JPH0573263B2 - - Google Patents
Info
- Publication number
- JPH0573263B2 JPH0573263B2 JP86195539A JP19553986A JPH0573263B2 JP H0573263 B2 JPH0573263 B2 JP H0573263B2 JP 86195539 A JP86195539 A JP 86195539A JP 19553986 A JP19553986 A JP 19553986A JP H0573263 B2 JPH0573263 B2 JP H0573263B2
- Authority
- JP
- Japan
- Prior art keywords
- integrated circuit
- cooling
- thermally conductive
- conductive fluid
- cooling container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0655—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/4913—Assembling to base an electrical component, e.g., capacitor, etc.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/4913—Assembling to base an electrical component, e.g., capacitor, etc.
- Y10T29/49144—Assembling to base an electrical component, e.g., capacitor, etc. by metal fusion
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体集積回路、殊にLSIパツケー
ジの冷却装置およびその製造方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling device for a semiconductor integrated circuit, particularly an LSI package, and a method for manufacturing the same.
従来より、LSIパツケージの冷却技術として、
例えば、アイ・イー・イー・イー「IEEE ICCD
83」に報告された論文、アイ・ビー・エム 4381
モジユール「NEW INTERNAL AND
EXTERNAL COOLING ENHANCEMENTS
FOR THE AIR COOLED IBM 4381
MODULE」がある。すなわち、基板上に実装さ
れた集積回路と、この集積回路に対向する冷却板
との間には微小ギヤツプが存在し、この微小ギヤ
ツプの寸法によつてその冷却特性が左右され、微
小ギヤツプを狭くすることが熱抵抗の低下につな
がる。微小ギヤツプを0.2mmに保つて、そのギヤ
ツプに熱伝導性のコンパウンドを充填した時、集
積回路と冷却板との間の熱抵抗は9℃/Wと報告
されている。
Traditionally, as a cooling technology for LSI packages,
For example, I. E. E. “IEEE ICCD
Paper reported in ``83'', IBM 4381
Module “NEW INTERNAL AND
EXTERNAL COOLING ENHANCEMENTS
FOR THE AIR COOLED IBM 4381
There is a MODULE. In other words, a minute gap exists between the integrated circuit mounted on the board and the cooling plate facing the integrated circuit, and the cooling characteristics are influenced by the dimensions of this minute gap. This leads to a decrease in thermal resistance. When the microgap is kept at 0.2 mm and the gap is filled with a thermally conductive compound, the thermal resistance between the integrated circuit and the cooling plate is reported to be 9°C/W.
しかしながら、このようなLSIパツケージにお
いては、そのLSIパツケージの構成部品をなす基
板、集積回路、冷却板等に寸法誤差があり、組み
立ての際に生ずる組立誤差も合わせると、その誤
差の累積値は100〜200μmにも達する。つまり、
この誤差の累積値よりも微小ギヤツプを狭く設計
すると、集積回路と冷却板とが接触し破損してし
まう虞れが有り、したがつて微小ギヤツプを誤差
の累積値よりも狭くすることができなかつた。こ
のため、従来の冷却構造では、熱抵抗の低減を達
成することができなかつた。
However, in such an LSI package, there are dimensional errors in the circuit board, integrated circuit, cooling plate, etc. that make up the LSI package's component parts, and when including assembly errors that occur during assembly, the cumulative value of the error is 100. It reaches ~200μm. In other words,
If the microgap is designed to be narrower than the cumulative value of this error, there is a risk that the integrated circuit and the cooling plate will come into contact and be damaged. Ta. For this reason, conventional cooling structures have not been able to reduce thermal resistance.
本発明はこのような問題点に鑑みてなされたも
ので、硬化することにより体積収縮する熱伝導性
流体が硬化した部材を収容した冷却容器と、集積
回路を実装してなり、該集積回路が前記熱伝導性
流体が硬化した部材に対して略全面にわたつて略
一定の微小間隙を有するように配置された回路基
板と、この回路基板を保持すると共にスペーサを
介して前記冷却容器に載置される基板保持部材と
で集積回路の冷却装置を構成したものである。
The present invention has been made in view of these problems, and includes a cooling container containing a hardened member containing a thermally conductive fluid that shrinks in volume when hardened, and an integrated circuit mounted thereon. a circuit board arranged so as to have a substantially constant minute gap over substantially the entire surface of the member in which the thermally conductive fluid is hardened; and a circuit board that holds the circuit board and is placed in the cooling container via a spacer. A cooling device for an integrated circuit is configured with the substrate holding member.
また、硬化することにより体積収縮する熱伝導
性流体を冷却容器に蓄え、回路基板を保持する基
板保持部材を前記冷却容器に載置することにより
前記例角容器に蓄えられた熱伝導性流体層内に前
記回路基板に実装された集積回路を浸漬し、前記
熱伝導性流体の硬化による体積収縮により前記集
積回路と前記熱伝導性流体層表面との間に微小ギ
ヤツプを形成した後、前記冷却容器と前記基板保
持部材との間に所定厚みのスペーサを介在させて
冷却装置を製造するようにしたものである。 Further, a thermally conductive fluid that shrinks in volume upon hardening is stored in a cooling container, and a layer of thermally conductive fluid stored in the example container is obtained by placing a board holding member that holds a circuit board in the cooling container. The integrated circuit mounted on the circuit board is immersed in the cooling solution, and a microgap is formed between the integrated circuit and the surface of the thermally conductive fluid layer by volumetric contraction due to hardening of the thermally conductive fluid, and then the cooling is performed. A cooling device is manufactured by interposing a spacer with a predetermined thickness between the container and the substrate holding member.
したがつて、この発明による装置によれば、集
積回路と熱伝導性流体が硬化した部材との間に、
略全面にわたつて略一定の微小間隙が設けられ
る。
Therefore, according to the device according to the invention, between the integrated circuit and the member on which the thermally conductive fluid is hardened,
A substantially constant minute gap is provided over substantially the entire surface.
また、この発明による製造方法によれば、集積
回路と硬化した後の熱伝導性流体層表面との間
に、熱伝導性流体の体積収縮により生ずる微小ギ
ヤツプとスペーサの板厚との和による微小間隙が
設けられる。 Further, according to the manufacturing method of the present invention, there is a small gap between the integrated circuit and the surface of the thermally conductive fluid layer after hardening, which is caused by the sum of the small gap caused by the volumetric contraction of the thermally conductive fluid and the plate thickness of the spacer. A gap is provided.
以下、本発明に係る集積回路の冷却装置および
その製造方法を詳細に説明する。第1図は、この
冷却装置の一実施例を示すLSIパツケージの側断
面図である。同図において、1は冷却容器、2は
この冷却容器1に蓄えられ冷却固化した半田層、
3は回路基板4に実装された複数個の集積回路
(LSIチツプ)である。集積回路3と半田層2の
表面とは寸法hの微小間隙9を隔てて対向してお
り、回路基板4の外周縁部は基板枠5に強固に固
着され、基板枠5は所定厚みtのスペーサ6を介
して、固定ねじ7,7を用いて冷却容器1に一体
的に固定されている。冷却容器1には、水冷ジヤ
ケツト8が固着されており、この水冷ジヤケツト
8の空洞部8aに冷却水を通して水冷としてい
る。
Hereinafter, an integrated circuit cooling device and a manufacturing method thereof according to the present invention will be explained in detail. FIG. 1 is a side sectional view of an LSI package showing one embodiment of this cooling device. In the figure, 1 is a cooling container, 2 is a solder layer stored in this cooling container 1 and solidified by cooling.
3 is a plurality of integrated circuits (LSI chips) mounted on the circuit board 4. The integrated circuit 3 and the surface of the solder layer 2 face each other with a small gap 9 having a dimension h, and the outer peripheral edge of the circuit board 4 is firmly fixed to a board frame 5, and the board frame 5 has a predetermined thickness t. It is integrally fixed to the cooling container 1 via a spacer 6 using fixing screws 7, 7. A water cooling jacket 8 is fixed to the cooling container 1, and cooling water is passed through a cavity 8a of the water cooling jacket 8 to provide water cooling.
次に、このように構成されたLSIパツケージに
おける微小間隙9の実現方法について説明する。
すなわち、第2図aに示すように、冷却容器1に
前もつて融着した半田2を、冷却容器1を加熱す
ることによつて融解する。そして、この融解され
た溶融半田層2内に回路基板4に実装された集積
回路3を浸漬する(第2図b)。つまり、基板枠
5の外周縁下端面5aと冷却容器1の外周縁上端
面1aとを当接させ、基板枠5を冷却容器1に載
置し、回路基板4に装着された集積回路3を溶融
半田層2内に浸漬保持する。この時、すべての集
積回路チツプ3の表面が溶融半田2に接触する量
がこの溶融半田の最低必要量である。集積回路3
には、溶融半田層2に浸漬する前にソルダレジス
トもしくはシリコーンオイル等で予め半田ぬれ防
止を施しておき、集積回路3を浸漬した後、即ち
基板枠5を冷却容器1に載置した後、冷却容器1
への加熱を中断する。この加熱に中断により、冷
却容器1内の溶融半田2の温度は徐々に低下し、
この温度低下により溶融半田が体積収縮しながら
冷却固化する。集積回路3には半田ぬれ防止が施
されているため、第2図cに示すように、固化し
た半田層2の表面と集積回路3との間には、溶融
半田の体積収縮により、寸法h1の微小ギヤツプ1
0が形成される。そして、基板枠5を冷却容器1
より一旦分離し、分解洗浄を行いフラツクス等を
除去した後、第2図dに示すように、スペーサ6
を基板枠5の外周縁下端面5aと冷却容器1の外
周縁上端面1aとの間に差し入れ、基板枠5と冷
却容器1とを固定ねじ7,7を用いて一体的に固
定する。このようにして、第1図に示した寸法h
の微小間隙9が実現される。この微小間隙9は、
図よりも明らかなように、第2図cに示した微小
ギヤツプ10とスペーサ6の板厚との和、即ちh1
+tとなり、スペーサ6の板厚を適当に選ぶこと
により、微小間隙9の寸法hを最適値に設定する
ことができる。つまり、第2図cに示した寸法h1
のままでは、あまりにもその寸法が狭すぎるた
め、外力等による基板4の弾性変形により、集積
回路3と半田層2とが接触する虞れがある。この
ため、微小ギヤツプ10の寸法h1にスペーサ6の
板厚tを加えて微小間隙9とし、基板4が弾性変
形したとしても集積回路3と半田層2とが接触す
る虞れのない最適寸法を設定するようにしてい
る。この微小間隙9は構成部品の寸法精度および
組立精度の規制を受けないので、誤差の累積値よ
りも狭く設定することが可能であり、従来の冷却
構造に比して大幅な熱抵抗の低減を図ることがで
きる。 Next, a method for realizing the minute gap 9 in the LSI package configured as described above will be explained.
That is, as shown in FIG. 2a, the solder 2 previously fused to the cooling container 1 is melted by heating the cooling container 1. Then, the integrated circuit 3 mounted on the circuit board 4 is immersed in the melted molten solder layer 2 (FIG. 2b). That is, the lower end surface 5a of the outer periphery of the board frame 5 and the upper end surface 1a of the outer periphery of the cooling container 1 are brought into contact with each other, the board frame 5 is placed on the cooling container 1, and the integrated circuit 3 mounted on the circuit board 4 is It is immersed and held in the molten solder layer 2. At this time, the amount by which the surfaces of all integrated circuit chips 3 come into contact with the molten solder 2 is the minimum required amount of the molten solder. integrated circuit 3
Before dipping into the molten solder layer 2, prevent solder wetting with a solder resist or silicone oil, etc., and after dipping the integrated circuit 3, that is, placing the substrate frame 5 in the cooling container 1, Cooling container 1
interrupt heating. By interrupting this heating, the temperature of the molten solder 2 in the cooling container 1 gradually decreases.
This temperature drop causes the molten solder to cool and solidify while shrinking in volume. Since the integrated circuit 3 is protected against solder wetting, as shown in FIG. 1 minute gap 1
0 is formed. Then, the board frame 5 is placed in the cooling container 1.
After the spacer 6 is separated and disassembled and cleaned to remove flux, etc., as shown in Fig. 2d,
is inserted between the lower end surface 5a of the outer peripheral edge of the substrate frame 5 and the upper end surface 1a of the outer peripheral edge of the cooling container 1, and the substrate frame 5 and the cooling container 1 are integrally fixed using fixing screws 7, 7. In this way, the dimension h shown in FIG.
A very small gap 9 is realized. This minute gap 9 is
As is clear from the figure, the sum of the minute gap 10 shown in FIG. 2c and the plate thickness of the spacer 6, that is, h 1
+t, and by appropriately selecting the thickness of the spacer 6, the dimension h of the minute gap 9 can be set to an optimum value. In other words, the dimension h 1 shown in Figure 2c
If left as is, the dimensions are too narrow, and there is a risk that the integrated circuit 3 and the solder layer 2 will come into contact with each other due to elastic deformation of the substrate 4 due to external force or the like. For this reason, the thickness t of the spacer 6 is added to the dimension h 1 of the microgap 10 to form the microgap 9, which is an optimal dimension that will not cause the integrated circuit 3 and the solder layer 2 to come into contact even if the substrate 4 is elastically deformed. I am trying to set it. Since this minute gap 9 is not subject to restrictions on the dimensional accuracy and assembly accuracy of the component parts, it can be set narrower than the cumulative error value, resulting in a significant reduction in thermal resistance compared to conventional cooling structures. can be achieved.
尚、本実施例においては、集積回路3に半田ぬ
れ防止を施すようにしたが、セラミツクケース入
りの集積回路等においては、もともと半田が付着
しないので半田ぬれ防止の必要がないことは言う
までもない。また、本実施例においては、微小ギ
ヤツプ10を形成するために溶融半田の冷却固化
による体積収縮を利用したが、必ずしも溶融半田
でなくともよく、硬化することにより体積収縮す
る熱伝導性流体であれば、他の流体を用いてもよ
い。また、微小間隙9に熱伝導性のコンパウンド
を充填するようにすれば、さらに良好な冷却特性
を得ることができ、冷却容器1にフインを装着す
るようにすれば空冷化も容易に可能である。 In this embodiment, the integrated circuit 3 is protected against solder wetting, but it goes without saying that there is no need to prevent solder wetting in integrated circuits housed in ceramic cases because solder does not adhere to them. Further, in this embodiment, the volumetric shrinkage of the molten solder due to cooling and solidification was used to form the microgap 10, but it does not necessarily have to be molten solder, and may be a thermally conductive fluid that shrinks in volume upon hardening. For example, other fluids may be used. Further, by filling the minute gap 9 with a thermally conductive compound, even better cooling characteristics can be obtained, and by attaching fins to the cooling container 1, air cooling is easily possible. .
以上説明したように本発明によれば、熱伝導性
流体の体積収縮により、集積回路と熱伝導性流体
層表面との間に微小ギヤツプを形成した後、冷却
容器と基板保持部材との間に所定厚みのスペーサ
を介在させたので、集積回路と硬化した後の熱伝
導性流体層表面との間に、略全面にわたつて略一
定の微小間隙を設けることができ、この微小間隙
はスペーサの厚みを選ぶことにより最適値に設定
することが可能であり、且つ構成部品の寸法精度
および組立精度の規制を受けないので、誤差の累
積値よりも狭く設定することが可能であり、従来
に比して大幅な熱抵抗の低減を図ることができ
る。
As explained above, according to the present invention, after a minute gap is formed between the integrated circuit and the surface of the thermally conductive fluid layer due to the volumetric contraction of the thermally conductive fluid, the gap is formed between the cooling container and the substrate holding member. Since the spacer with a predetermined thickness is interposed, a substantially constant minute gap can be provided over almost the entire surface between the integrated circuit and the surface of the thermally conductive fluid layer after hardening, and this minute gap is formed by the spacer. By selecting the thickness, it is possible to set it to the optimum value, and since it is not subject to restrictions on the dimensional accuracy and assembly accuracy of component parts, it is possible to set it narrower than the cumulative error value, which is faster than before. By doing so, it is possible to significantly reduce thermal resistance.
第1図は本発明に係る集積回路の冷却装置の一
実施例を示すLSIパツケージの側断面図、第2図
はこの冷却装置を実現する方法を説明する工程図
である。
1……冷却容器、2……半田層、3……集積回
路、4……回路基板、5……基板枠、6……スペ
ーサ、9……微小間隙、10……微小ギヤツプ。
FIG. 1 is a side sectional view of an LSI package showing an embodiment of an integrated circuit cooling device according to the present invention, and FIG. 2 is a process diagram illustrating a method for realizing this cooling device. DESCRIPTION OF SYMBOLS 1... Cooling container, 2... Solder layer, 3... Integrated circuit, 4... Circuit board, 5... Board frame, 6... Spacer, 9... Minute gap, 10... Minute gap.
Claims (1)
体が硬化した部材を収容した冷却容器と、集積回
路を実装してなり、該集積回路が前記熱伝導性流
体が硬化した部材に対して略全面にわたつて略一
定の微小間隙を有するように配置された回路基板
と、この回路基板を保持すると共にスペーサを介
して前記冷却容器に載置される基板保持部材とを
備えてなる集積回路の冷却装置。 2 硬化することにより体積収縮する熱伝導性流
体を冷却容器に蓄え、回路基板を保持する基板保
持部材を前記冷却容器に載置することにより前記
冷却容器に蓄えられた熱伝導性流体層内に前記回
路基板に実装された集積回路を浸漬し、前記熱伝
導性流体の硬化による体積収縮により前記集積回
路と前記熱伝導性流体層表面との間に微小ギヤツ
プを形成した後、前記冷却容器と前記基板保持部
材との間に所定厚みのスペーサを介在させたこと
を特徴とする集積回路の冷却装置の製造方法。[Scope of Claims] 1. A cooling container containing a member made of a hardened thermally conductive fluid that shrinks in volume when cured, and an integrated circuit mounted thereon, the integrated circuit being a member made of the hardened thermally conductive fluid. a circuit board arranged to have a substantially constant minute gap over substantially the entire surface thereof; and a board holding member that holds the circuit board and is placed in the cooling container via a spacer. Integrated circuit cooling system. 2. A thermally conductive fluid that shrinks in volume upon hardening is stored in a cooling container, and a substrate holding member that holds a circuit board is placed in the cooling container, so that the thermally conductive fluid layer stored in the cooling container is heated. After immersing the integrated circuit mounted on the circuit board and forming a microgap between the integrated circuit and the surface of the thermally conductive fluid layer due to volumetric contraction due to hardening of the thermally conductive fluid, the cooling container A method for manufacturing an integrated circuit cooling device, characterized in that a spacer having a predetermined thickness is interposed between the substrate holding member and the substrate holding member.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18388985 | 1985-08-23 | ||
JP60-183889 | 1985-08-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62122156A JPS62122156A (en) | 1987-06-03 |
JPH0573263B2 true JPH0573263B2 (en) | 1993-10-14 |
Family
ID=16143585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61195539A Granted JPS62122156A (en) | 1985-08-23 | 1986-08-22 | Cooling device for ic and manufacture thereof |
Country Status (3)
Country | Link |
---|---|
US (1) | US4724611A (en) |
JP (1) | JPS62122156A (en) |
FR (1) | FR2586510B1 (en) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3853197T2 (en) * | 1987-12-07 | 1995-06-29 | Nippon Electric Co | Cooling system for integrated circuit pack. |
CA1303238C (en) * | 1988-05-09 | 1992-06-09 | Kazuhiko Umezawa | Flat cooling structure of integrated circuit |
US4975766A (en) * | 1988-08-26 | 1990-12-04 | Nec Corporation | Structure for temperature detection in a package |
JPH06100408B2 (en) * | 1988-09-09 | 1994-12-12 | 日本電気株式会社 | Cooling system |
EP0363687B1 (en) * | 1988-09-20 | 1996-01-10 | Nec Corporation | Cooling structure for electronic components |
EP0516875B1 (en) * | 1991-06-06 | 1995-08-23 | International Business Machines Corporation | Module for electronic package |
JP2728105B2 (en) * | 1991-10-21 | 1998-03-18 | 日本電気株式会社 | Cooling device for integrated circuits |
US5263245A (en) * | 1992-01-27 | 1993-11-23 | International Business Machines Corporation | Method of making an electronic package with enhanced heat sinking |
US5731633A (en) * | 1992-09-16 | 1998-03-24 | Gary W. Hamilton | Thin multichip module |
US5484959A (en) * | 1992-12-11 | 1996-01-16 | Staktek Corporation | High density lead-on-package fabrication method and apparatus |
US5604978A (en) * | 1994-12-05 | 1997-02-25 | International Business Machines Corporation | Method for cooling of chips using a plurality of materials |
US5517753A (en) * | 1995-04-06 | 1996-05-21 | International Business Machines Corporation | Adjustable spacer for flat plate cooling applications |
DE19643717A1 (en) * | 1996-10-23 | 1998-04-30 | Asea Brown Boveri | Liquid cooling device for a high-performance semiconductor module |
FR2766967A1 (en) * | 1997-07-31 | 1999-02-05 | Scps | Heat sink and electromagnetic protection device for pcb |
US6956284B2 (en) * | 2001-10-26 | 2005-10-18 | Staktek Group L.P. | Integrated circuit stacking system and method |
US6576992B1 (en) * | 2001-10-26 | 2003-06-10 | Staktek Group L.P. | Chip scale stacking system and method |
US7026708B2 (en) * | 2001-10-26 | 2006-04-11 | Staktek Group L.P. | Low profile chip scale stacking system and method |
US7371609B2 (en) * | 2001-10-26 | 2008-05-13 | Staktek Group L.P. | Stacked module systems and methods |
US7485951B2 (en) * | 2001-10-26 | 2009-02-03 | Entorian Technologies, Lp | Modularized die stacking system and method |
US20060255446A1 (en) * | 2001-10-26 | 2006-11-16 | Staktek Group, L.P. | Stacked modules and method |
US7656678B2 (en) * | 2001-10-26 | 2010-02-02 | Entorian Technologies, Lp | Stacked module systems |
US7202555B2 (en) * | 2001-10-26 | 2007-04-10 | Staktek Group L.P. | Pitch change and chip scale stacking system and method |
US7081373B2 (en) | 2001-12-14 | 2006-07-25 | Staktek Group, L.P. | CSP chip stack with flex circuit |
US7760513B2 (en) * | 2004-09-03 | 2010-07-20 | Entorian Technologies Lp | Modified core for circuit module system and method |
US20060050492A1 (en) * | 2004-09-03 | 2006-03-09 | Staktek Group, L.P. | Thin module system and method |
US7606040B2 (en) * | 2004-09-03 | 2009-10-20 | Entorian Technologies, Lp | Memory module system and method |
US7579687B2 (en) | 2004-09-03 | 2009-08-25 | Entorian Technologies, Lp | Circuit module turbulence enhancement systems and methods |
US7511968B2 (en) * | 2004-09-03 | 2009-03-31 | Entorian Technologies, Lp | Buffered thin module system and method |
US7606049B2 (en) | 2004-09-03 | 2009-10-20 | Entorian Technologies, Lp | Module thermal management system and method |
US7289327B2 (en) * | 2006-02-27 | 2007-10-30 | Stakick Group L.P. | Active cooling methods and apparatus for modules |
US7446410B2 (en) | 2004-09-03 | 2008-11-04 | Entorian Technologies, Lp | Circuit module with thermal casing systems |
US7468893B2 (en) * | 2004-09-03 | 2008-12-23 | Entorian Technologies, Lp | Thin module system and method |
US20060261449A1 (en) * | 2005-05-18 | 2006-11-23 | Staktek Group L.P. | Memory module system and method |
US20060049513A1 (en) * | 2004-09-03 | 2006-03-09 | Staktek Group L.P. | Thin module system and method with thermal management |
US7443023B2 (en) * | 2004-09-03 | 2008-10-28 | Entorian Technologies, Lp | High capacity thin module system |
US7542297B2 (en) | 2004-09-03 | 2009-06-02 | Entorian Technologies, Lp | Optimized mounting area circuit module system and method |
US7324352B2 (en) * | 2004-09-03 | 2008-01-29 | Staktek Group L.P. | High capacity thin module system and method |
US7522421B2 (en) * | 2004-09-03 | 2009-04-21 | Entorian Technologies, Lp | Split core circuit module |
US7423885B2 (en) * | 2004-09-03 | 2008-09-09 | Entorian Technologies, Lp | Die module system |
US7616452B2 (en) | 2004-09-03 | 2009-11-10 | Entorian Technologies, Lp | Flex circuit constructions for high capacity circuit module systems and methods |
US7606050B2 (en) * | 2004-09-03 | 2009-10-20 | Entorian Technologies, Lp | Compact module system and method |
US20060055024A1 (en) * | 2004-09-14 | 2006-03-16 | Staktek Group, L.P. | Adapted leaded integrated circuit module |
US20060072297A1 (en) * | 2004-10-01 | 2006-04-06 | Staktek Group L.P. | Circuit Module Access System and Method |
US20060118936A1 (en) * | 2004-12-03 | 2006-06-08 | Staktek Group L.P. | Circuit module component mounting system and method |
US20060175693A1 (en) * | 2005-02-04 | 2006-08-10 | Staktek Group, L.P. | Systems, methods, and apparatus for generating ball-out matrix configuration output for a flex circuit |
US20060244114A1 (en) * | 2005-04-28 | 2006-11-02 | Staktek Group L.P. | Systems, methods, and apparatus for connecting a set of contacts on an integrated circuit to a flex circuit via a contact beam |
US20060250780A1 (en) * | 2005-05-06 | 2006-11-09 | Staktek Group L.P. | System component interposer |
US7033861B1 (en) | 2005-05-18 | 2006-04-25 | Staktek Group L.P. | Stacked module systems and method |
US7511969B2 (en) * | 2006-02-02 | 2009-03-31 | Entorian Technologies, Lp | Composite core circuit module system and method |
DE102007041419B4 (en) * | 2007-08-31 | 2022-03-31 | Sew-Eurodrive Gmbh & Co Kg | Arrangement for cooling electrical components and converter and compact drive with it |
CN113645799A (en) * | 2020-04-27 | 2021-11-12 | 富泰华工业(深圳)有限公司 | Heat dissipation structure for electronic device and electronic device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2999034A (en) * | 1960-10-21 | 1961-09-05 | Wenczler & Heidenhain | Method of manufacture of line plates, scales, and the like |
JPS5586130A (en) * | 1978-12-25 | 1980-06-28 | Hitachi Ltd | Connection of semiconductor element |
US4439918A (en) * | 1979-03-12 | 1984-04-03 | Western Electric Co., Inc. | Methods of packaging an electronic device |
JPS5670655A (en) * | 1979-11-15 | 1981-06-12 | Matsushita Electric Ind Co Ltd | Manufacture of electronic circuit mounting device |
IT1218271B (en) * | 1981-04-13 | 1990-04-12 | Ates Componenti Elettron | PROCEDURE FOR THE MANUFACTURE OF PLASTIC CONTAINERS WITH THERMAL DISSIPATOR FOR INTEGRATED CIRCUITS AND COMBINATION OF MOLD AND DISSIPATORS USABLE WITH SUCH PROCEDURE |
-
1986
- 1986-08-20 US US06/898,428 patent/US4724611A/en not_active Expired - Fee Related
- 1986-08-21 FR FR8611948A patent/FR2586510B1/en not_active Expired - Lifetime
- 1986-08-22 JP JP61195539A patent/JPS62122156A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
FR2586510A1 (en) | 1987-02-27 |
FR2586510B1 (en) | 1990-06-15 |
US4724611A (en) | 1988-02-16 |
JPS62122156A (en) | 1987-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0573263B2 (en) | ||
JP3034814B2 (en) | Lead frame structure and method of manufacturing semiconductor device | |
US5223747A (en) | Heat dissipating device | |
TW516133B (en) | Method of manufacturing semiconductor device | |
US6773966B2 (en) | Method of manufacturing semiconductor device | |
JPS62293749A (en) | Three-dimensional mounting structure of semiconductor device and manufacture thereof | |
JPH04306865A (en) | Semiconductor device and manufacture thereof | |
JPH0426550B2 (en) | ||
TWI438878B (en) | Semiconductor device and method for manufacturing a semiconductor device having improved heat dissipation capabilities | |
JP3367272B2 (en) | Lead frame and semiconductor device | |
JP3579261B2 (en) | Manufacturing method of hybrid integrated circuit module | |
KR100290785B1 (en) | Manufacturing method of chip size package | |
JP3180686B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH11340387A (en) | Semiconductor device, mounting method thereof, and electronic device | |
JP3213579B2 (en) | Manufacturing method of hybrid integrated circuit device | |
JP2004079928A (en) | Semiconductor device and its manufacturing method | |
JPH0691128B2 (en) | Electronic equipment | |
JPH0364049A (en) | Hybrid integrated circuit device | |
JPH0210572B2 (en) | ||
JPH01115147A (en) | Manufacture of cooling device for integrated circuit | |
JPS6245052A (en) | Cooling unit for integrated circuit | |
JPS61193471A (en) | Semiconductor device | |
JPH06296046A (en) | Manufacture of thermomodule | |
JPH04333275A (en) | Vlsi lead frame | |
JP2000021907A (en) | Semiconductor device and manufacture of the same |