JPH0574467A - Macromolecular solid electrolyte - Google Patents
Macromolecular solid electrolyteInfo
- Publication number
- JPH0574467A JPH0574467A JP3233437A JP23343791A JPH0574467A JP H0574467 A JPH0574467 A JP H0574467A JP 3233437 A JP3233437 A JP 3233437A JP 23343791 A JP23343791 A JP 23343791A JP H0574467 A JPH0574467 A JP H0574467A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- copolymer
- solid electrolyte
- added
- general formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Primary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、移動イオンが陽イオン
のみで、さらにイオン伝導度の高い、ホスファゼン系化
合物とオリゴアルキレングリコールの共重合体とアニオ
ン性置換基を有するπ共役系高分子との複合体からなる
高分子固体電解質に関する。FIELD OF THE INVENTION The present invention relates to a copolymer of a phosphazene compound and an oligoalkylene glycol, which has only a cation as a mobile ion and has a high ionic conductivity, and a π-conjugated polymer having an anionic substituent. The present invention relates to a polymer solid electrolyte composed of a complex of
【0002】[0002]
【従来の技術】高分子固体電解質は、従来の電解質溶液
に変わる新しいイオン伝導体として、高分子固体二次電
池、コンデンサ、湿式太陽電池への応用や帯電防止用途
の観点から近年注目されている。2. Description of the Related Art Polymer solid electrolytes have been attracting attention in recent years from the viewpoint of application to polymer solid secondary batteries, capacitors, wet solar cells and antistatic applications as new ionic conductors replacing conventional electrolyte solutions. ..
【0003】これらの高分子固体電解質のイオン伝導度
を増大させるためには、ポリマーのガラス転移点が低い
ことが望ましい。そこで、最近ではポリマーとしてホス
ファゼンを用いた高分子固体電解質が提案されている。
「ジャーナル・オヴ・アメリカン・ケミカル・ソサエテ
ィ(J.Am.Chem.Soc.)、第106巻、6
854頁、1984年」には、側鎖にオリゴオキシエチ
レン鎖を有するポリホスファゼンに、AgSO3 CF3
塩を溶融して、70℃で10-3s/cm程度のイオン伝
導度を得た例が記載されている。さらに、特開昭63−
186766号公報では、オリゴアルキレンオキシポリ
ホスファゼンとLiClO4 の複合物を用いて、22℃
で10-3s/cm程度のイオン伝導度を得る方法が開示
されている。In order to increase the ionic conductivity of these polymer solid electrolytes, it is desirable that the polymer have a low glass transition point. Therefore, recently, a solid polymer electrolyte using phosphazene as a polymer has been proposed.
"Journal of the American Chemical Society (J. Am. Chem. Soc.), Vol. 106, 6.
854, 1984 ", AgSO 3 CF 3 was added to polyphosphazenes having oligooxyethylene chains in the side chains.
An example in which a salt is melted to obtain an ionic conductivity of about 10 −3 s / cm at 70 ° C. is described. Furthermore, JP-A-63-
In 186766, a composite of oligoalkyleneoxypolyphosphazene and LiClO 4 was used at 22 ° C.
Discloses a method of obtaining ionic conductivity of about 10 −3 s / cm.
【0004】また、上述の高分子固体電解質では、高分
子固体溶媒と、低分子の塩を複合化させたものを用いて
いる。そのため、陽イオンと陰イオンの両方がイオン伝
導に寄与し、長時間使用した場合にはイオンの濃度勾配
等で伝導度の低下が起こるという問題が生じるので、そ
れを解決すべく、「第34回高分子年次大会要旨集、2
337頁、1985年」では陰イオンを高分子固体溶媒
の主鎖に結合させて陽イオンのみを移動させる試みを行
っている。また、「ジャーナル・オヴ・アメリカン・ケ
ミカル・ソサエティ( J.Am.Chem.Soc.)
、第107巻、3823頁、1985年」では、高分
子固体溶媒とポリスチレンスルホン酸等のアニオン性高
分子を複合化させることにより、陽イオンのみを移動さ
せる試みをしている。Further, the above-mentioned solid polymer electrolyte uses a composite of a solid polymer solvent and a low-molecular salt. Therefore, both cations and anions contribute to ionic conduction, and when used for a long period of time, there arises a problem that the conductivity decreases due to a concentration gradient of the ions. Annual Meeting of Macromolecules 2
Pp. 337, 1985 ”, an attempt is made to bond an anion to the main chain of a solid polymer solvent to transfer only a cation. In addition, "Journal of American Chemical Society (J. Am. Chem. Soc.)
, 107, p. 3823, 1985 ", an attempt is made to move only cations by complexing a polymer solid solvent with an anionic polymer such as polystyrene sulfonic acid.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記検
討は、陽イオンの単独移動という観点では成功している
ものの、陽イオンと陰イオンとの解離が束縛されている
ためか、その伝導度は10-6s/cm以下と低かった。
そこで、本発明は陰イオンとなるπ共役系高分子中の電
子が非局在化することによって陽イオンのみが移動し、
室温でのイオン伝導度が大きい高分子固体電解質を提供
することを目的とする。However, although the above studies have been successful from the viewpoint of cation migration alone, their conductivity is 10% probably because the dissociation of cations and anions is restricted. It was as low as -6 s / cm or less.
Therefore, in the present invention, only the cation moves due to delocalization of the electron in the π-conjugated polymer that becomes an anion,
An object is to provide a polymer solid electrolyte having a high ionic conductivity at room temperature.
【0006】[0006]
【課題を解決するための手段】本発明は上記問題点を解
決するためになされたものであって、その要旨は、下記
一般式(I)で示されるトリホスファゼンと一般式(I
I)で示されるオリゴアルキレングリコールとの共重合
体のリンの側鎖に、一般式(III)で示されるモノアルキ
ルオリゴアルキレングリコールを導入した固体溶媒と、
一般式(IV)または(V)で示されるアニオン性置換基
を有したπ共役系高分子との複合体からなる高分子固体
電解質を提供することである。The present invention has been made to solve the above problems, and the gist thereof is to provide triphosphazene represented by the following general formula (I) and general formula (I
I) the side chain of phosphorus of the copolymer with oligoalkylene glycol represented by, a solid solvent in which a monoalkyl oligoalkylene glycol represented by the general formula (III) is introduced,
It is intended to provide a polymer solid electrolyte comprising a complex with a π-conjugated polymer having an anionic substituent represented by the general formula (IV) or (V).
【0007】[0007]
【化4】 HO−(R1 −O)m −H (II) R2 −O−(R3 −O)n − (III)[Chemical 4] HO- (R 1 -O) m -H (II) R 2 -O- (R 3 -O) n - (III)
【化5】 [Chemical 5]
【化6】 (但し、Xはハロゲン、R1 及びR3 は(CH2 )2 ま
たは、CH(CH3 )CH2 、R2 は炭素数が1〜10
のアルキル基、R4 は炭素数が1〜10のアルキル基ま
たはエーテル基、YはCO2 、またはSO3 であり、M
はH、またはLi、Na、Kであり、m、n、kは1以
上の整数を表す。)[Chemical 6] (However, X is halogen, R 1 and R 3 are (CH 2 ) 2 or CH (CH 3 ) CH 2 , and R 2 has 1 to 10 carbon atoms.
, An alkyl group having 4 to 10 carbon atoms or an ether group, Y is CO 2 or SO 3 , and M is
Is H, or Li, Na, and K, and m, n, and k represent an integer of 1 or more. )
【0008】本発明に用いるトリホスファゼンとオリゴ
アルキレングリコールの共重合体の合成法としては、例
えば次の方法が挙げられる。まず、オリゴアルキレング
リコールを1,4−ジオキサン(DIOX)やTHF等
の有機溶媒に溶解し、末端OH基をNa化するためのN
aH,Naナフタレン、またはNaベンゾフェノン等の
試薬を加えてよく撹拌する。この溶液を、トリホスファ
ゼンと触媒のテトラエチルアンモニウムブロマイド(T
EAB)をDIOXやTHF等の有機溶媒に溶解した溶
液に徐々に添加し、用いる有機溶媒が還流する温度で5
〜10時間反応させる。Examples of the method for synthesizing the copolymer of triphosphazene and oligoalkylene glycol used in the present invention include the following methods. First, N is used to dissolve oligoalkylene glycol in an organic solvent such as 1,4-dioxane (DIOX) or THF to convert a terminal OH group into Na.
Add reagents such as aH, Na naphthalene, or Na benzophenone and stir well. This solution was added to triphosphazene and the catalyst tetraethylammonium bromide (T
EAB) is gradually added to a solution dissolved in an organic solvent such as DIOX or THF, and the mixture is heated at a temperature at which the organic solvent used is refluxed at 5
Allow to react for ~ 10 hours.
【0009】本発明における上述の共重合体の分子量は
あまり大きくないほうがよく、50000以下が好まし
い。 これは、共重合体の分子量が大きいと、熱運動を
行いにくくなり、アルカリ金属塩と複合した場合に高い
イオン伝導度を発現することができないからである。そ
のため、共重合体を合成する際にトリホスファゼンとオ
リゴアルキレングリコ−ルの反応比を調製することが望
ましい。すなわち、トリホスファゼンの反応比が低い
と、すべてのハロゲンがグリコールと反応して高分子量
体になり、またトリホスファゼンの反応比が高すぎる
と、グリコールによる架橋が進まず、液状の低分子量体
が得られる。従って、トリホスファゼンとオリゴアルキ
レングリコールの反応比は1:0.6〜1:2の範囲が
好ましい。このような共重合体を合成する際に用いるオ
リゴアルキレングリコールの平均分子量としては、10
0〜1000の範囲であることが好ましい。The molecular weight of the above-mentioned copolymer in the present invention is preferably not too large, and is preferably 50,000 or less. This is because when the molecular weight of the copolymer is large, it becomes difficult to carry out thermal motion, and when it is combined with an alkali metal salt, high ionic conductivity cannot be exhibited. Therefore, it is desirable to adjust the reaction ratio of triphosphazene and oligoalkylene glycol when synthesizing the copolymer. That is, when the reaction ratio of triphosphazene is low, all the halogens react with glycol to form a high molecular weight product, and when the reaction ratio of triphosphazene is too high, crosslinking by glycol does not proceed and a liquid low molecular weight product is formed. can get. Therefore, the reaction ratio of triphosphazene and oligoalkylene glycol is preferably in the range of 1: 0.6 to 1: 2. The average molecular weight of the oligoalkylene glycol used when synthesizing such a copolymer is 10
It is preferably in the range of 0 to 1000.
【0010】上述の共重合体に、一般式(III)で表され
るモノアルキレングリコールを反応させる方法には、特
に制限はなく、例えば共重合体の反応と同様に末端OH
基をNa化して反応させる方法を挙げることができる。
モノアルキルオリゴアルキレングリコールは、共重合体
中に残存しているハロゲンと完全に反応させるため、共
重合体の1.1倍モル程過剰に加えるほうがよい。この
モノアルキルオリゴアルキレングリコールの分子量は、
あまり大きくない方がよく、100〜1500の範囲が
好ましい。分子量が大きいと、高分子固体電解質中のア
ルカリ金属イオンの熱運動による移動が小さくなる。こ
のような、リンの側鎖にモノアルキルオリゴオキシアル
キレンを導入したホスファゼン−オリゴアルキレングリ
コール共重合体を高分子固体電解質の固体溶媒とする。There is no particular limitation on the method of reacting the above-mentioned copolymer with the monoalkylene glycol represented by the general formula (III). For example, the terminal OH is the same as in the reaction of the copolymer.
Examples thereof include a method in which the group is converted to Na and reacted.
Since the monoalkyl oligoalkylene glycol completely reacts with the halogen remaining in the copolymer, it is better to add it in an excess of about 1.1 times the molar amount of the copolymer. The molecular weight of this monoalkyl oligoalkylene glycol is
It is better not to be so large, and the range of 100 to 1500 is preferable. When the molecular weight is large, the movement of alkali metal ions in the solid polymer electrolyte due to thermal motion is small. Such a phosphazene-oligoalkylene glycol copolymer in which a monoalkyloligooxyalkylene is introduced into the side chain of phosphorus is used as a solid solvent for the polymer solid electrolyte.
【0011】次に、本発明に用いるアニオン性π共役系
高分子は、本願出願人による特開昭63−39916号
公報(「自己ドーピング機能を有する導電体及び新規高
分子化合物」)に記述されているように主鎖に共役二重
結合を有する構造をしており、共役系をπ電子が自由に
移動できることで、導電性を発現するものである。この
π共役系高分子に陰イオンを結合させることで、この陰
イオンへπ電子の影響が起こり、陽イオンの解離が促進
されることが期待できると考えられる。Next, the anionic π-conjugated polymer used in the present invention is described in Japanese Patent Application Laid-Open No. 63-39916 ("conductor having self-doping function and novel polymer compound") by the present applicant. As described above, the structure has a conjugated double bond in the main chain, and the π electron can freely move in the conjugated system, thereby exhibiting conductivity. By binding an anion to the π-conjugated polymer, it is expected that the π-electrons affect the anion and promote the dissociation of the cation.
【0012】このようなアニオン性π共役系高分子のポ
リマー主鎖には、一般式(IV)または(V)に示される
ようにポリチオフェンまたはポリアニリンを用いること
ができる。これらの繰り返し構造は、1つまたはそれ以
上の「−R4 −Y−M」基で約0.01〜100mol
%のモノマーを置換して構成するのが良く、好ましくは
約10〜100mol%のモノマーを置換するのが良
い。MはH、Li、Na、Kを用いるのが良く、XはC
O2 またはSO3 を用いるのが良く、R4 は炭素数が1
〜10のアルキル基またはエーテル基を用いる。As the polymer main chain of such anionic π-conjugated polymer, polythiophene or polyaniline can be used as shown in the general formula (IV) or (V). These repeating structure is about one or more "-R 4 -Y-M" group 0.01~100mol
% Of the monomer is substituted, preferably about 10 to 100 mol% of the monomer is substituted. It is preferable to use H, Li, Na or K for M, and C for X.
It is preferable to use O 2 or SO 3 , and R 4 has 1 carbon atom.
An alkyl group or an ether group of 10 is used.
【0013】一般式(IV)または(V)は前述の特開昭
63−39916号公報に記載されている方法を用いて
合成することができる。一般式(IV)または(V)中の
R4−Y−M基を導入するには、モノマーにR4 −Y−
M基を導入した後に重合あるいは共重合させるか、また
は未置換のモノマーの重合体あるいは共重合体を作り、
次いでR4 −Y−M基をポリマーの主鎖に導入する方法
が挙げられる。R4 −Y−M基をモノマーあるいはポリ
マーに共有結合させる方法としては、「ジャーナル・オ
ヴ・アメリカン・ケミカル・ソサエティ( J.Am.C
hem.Soc.) 、第70巻、1556頁、1948
年」に記載されている方法などを用いることができる。
例えば、N−ブロモスクシンアミド(NBS)を用いて
モノマーあるいはポリマー主鎖上のアルキル基をハロゲ
ン化アルキルに連結し、次いで、ハロゲン化物をシアン
化ナトリウム/水酸化ナトリウムあるいは亜硫酸ナトリ
ウムで処理した後に加水分解して、それぞれR4 −CO
2 H、R4 −SO3 Hとする。The general formula (IV) or (V) can be synthesized by the method described in the above-mentioned JP-A-63-39916. To introduce the R 4 —Y—M group in the general formula (IV) or (V), R 4 —Y— is added to the monomer.
Polymerization or copolymerization after introducing the M group, or making a polymer or copolymer of an unsubstituted monomer,
Then, a method of introducing the R 4 —Y—M group into the main chain of the polymer can be mentioned. As a method of covalently bonding the R 4 —Y—M group to a monomer or a polymer, “Journal of American Chemical Society (J. Am. C
hem. Soc. ), 70, 1556, 1948
The method described in “Year” can be used.
For example, using N-bromosuccinamide (NBS) to link an alkyl group on a monomer or polymer backbone to an alkyl halide, and then treating the halide with sodium cyanide / sodium hydroxide or sodium sulfite. Hydrolyzed to give R 4 -CO
2 H and R 4 —SO 3 H.
【0014】モノマーの重合法は化学的カップリング法
や電気化学的方法をとることができる。例えば、一般式
(IV)で表されるチオフェン系重合体を合成する場合、
チオフェンのメチルエステル体(Y=SO3 )を含有す
る溶液を、テトラブチルアンモニウムペルクロレートあ
るいはテトラブチルアンモニウムフルオロボレート等の
電解質と共に、アセトニトリル等の溶媒に加える。白
金、ニッケル、インジウムスズオキシドを被覆したガラ
ス等の作用電極と白金やアルミニウム、好ましくは白金
の対向電極(陰極)を用いて、約0.5〜5mA/cm
2 の電流を電極にかけ、所望の重合の程度に応じて電解
酸化重合反応を数分〜数時間行う。重合反応の温度は約
−30℃〜約25℃で、好ましくは約5℃〜約25℃で
ある。同様の反応は、塩化鉄等の酸化剤を用いて、化学
的に行うこともできる。スルホン酸誘導体を重合させた
後に、ヨウ化ナトリウム等による処理においてメチル基
を除去する。一般式(V)で表したアニリン系重合体
は、前述のチオフェン系重合体と同様に電気化学的酸
化、または化学的酸化によって合成することができる。
また、フェニレンジアミンを適当に置換したシクロヘキ
サンジオンと反応させてつくることもできる。The method of polymerizing the monomer may be a chemical coupling method or an electrochemical method. For example, when synthesizing a thiophene-based polymer represented by the general formula (IV),
A solution containing a methyl ester form of thiophene (Y = SO 3 ) is added to a solvent such as acetonitrile together with an electrolyte such as tetrabutylammonium perchlorate or tetrabutylammonium fluoroborate. About 0.5 to 5 mA / cm 2 using a working electrode such as glass coated with platinum, nickel or indium tin oxide and a counter electrode (cathode) of platinum or aluminum, preferably platinum.
A current of 2 is applied to the electrode, and the electrolytic oxidative polymerization reaction is performed for several minutes to several hours depending on the desired degree of polymerization. The temperature of the polymerization reaction is about -30 ° C to about 25 ° C, preferably about 5 ° C to about 25 ° C. A similar reaction can be performed chemically using an oxidizing agent such as iron chloride. After polymerizing the sulfonic acid derivative, the methyl group is removed by treatment with sodium iodide or the like. The aniline-based polymer represented by the general formula (V) can be synthesized by electrochemical oxidation or chemical oxidation like the above-mentioned thiophene-based polymer.
It can also be prepared by reacting phenylenediamine with appropriately substituted cyclohexanedione.
【0015】本発明のホスファゼン−オリゴエーテル共
重合体からなる固体溶媒とアニオン性π共役系高分子を
複合化する方法については特に制限はないが、例えば次
のような方法を挙げることができる。陰イオン性π共役
系高分子は水溶性のものが多いためその水溶液を、ホス
ファゼン−オリゴエーテル共重合体を水に溶かすか膨潤
させたものに加える。その後、減圧乾燥等で水を除去
し、その残留物が複合化した本発明の高分子固体電解質
となる。There is no particular limitation on the method for complexing the solid solvent comprising the phosphazene-oligoether copolymer of the present invention and the anionic π-conjugated polymer, but the following method can be mentioned, for example. Since many anionic π-conjugated polymers are water-soluble, their aqueous solution is added to a solution obtained by dissolving or swelling a phosphazene-oligoether copolymer in water. After that, water is removed by vacuum drying or the like, and the residue becomes a composite polymer electrolyte of the present invention.
【0016】本発明のホスファゼン−オリゴエーテル共
重合体と陰イオン性π共役系高分子の混合比率として
は、ホスファゼン−オリゴエーテル中の酸素4〜40個
に対して、陰イオン性π共役系高分子中の陽イオンが1
個混合する量が好ましい。陽イオン数が酸素原子4個に
対して1個より多いと、イオンが移動しにくくなり、酸
素原子40個に対して1個より少ないと、イオンそのも
のが少ないため伝導度が小さくなる。The mixing ratio of the phosphazene-oligoether copolymer of the present invention and the anionic π-conjugated polymer is 4 to 40 oxygen in the phosphazene-oligoether, and the anionic π-conjugated polymer is high. 1 cation in the molecule
The amount to be mixed individually is preferable. If the number of cations is more than 1 out of 4 oxygen atoms, it becomes difficult for the ions to move. If the number of cations is less than 1 out of 40 oxygen atoms, the number of ions themselves is small and the conductivity becomes small.
【0017】上述の高分子固体電解質は、電池、コンデ
ンサ、帯電防止剤、エレクトロクロミックディスプレー
等に応用することができる。The above-mentioned polymer solid electrolyte can be applied to batteries, capacitors, antistatic agents, electrochromic displays and the like.
【0018】[0018]
【作用】本発明はガラス転移点の低いホスファゼン−オ
リゴエーテル共重合体を固体溶媒として用いることによ
って、高イオン伝導となり、また陰イオンとなるπ共役
系高分子中の電子が非局在化することによって、陽イオ
ンの解離が促進されて、陽イオン単独移動となるため、
更にイオン伝導が改善されると推定される。In the present invention, by using a phosphazene-oligoether copolymer having a low glass transition point as a solid solvent, high ionic conduction is achieved, and electrons in the π-conjugated polymer that becomes an anion are delocalized. As a result, the dissociation of cations is promoted and the cations move independently,
It is estimated that the ionic conduction is further improved.
【0019】[0019]
【実施例】次に、実施例を示して、本発明を詳細に説明
する。 実施例1 〔ホスファゼン−オリゴエーテル共重合体[A]の製
造〕市販のヘキサクロロシクロトリホスファゼン5gを
DIOX300mlに溶解した。これに、分子量が約5
50のオリゴエチレングリコール7.9gの両末端をN
aHを用いてNa化したもののDIOX溶液200ml
を約30分かけて滴下し、良く混合した後、TEAB
0.175gを添加し、80℃で8時間撹拌した。反応
溶液を室温まで冷却した後、分子量が約350のモノメ
チルオリゴエチレングリコール40gの末端を同様にN
a化したもののDIOX溶液300mlを30分かけて
滴下し、良く混合した後、TEAB0.35gを添加し
80℃で8時間撹拌した。次いでDIOXを減圧除去し
た後、残留物に蒸留水800mlを加え、良く混合し、
沈澱物を露別し、生成物を更に水で洗浄し、100℃で
24時間乾燥して、トリホスファゼンとポリエチレング
リコールの共重合体である固体溶媒を得た。この固体溶
媒の元素分析を行ったところ、トリホスファゼンとオリ
ゴエチレングリコールとモノメチルオリゴエチレングリ
コールの比が1:1:4で反応したことがわかった。EXAMPLES Next, the present invention will be described in detail by showing examples. Example 1 [Production of phosphazene-oligoether copolymer [A]] 5 g of commercially available hexachlorocyclotriphosphazene was dissolved in 300 ml of DIOX. It has a molecular weight of about 5
50 oligo-ethylene glycol 7.9g both ends N
200 ml of DIOX solution which was converted to Na using aH
Was added dropwise over about 30 minutes and mixed well, then TEAB
0.175 g was added, and the mixture was stirred at 80 ° C. for 8 hours. After the reaction solution was cooled to room temperature, 40 g of monomethyl oligoethylene glycol having a molecular weight of about 350 was similarly charged with N.
300 ml of the DIOX solution of the a-modified product was added dropwise over 30 minutes and mixed well, 0.35 g of TEAB was added, and the mixture was stirred at 80 ° C. for 8 hours. Then, after removing DIOX under reduced pressure, 800 ml of distilled water was added to the residue and mixed well,
The precipitate was exposed and the product was further washed with water and dried at 100 ° C. for 24 hours to obtain a solid solvent which was a copolymer of triphosphazene and polyethylene glycol. Elemental analysis of this solid solvent revealed that the reaction was carried out at a ratio of triphosphazene / oligoethylene glycol / monomethyloligoethylene glycol of 1: 1: 4.
【0020】〔ポリ(チオフェン−3−(2−エタンス
ルホン酸ナトリウム))[B]の製造〕乾燥ピリジン20
mlに2−(3−チエニル)−エチルメタノール10g
(1.6×10-2mol)を溶かし、5℃でメタンスル
ホニウムクロライド(1.8×10-2mol)のピリジ
ン溶液40mlを30分かけて添加した。その後1晩室
温で撹拌後、エーテル抽出を行った。次いで、エーテル
を除去することにより、2−(3−チエニル)−エチル
メタンスルホネートを得、このうち10.7g(5.2
×10-2mol)をNaI15.4g(1.0×10-1
mol)の60mlアセトン溶液に加え、室温で24時
間反応させた。沈澱物をろ別し、ろ液をクロロホルムで
抽出後、クロロホルムを減圧除去し、2−(3−チエニ
ル)エチルアイオダイドを得た。Na2 SO3 5.3g
(4.2×10-2mol)の水溶液10mlに、2−
(3−チエニル)エチルアイオダイド5.0g(2.1
×10-2mol)を添加し、70℃で45時間加熱し
た。次いで、水を減圧除去し、クロロホルム、アセトン
で洗浄して、クルードの2−(3−チエニル)エタンス
ルホン酸ナトリウムを得、このうち2gをエーテルに懸
濁させ、2mlの塩化チオニルを滴下し、30分間撹拌
した。氷水で急冷すると白色粉末が沈澱したので、ろ別
し、クロロホルム−ヘキサンで再結晶することにより、
2−(3−チエニル)エタンスルホニルクロライドの白
色結晶を得た。2−(3−チエニル)エタンスルホニル
クロライド105mg(5×10-4mol)を蒸留メタ
ノール溶液1.5mlに加え、撹拌しながら、1.74
mlのN,N−ジイソプロピルアミンを添加した。次い
で、12時間撹拌し、クロロホルムで抽出した。次い
で、クロロホルムを減圧除去することにより2−(3−
チエニル)−エタンスルホン酸メチルを得、100mg
をアセトニトリル10mlに溶解し、LiClO4 を電
解質として白金電極上で、−30℃において、電解酸化
重合したところ、正極の白金極上に黒青色のポリ(チオ
フェン−3−(2−エタンスルホン酸メチル))を得
た。これをNaIのアセトン溶液(1mol/l)に室
温で浸漬(24時間)することにより、メチル基を除去
し、Na塩化し、ポリ(チオフェン−3−(2−エタン
スルホン酸ナトリウム))[B]を得た。[Production of poly (thiophen-3- (sodium 2-ethanesulfonate)) [B]] Dry pyridine 20
10 g of 2- (3-thienyl) -ethylmethanol in ml
(1.6 × 10 -2 mol) was dissolved, and 40 ml of a pyridine solution of methanesulfonium chloride (1.8 × 10 -2 mol) was added over 30 minutes at 5 ° C. Then, the mixture was stirred overnight at room temperature and then extracted with ether. Then, the ether was removed to obtain 2- (3-thienyl) -ethyl methanesulfonate, of which 10.7 g (5.2
× 10 -2 mol) was converted to NaI (15.4 g, 1.0 x 10 -1).
(mol) in 60 ml of acetone and reacted at room temperature for 24 hours. The precipitate was filtered off, the filtrate was extracted with chloroform, and the chloroform was removed under reduced pressure to obtain 2- (3-thienyl) ethyl iodide. Na 2 SO 3 5.3g
In 10 ml of an aqueous solution of (4.2 × 10 -2 mol), 2-
5.0 g of (3-thienyl) ethyl iodide (2.1
(× 10 -2 mol) was added, and the mixture was heated at 70 ° C. for 45 hours. Then, water was removed under reduced pressure, and washed with chloroform and acetone to obtain crude sodium 2- (3-thienyl) ethanesulfonate, of which 2 g was suspended in ether and 2 ml of thionyl chloride was added dropwise. Stir for 30 minutes. A white powder precipitated upon quenching with ice water, so it was filtered off and recrystallized from chloroform-hexane.
White crystals of 2- (3-thienyl) ethanesulfonyl chloride were obtained. 105 mg (5 × 10 −4 mol) of 2- (3-thienyl) ethanesulfonyl chloride was added to 1.5 ml of a distilled methanol solution, and while stirring, 1.74.
ml N, N-diisopropylamine was added. Then, the mixture was stirred for 12 hours and extracted with chloroform. Then, 2- (3-
To obtain methyl thienyl) -ethanesulfonate, 100 mg
Was dissolved in 10 ml of acetonitrile, and electrolytically oxidatively polymerized at −30 ° C. on a platinum electrode using LiClO 4 as an electrolyte to give black blue poly (thiophen-3- (methyl 2-ethanesulfonate)) on the platinum electrode of the positive electrode. ) Got. By dipping this in an acetone solution of NaI (1 mol / l) at room temperature (24 hours), the methyl group was removed, Na was salified, and poly (thiophene-3- (sodium 2-ethanesulfonate)) [B ] Was obtained.
【0021】〔高分子固体電解質への複合化〕上記、N
a型アニオン性ポリチオフェン[B]の1wt%水溶液
を調整し、[B]のNaとホスファゼン−オリゴエーテ
ル共重合体[A]のエーテル酸素の比が1/32、1/
24、1/16、1/12、1/8となるように[B]
の溶液を[A]に添加した。[Compounding into Polymer Solid Electrolyte] The above N
A 1 wt% aqueous solution of a-type anionic polythiophene [B] was prepared, and the ratio of Na of [B] and ether oxygen of the phosphazene-oligoether copolymer [A] was 1/32, 1 /.
24, 1/16, 1/12, 1/8 [B]
Was added to [A].
【0022】この水溶液を100℃で24時間真空乾燥
することにより、高分子固体電解質を得た。この固体電
解質のイオン伝導度を25℃でインピーダンス法にて測
定した結果は、図1のa)のようになり、Naイオン単
独移動の高イオン伝導体が得られた。図1は、固体電解
質に含まれるアルカリ金属イオンとオリゴエーテル中の
エーテル酸素との比と、イオン伝導度の関係を表したグ
ラフであり、縦軸はイオン伝導度を、横軸にアルカリ金
属イオンとオリゴエーテル中のエーテル酸素の比を表し
ている。The aqueous solution was vacuum dried at 100 ° C. for 24 hours to obtain a polymer solid electrolyte. The result of measuring the ionic conductivity of this solid electrolyte at 25 ° C. by the impedance method is as shown in a) of FIG. 1, and a high ionic conductor with Na ion migrating alone was obtained. FIG. 1 is a graph showing the relationship between the ratio of alkali metal ions contained in the solid electrolyte to ether oxygen in the oligoether and the ionic conductivity, where the vertical axis is the ionic conductivity and the horizontal axis is the alkali metal ion. And the ratio of ether oxygen in the oligoether.
【0023】実施例2 実施例1で用いたNa型アニオン性ポリチオフェン
[B]をイオン交換樹脂を用いて、Li型アニオン性ポ
リチオフェン[C]を調製した。この[C]の水溶液を
調製し、実施例1と同様の方法で、種々の濃度のLi型
高分子固体電解質を得た。この固体電解質のイオン伝導
度を25℃でインピーダンス法にて測定した結果は、図
1のb)のようになった。Example 2 Li-type anionic polythiophene [C] was prepared by using the Na-type anionic polythiophene [B] used in Example 1 with an ion exchange resin. This aqueous solution of [C] was prepared and Li-type polymer solid electrolytes of various concentrations were obtained in the same manner as in Example 1. The result of measuring the ionic conductivity of this solid electrolyte at 25 ° C. by the impedance method is as shown in b) of FIG.
【0024】実施例3 〔ポリアニリンジカルボン酸ナトリウム塩[D]の製
造〕窒素雰囲気下で、蒸留ブタノール380ml中に、
8.51gの2,5−ジカルボキシエチル−1,4−シ
クロヘキサンジオンを懸濁させ、これに3.59gのp
−フェニレンジアミンのブタノール溶液(20ml)を
添加し、40mlの氷酢酸を加えた。次いで、36時間
還流後、12時間酸素雰囲気下で還流した。黒色の沈澱
物をろ過し、クロロホルム、クロルベンゼン、エーテル
でソックスレー抽出後、ポリアニリンジカルボン酸エチ
ルエステルを得た。次いで、上記エステルをDMF中に
懸濁し、50wt%NaOH水溶液(過剰)を添加し、
窒素雰囲気で100℃48時間撹拌した。反応液を過剰
のHCl水溶液中に10℃以下で添加し、ろ過すること
により、[D]を得た。Example 3 [Production of polyaniline dicarboxylic acid sodium salt [D]] In a nitrogen atmosphere, in 380 ml of distilled butanol,
8.51 g of 2,5-dicarboxyethyl-1,4-cyclohexanedione were suspended in which 3.59 g of p was added.
-Phenylenediamine butanol solution (20 ml) was added and 40 ml glacial acetic acid was added. Then, the mixture was refluxed for 36 hours and then refluxed for 12 hours in an oxygen atmosphere. The black precipitate was filtered and subjected to Soxhlet extraction with chloroform, chlorobenzene and ether to obtain polyaniline dicarboxylic acid ethyl ester. The above ester was then suspended in DMF and 50 wt% NaOH aqueous solution (excess) was added,
The mixture was stirred at 100 ° C. for 48 hours in a nitrogen atmosphere. The reaction solution was added to excess HCl aqueous solution at 10 ° C. or lower, and filtered to obtain [D].
【0025】〔高分子固体電解質への複合化〕上記、ナ
トリウム型アニオン性ポリアニリン[D]の1wt%水
溶液を調製し、Naとエーテル酸素の比が1/16とな
るように[A]に加えた。この水溶液を100℃で24
時間真空乾燥して、高分子固体電解質を得た。この固体
電解質のイオン伝導度を25℃でインピーダンス法にて
測定した結果、8×10-6s/cmであった。[Compounding with Polymer Solid Electrolyte] A 1 wt% aqueous solution of the above-mentioned sodium-type anionic polyaniline [D] was prepared and added to [A] so that the ratio of Na to ether oxygen was 1/16. It was This aqueous solution at 100 ° C for 24 hours
After vacuum drying for a period of time, a polymer solid electrolyte was obtained. As a result of measuring the ionic conductivity of this solid electrolyte at 25 ° C. by an impedance method, it was 8 × 10 −6 s / cm.
【0026】実施例4 〔ホスファゼン−オリゴエーテル共重合体[E]の製
造〕実施例1で、ホスファゼン−オリゴエーテル共重合
体[A]の製造時に用いた分子量約550のオリゴエチ
レングリコール7.9g、及び分子量約350のモノメ
チルオリゴエチレングリコール40gに代えて、分子量
約445のオリゴプロピレングリコール6.39g、及
び2,2−メトキシエトキシエタノール13.8gを用
いた以外は[A]の製造と同様にして、ホスファゼン−
オリゴエーテル共重合体[E]を製造した。[E]の元
素分析を行ったところ、トリホスファゼンとオリゴプロ
ピレングリコールと2,2−メトキシエトキシエタノー
ルの比が1:1:4で反応したことが分かった。Example 4 [Production of phosphazene-oligoether copolymer [E]] In Example 1, 7.9 g of oligoethylene glycol having a molecular weight of about 550 used in the production of phosphazene-oligoether copolymer [A]. In the same manner as in the production of [A], except that 40 g of monomethyl oligoethylene glycol having a molecular weight of about 350 and 6.39 g of oligopropylene glycol having a molecular weight of about 445 and 13.8 g of 2,2-methoxyethoxyethanol were used. Phosphazene
Oligoether copolymer [E] was produced. Elemental analysis of [E] revealed that the reaction of triphosphazene, oligopropylene glycol, and 2,2-methoxyethoxyethanol was 1: 1: 4.
【0027】〔高分子固体電解質への複合化〕上記
[E]を固体溶媒として、実施例1で製造したNa型ア
ニオン性ポリチオフェン[B]の1wt%水溶液を、
[B]のNaと[E]のエーテル酸素の比が1/16と
なるように添加した。この水溶液を100℃で24時間
真空乾燥し、高分子固体電解質を得た。この固体電解質
の室温でのイオン伝導度は5.8×10-5s/cmであ
った。[Compounding with Polymer Solid Electrolyte] A 1 wt% aqueous solution of Na-type anionic polythiophene [B] produced in Example 1 was prepared using [E] as a solid solvent.
It was added so that the ratio of Na in [B] to ether oxygen in [E] was 1/16. This aqueous solution was vacuum dried at 100 ° C. for 24 hours to obtain a polymer solid electrolyte. The ionic conductivity of this solid electrolyte at room temperature was 5.8 × 10 −5 s / cm.
【0028】実施例5 〔ポリ(チオフェン−3−(2−ブタンスルホン酸ナト
リウム))[F]の製造〕乾燥ピリジン250mlに4−
(3−チエニル)ブタノール10.5gを溶かし、8.
5gのメタンスルホニルクロライドを25℃で10分間
かけて添加した。この反応混合物を室温で6時間撹拌
後、エーテル抽出を行った。次いで、エーテルを除去し
て、4−(3−チエニル)ブチルメタンスルホネートを
得、7.55g(3.2×10-2mol)を9.65g
のNaIの70mlアセトン溶液に加え、室温で24時
間反応させた。沈澱物をろ過し、ろ液をクロロホルムで
抽出後、クロロホルムを減圧除去し、4−(3−チエニ
ル)ブチルアイオダイドを得た。6.35g(5×10
-2mol)のNa2 SO3 水溶液10mlに、4−(3
−チエニル)ブチルアイオダイド6.70gを添加し、
18時間還流した。次いで、水を減圧除去し、クロロホ
ルム、アセトンで洗浄して、クルードの4−(3−チエ
ニル)ブタンスルホン酸ナトリウムを得た。このうち2
gを20mlの蒸留DMSに懸濁させ、2.86gの塩
化チオニルを添加して、3時間撹拌した。この反応液を
氷水で急冷後、エーテル抽出し、溶媒を減圧除去して、
4−(3−チエニル)ブタンスルホニルクロライドを得
た。この4−(3−チエニル)ブタンスルホニルクロラ
イド362mg(1.5×10-3mol)を蒸留メタノ
ールに溶解し、392mgのN,N−ジイソプロピルエ
チルアミンを添加した。次いで、2時間撹拌後、クロロ
ホルムで抽出し、溶媒を減圧除去することにより4−
(3−チエニル)−ブタンスルホン酸メチルを得た。こ
のうち200mgをアセトニトリル10mlに溶解し、
LiClO4 を電解質として、白金電極上で−30℃に
おいて電解酸化重合したところ、正極の白金極上に黒褐
色のポリ(チオフェン−3−(4−ブタンスルホン酸メ
チル))を得た。これをNaIのアセトン溶液(1mo
l/l)に室温で浸漬(24時間)することにより、メ
チル基を除去し、Na塩化し、ポリ(チオフェン−3−
(4−ブタンスルホン酸ナトリウム))[F]を得た。Example 5 [Preparation of poly (thiophen-3- (sodium 2-butanesulfonate)) [F] 4-to 250 ml of dry pyridine
7. Dissolve 10.5 g of (3-thienyl) butanol,
5 g of methanesulfonyl chloride was added at 25 ° C over 10 minutes. The reaction mixture was stirred at room temperature for 6 hours and then extracted with ether. Then, the ether was removed to obtain 4- (3-thienyl) butyl methanesulfonate, and 7.55 g (3.2 × 10 -2 mol) of 9.65 g was obtained.
Was added to 70 ml of a solution of NaI in acetone and reacted at room temperature for 24 hours. The precipitate was filtered, the filtrate was extracted with chloroform, and the chloroform was removed under reduced pressure to obtain 4- (3-thienyl) butyl iodide. 6.35 g (5 x 10
-(2 mol) of Na 2 SO 3 aqueous solution 10 ml, 4- (3
-Thienyl) butyl iodide 6.70 g was added,
Refluxed for 18 hours. Next, water was removed under reduced pressure, and the residue was washed with chloroform and acetone to obtain crude sodium 4- (3-thienyl) butanesulfonate. 2 of these
g was suspended in 20 ml of distilled DMS, 2.86 g of thionyl chloride was added, and the mixture was stirred for 3 hours. The reaction solution was quenched with ice water, extracted with ether, and the solvent was removed under reduced pressure.
4- (3-thienyl) butanesulfonyl chloride was obtained. 362 mg (1.5 × 10 −3 mol) of 4- (3-thienyl) butanesulfonyl chloride was dissolved in distilled methanol, and 392 mg of N, N-diisopropylethylamine was added. Then, the mixture was stirred for 2 hours, extracted with chloroform, and the solvent was removed under reduced pressure to give 4-
Methyl (3-thienyl) -butanesulfonate was obtained. 200 mg of this is dissolved in 10 ml of acetonitrile,
When LiClO 4 was used as an electrolyte and electrolytically oxidatively polymerized at −30 ° C. on a platinum electrode, black-brown poly (thiophen-3- (methyl 4-butanesulfonate)) was obtained on the platinum electrode of the positive electrode. This is a solution of NaI in acetone (1mo
1 / l) at room temperature (24 hours) to remove the methyl group, followed by Na salification to give poly (thiophen-3-
(Sodium 4-butanesulfonate)) [F] was obtained.
【0029】〔高分子固体電解質への複合化〕Na型ア
ニオン性ポリチオフェン[F]の1wt%水溶液を調製
し、実施例1で製造したホスファゼン−オリゴエーテル
共重合体[A]に、Naとエーテル酸素の比が1/16
となるように添加した。この水溶液を100℃で24時
間真空乾燥して、高分子固体電解質を得た。この固体電
解質の室温でのイオン伝導度は、1.8×10-5s/c
mであった。[Compounding with Polymer Solid Electrolyte] A 1 wt% aqueous solution of Na-type anionic polythiophene [F] was prepared, and Na and ether were added to the phosphazene-oligoether copolymer [A] produced in Example 1. Oxygen ratio is 1/16
Was added. This aqueous solution was vacuum dried at 100 ° C. for 24 hours to obtain a polymer solid electrolyte. The ionic conductivity of this solid electrolyte at room temperature is 1.8 × 10 −5 s / c.
It was m.
【0030】実施例6 〔ポリ(チオフェン−3−酢酸ナトリウム[G]の製
造〕市販のチオフェン−3−酢酸200mgをアセトニ
トリル10mlに溶解し、LiClO4 を電解質として
室温で白金電極上で電解重合したところ、黒青色のポリ
(チオフェン−3−酢酸)が生成した。これを水に溶か
し、1wt%の水溶液として、Na型カチオン交換樹脂
により、Na型に交換し、ポリ(チオフェン−3−酢酸
ナトリウム[G]の1wt%水溶液を得た。Example 6 [Production of poly (thiophen-3-sodium acetate [G]] 200 mg of commercially available thiophen-3-acetic acid was dissolved in 10 ml of acetonitrile, and electrolytically polymerized on a platinum electrode at room temperature using LiClO 4 as an electrolyte. However, black-blue poly (thiophene-3-acetic acid) was produced, which was dissolved in water and exchanged with Na-type cation exchange resin to form Na-type poly (thiophene-3-sodium acetate) as a 1 wt% aqueous solution. A 1 wt% aqueous solution of [G] was obtained.
【0031】〔高分子固体電解質への複合化〕Na型ア
ニオン性ポリチオフェン[G]の1wt%水溶液を、実
施例1で製造したホスファゼン−オリゴエーテル共重合
体[A]にNaとエーテル酸素の比が1/16となるよ
うに添加した。この水溶液を100℃で24時間真空乾
燥することにより、高分子固体電解質を得た。この固体
電解質の室温でのイオン伝導度は、3.8×10-6s/
cmであった。[Compounding with Polymer Solid Electrolyte] A 1 wt% aqueous solution of Na-type anionic polythiophene [G] was added to the phosphazene-oligoether copolymer [A] prepared in Example 1 in a ratio of Na to ether oxygen. Was added to be 1/16. The polymer solid electrolyte was obtained by vacuum-drying this aqueous solution at 100 ° C. for 24 hours. The ionic conductivity of this solid electrolyte at room temperature is 3.8 × 10 −6 s /
It was cm.
【0032】[0032]
【発明の効果】本発明のような、ホスファゼン−オリゴ
エーテル共重合体とπ共役系アニオン性高分子との複合
体からなる構成によれば、陽イオンが単独で移動し、室
温でのイオン伝導度の大きい高分子固体電解質が得られ
る。EFFECTS OF THE INVENTION According to the constitution of the present invention, which is composed of a complex of a phosphazene-oligoether copolymer and a π-conjugated anionic polymer, the cations move independently and the ionic conductivity at room temperature is increased. A polymer solid electrolyte having a high degree can be obtained.
【図1】固体電解質のアルカリ金属イオンとオリゴエー
テル中のエーテル酸素の比とイオン伝導度の関係を表し
たグラフである。FIG. 1 is a graph showing a relationship between a ratio of an alkali metal ion of a solid electrolyte and an ether oxygen in an oligoether and an ionic conductivity.
Claims (1)
ゼンと一般式(II)で示されるオリゴアルキレングリコ
ールとの共重合体のリンの側鎖に、一般式(III)で示さ
れるモノアルキルオリゴアルキレングリコールを導入し
た固体溶媒と、下記一般式(IV)または(V)で示され
るアニオン性置換基を有したπ共役系高分子との複合体
からなる高分子固体電解質。 【化1】 HO−(R1 −O)m −H (II) R2 −O−(R3 −O)n − (III) 【化2】 【化3】 (但し、Xはハロゲン、R1 及びR3 は(CH2 )2 ま
たは、CH(CH3 )CH2 、R2 は炭素数が1〜10
のアルキル基、R4 は炭素数が1〜10のアルキル基ま
たはエーテル基、YはCO2 、またはSO3 であり、M
はH、またはLi、Na、Kであり、m、n、kは1以
上の整数を表す。)1. A monoalkyl group represented by the general formula (III) is added to the phosphorus side chain of a copolymer of triphosphazene represented by the following general formula (I) and an oligoalkylene glycol represented by the general formula (II). A polymer solid electrolyte comprising a complex of a solid solvent having an oligoalkylene glycol introduced therein and a π-conjugated polymer having an anionic substituent represented by the following general formula (IV) or (V). [Chemical 1] HO- (R 1 -O) m -H (II) R 2 -O- (R 3 -O) n - (III) ## STR2 ## [Chemical 3] (However, X is halogen, R 1 and R 3 are (CH 2 ) 2 or CH (CH 3 ) CH 2 , and R 2 has 1 to 10 carbon atoms.
, An alkyl group having 4 to 10 carbon atoms or an ether group, Y is CO 2 or SO 3 , and M is
Is H, or Li, Na, and K, and m, n, and k represent an integer of 1 or more. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3233437A JPH0574467A (en) | 1991-09-12 | 1991-09-12 | Macromolecular solid electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3233437A JPH0574467A (en) | 1991-09-12 | 1991-09-12 | Macromolecular solid electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0574467A true JPH0574467A (en) | 1993-03-26 |
Family
ID=16955029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3233437A Pending JPH0574467A (en) | 1991-09-12 | 1991-09-12 | Macromolecular solid electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0574467A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001052736A (en) * | 1999-08-04 | 2001-02-23 | Toyota Central Res & Dev Lab Inc | Lithium secondary battery |
WO2002021628A1 (en) * | 2000-09-07 | 2002-03-14 | Bridgestone Corporation | Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor |
WO2002021631A1 (en) * | 2000-09-07 | 2002-03-14 | Bridgestone Corporation | Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor |
WO2005091421A1 (en) * | 2004-03-23 | 2005-09-29 | Bridgestone Corporation | Additive for nonaqueous electrolyte of battery, nonaqueous electrolyte for battery and battery loaded with nonaqueous electrolyte |
JP2005276492A (en) * | 2004-03-23 | 2005-10-06 | Bridgestone Corp | Additive for non-aqueous electrololyte of primary battery, non-aqueous electrolyte liquid for primary battery, and non-aqueous electrolyte primary battery |
JP2009035743A (en) * | 2001-11-22 | 2009-02-19 | Haering Rima | Functionalized main chain polymer |
JP5001506B2 (en) * | 2000-09-07 | 2012-08-15 | 株式会社ブリヂストン | Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor |
JP2019102355A (en) * | 2017-12-06 | 2019-06-24 | 国立大学法人豊橋技術科学大学 | Method for manufacturing ion conductor for solid electrolyte |
-
1991
- 1991-09-12 JP JP3233437A patent/JPH0574467A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001052736A (en) * | 1999-08-04 | 2001-02-23 | Toyota Central Res & Dev Lab Inc | Lithium secondary battery |
KR100695569B1 (en) * | 2000-09-07 | 2007-03-14 | 가부시키가이샤 브리지스톤 | Additives for nonaqueous electrolyte secondary batteries, Nonaqueous electrolyte secondary batteries, Nonaqueous electrolyte additives for electric double layer capacitors and Nonaqueous electrolyte electric double layer capacitors |
JP5001506B2 (en) * | 2000-09-07 | 2012-08-15 | 株式会社ブリヂストン | Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor |
EP1329975A1 (en) * | 2000-09-07 | 2003-07-23 | Bridgestone Corporation | Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor |
JPWO2002021628A1 (en) * | 2000-09-07 | 2004-02-12 | 株式会社ブリヂストン | Non-aqueous electrolyte additive, non-aqueous electrolyte secondary battery and non-aqueous electrolyte electric double layer capacitor |
EP1329975A4 (en) * | 2000-09-07 | 2007-08-15 | Bridgestone Corp | Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor |
WO2002021631A1 (en) * | 2000-09-07 | 2002-03-14 | Bridgestone Corporation | Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor |
JP5001508B2 (en) * | 2000-09-07 | 2012-08-15 | 株式会社ブリヂストン | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte electric double layer capacitor |
US7099142B2 (en) | 2000-09-07 | 2006-08-29 | Bridgestone Corporation | Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor |
WO2002021628A1 (en) * | 2000-09-07 | 2002-03-14 | Bridgestone Corporation | Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor |
JP2012162732A (en) * | 2001-11-22 | 2012-08-30 | Haering Rima | Functionalized main chain polymers |
JP2009035743A (en) * | 2001-11-22 | 2009-02-19 | Haering Rima | Functionalized main chain polymer |
WO2005091421A1 (en) * | 2004-03-23 | 2005-09-29 | Bridgestone Corporation | Additive for nonaqueous electrolyte of battery, nonaqueous electrolyte for battery and battery loaded with nonaqueous electrolyte |
JP4558362B2 (en) * | 2004-03-23 | 2010-10-06 | 株式会社ブリヂストン | Non-aqueous electrolyte additive for primary battery, non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery |
JP2005276492A (en) * | 2004-03-23 | 2005-10-06 | Bridgestone Corp | Additive for non-aqueous electrololyte of primary battery, non-aqueous electrolyte liquid for primary battery, and non-aqueous electrolyte primary battery |
JP2019102355A (en) * | 2017-12-06 | 2019-06-24 | 国立大学法人豊橋技術科学大学 | Method for manufacturing ion conductor for solid electrolyte |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960009685B1 (en) | Method of Making Magnetically Doped Polymer | |
US4505841A (en) | Fused 6,6,6-membered heterocyclic electroactive polymers | |
US5367041A (en) | Self-doped zwitterionic polymers | |
JPH05214080A (en) | Fluorinated thiophenes, polymers derived therefrom and conductive polymers containing them | |
JPH0656987A (en) | Produciton of conductive polymer | |
JPH0138808B2 (en) | ||
US5569708A (en) | Self-doped polymers | |
JPH0574467A (en) | Macromolecular solid electrolyte | |
US4505842A (en) | Heteroazole electroactive polymers | |
US5891968A (en) | Method of making self-doped zwitterionic heterocyclic polymers | |
US5578699A (en) | Process for making amino functional poly(para-phenylene vinylene)s | |
US5310781A (en) | Self-doped polymers from polyaniline with bronsted acid groups | |
US5863981A (en) | Electrically conducting water-soluble self-doping polyaniline polymers and the aqueous solutions thereof | |
JPH01254764A (en) | Water-soluble electrically conductive organic polymer and production thereof | |
JP2763903B2 (en) | Method of manufacturing conductor having self-doping function | |
JPH06239996A (en) | Conducting polymer and method for producing the same | |
US5760169A (en) | Self-doped polymers | |
JP2517866B2 (en) | Quaternized poly (quinoline-4,7-diyl) polymer, its production and use | |
JP3413958B2 (en) | Novel conductive polymer and method for producing the same | |
JPH0813873B2 (en) | Water-soluble self-doped conductive polymer and method for producing the same | |
JP3058735B2 (en) | Polypyrrole derivative and method for producing the same | |
JP2960859B2 (en) | Self-doping type conductive polymer aqueous solution and method for producing the same | |
JPH07233244A (en) | Water-soluble self-dopable conductive polymer and its production | |
JP3043290B2 (en) | Water-soluble conductive polyaniline and method for producing the same | |
US5331072A (en) | Polyazopyrroles and electric cells based thereon |