来のジヨセフソン素子の磁束と電流
との関係を説明する線図、第2図は従来のジヨセ
フソン素子の電流測定回路を示す回路図、第3図
はSQUIDの閾値特性を説明する線図、第4図は
本発明の一実施例を示す超電導測定装置の回路
図、第5図は第4図の回路構成によつて得られる
バイアス電流と制御電流並びに非測定電流の関係
を示す閾値特性図、第6図aは第4図の第1の入
力信号線及びジヨセフソン素子に加えるバイアス
電流または制御電流波形図、第6図bは第4図に
示すジヨセフソン素子両端電圧波形図、第7図は
本発明の第1の入力信号線またはジヨセフソン素
子に加える電流の他の与え方を説明するための閾
値特性図、第8図は第7図の13で示す電流測定
装置のバイアス電流及び制御電流波形図、第9図
は第4図に示す被測定電流測定装置の電流測定範
囲を説明するための線図、第10図は本発明の更
に他の実施例を示す超伝導体の電流測定装置を説
明するための閾値特性図、第11図aは第10図
に示す電流測定装置のバイアス電流又は制御電流
波形図、第11図bは第10図に示す電流測定装
置のジヨセフソン素子両端の電圧波形図、第12
図は第10図に示す電流測定装置を非対称型の超
電導素子で計測した場合の他の実施例を示す波形
図である。
J,J1,J2…ジヨセフソン素子、DET…磁気
センサ、1…制御線、2…入力線、Ix…被測定電
流、4…冷却装置、5…発振器、6…積分器、
A1,A2…第1及び第2の増幅器、IB…バイアス
電流、IC…制御電流、If…帰還電流。
Figure 1 is a diagram explaining the relationship between magnetic flux and current of a conventional Josephson element, Figure 2 is a circuit diagram showing a current measurement circuit of a conventional Josephson element, and Figure 3 is a diagram explaining the threshold characteristics of a SQUID. 4 is a circuit diagram of a superconductivity measuring device showing an embodiment of the present invention, and FIG. 5 is a threshold value showing the relationship between bias current, control current, and non-measurement current obtained by the circuit configuration of FIG. 4. Characteristic diagram, Figure 6a is a bias current or control current waveform diagram applied to the first input signal line and Josephson element in Figure 4, Figure 6b is a voltage waveform diagram across the Josephson element shown in Figure 4, Figure 7 The figure is a threshold characteristic diagram for explaining another way of applying the current to the first input signal line or Josephson element of the present invention, and Figure 8 is the bias current and control of the current measuring device shown at 13 in Figure 7. A current waveform diagram, FIG. 9 is a diagram for explaining the current measurement range of the current measuring device to be measured shown in FIG. 4, and FIG. 10 is a current measurement diagram of a superconductor showing still another embodiment of the present invention. A threshold characteristic diagram for explaining the device, FIG. 11a is a bias current or control current waveform diagram of the current measuring device shown in FIG. 10, and FIG. 11b is a diagram of the bias current or control current waveform of the current measuring device shown in FIG. Voltage waveform diagram, 12th
This figure is a waveform diagram showing another example in which the current measuring device shown in FIG. 10 is used for measurement using an asymmetric superconducting element. J, J 1 , J 2 ... Josephson element, DET... magnetic sensor, 1... control line, 2... input line, Ix... current to be measured, 4... cooling device, 5... oscillator, 6... integrator,
A1 , A2 ...first and second amplifiers, IB ...bias current, IC ...control current, If...feedback current.
Claims (1)
子の超伝導体に於て、該超伝導体のバイアス電流
端子と第1の入力信号線に発振器により駆動され
る電流発生源を接続し、上記超伝導体両端には電
圧の平均値を得る装置を接続し、該装置出力を介
して上記第1の入力信号線に帰還電流を与え、上
記超伝導体の第2の入力信号線に流れる被測定用
の超伝導電流を上記装置からの帰還電流によつて
打ち消すように負帰還して、上記帰還系の出力に
より被測定用の超伝導電流を測定してなることを
特徴とする超伝導回路の電流測定装置。 2 前記電圧の平均値を得る装置として増幅器と
積分器を用いた特許請求の範囲第1項記載の超伝
導回路の電流測定装置。[Claims] 1. In a superconductor of a Josephson device having two or more input signal lines, a current generation source driven by an oscillator is connected to a bias current terminal of the superconductor and a first input signal line. A device for obtaining an average value of voltage is connected to both ends of the superconductor, and a feedback current is applied to the first input signal line through the output of the device, and a second input signal of the superconductor is connected. The superconducting current flowing through the wire is negatively fed back so as to be canceled by the feedback current from the device, and the superconducting current being measured is measured using the output of the feedback system. A current measurement device for superconducting circuits. 2. A current measuring device for a superconducting circuit according to claim 1, which uses an amplifier and an integrator as a device for obtaining the average value of the voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18201583A JPS6073365A (en) | 1983-09-30 | 1983-09-30 | Superconducting circuit current measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18201583A JPS6073365A (en) | 1983-09-30 | 1983-09-30 | Superconducting circuit current measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6073365A JPS6073365A (en) | 1985-04-25 |
JPH0575978B2 true JPH0575978B2 (en) | 1993-10-21 |
Family
ID=16110840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18201583A Granted JPS6073365A (en) | 1983-09-30 | 1983-09-30 | Superconducting circuit current measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6073365A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0291572B1 (en) * | 1987-05-22 | 1991-07-10 | National House Industrial Co., Ltd. | Method of producing a porous ceramic panel |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53124481A (en) * | 1977-04-07 | 1978-10-30 | Shingijutsu Kaihatsu Jigyodan | Extraahigh sensitivity type voltemeter using quantum interferometer |
US4245169A (en) * | 1979-03-14 | 1981-01-13 | The United States Of America As Represented By The Secretary Of Commerce | Sampling circuit and method therefor |
JPS55131784A (en) * | 1979-03-30 | 1980-10-13 | Shimadzu Corp | Magnetism measuring apparatus |
-
1983
- 1983-09-30 JP JP18201583A patent/JPS6073365A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0291572B1 (en) * | 1987-05-22 | 1991-07-10 | National House Industrial Co., Ltd. | Method of producing a porous ceramic panel |
Also Published As
Publication number | Publication date |
---|---|
JPS6073365A (en) | 1985-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3457091B2 (en) | Voltage-current characteristic measuring device | |
EP0300635B1 (en) | Current detecting device using ferromagnetic magnetoresistance element | |
EP0380562B1 (en) | Magnetometer employing a saturable core inductor | |
JPH03188376A (en) | Circuit for measuring speed and position using magnetoresistance effect | |
JPH0575978B2 (en) | ||
JP2000091653A (en) | Superconducting quantum interference element | |
JPH02186284A (en) | Magnetic flux sensor used in magnetic field for detecting flux density | |
JP3318762B2 (en) | Electronic compass | |
JPS5856408B2 (en) | magnetic sensor | |
JPS6040197B2 (en) | Magnetoelectric conversion device | |
JPH04279071A (en) | Hall element | |
JP2002006016A (en) | Magnetic sensor | |
JPH0217476A (en) | Differential type magnetoresistance effect element | |
JPS5970978A (en) | Magnetic sensor and phase/displacement detector | |
JPH07249808A (en) | Magnetoelectric conversion element | |
JPS6192414A (en) | Magneto-resistance device | |
JPH03152488A (en) | Superconductive magnetometer | |
Cosimini et al. | Cross‐tie/Bloch line detection | |
JPH02186285A (en) | Magnetic bearing detector | |
JPS6280572A (en) | magnetic detector | |
KR830000380B1 (en) | Magnetic read head | |
JP3522104B2 (en) | High sensitivity magnetic field detector | |
JPH028762A (en) | Squid fluxmeter | |
JPS6334655B2 (en) | ||
JPH0335181A (en) | Method for measuring magnetic field by superconducting magneto-resistance effect |