[go: up one dir, main page]

JPH0572923B2 - - Google Patents

Info

Publication number
JPH0572923B2
JPH0572923B2 JP60067963A JP6796385A JPH0572923B2 JP H0572923 B2 JPH0572923 B2 JP H0572923B2 JP 60067963 A JP60067963 A JP 60067963A JP 6796385 A JP6796385 A JP 6796385A JP H0572923 B2 JPH0572923 B2 JP H0572923B2
Authority
JP
Japan
Prior art keywords
particle size
particles
monomer
fine particles
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60067963A
Other languages
Japanese (ja)
Other versions
JPS61225254A (en
Inventor
Tadashi Asano
Yutaka Moroishi
Isoji Sakai
Isao So
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP6796385A priority Critical patent/JPS61225254A/en
Publication of JPS61225254A publication Critical patent/JPS61225254A/en
Publication of JPH0572923B2 publication Critical patent/JPH0572923B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、高分子微粒子に架橋重合体を付加し
た構造を有する粒径の均一性、耐溶剤性にすぐれ
る表面が凹凸状の均一粒径微粒子及びその製造方
法に関するものである。 従来の技術 不透明化剤、つや消し剤、有機顔料、厚み間隙
調整材、クロマトグラフイー用担体などとして利
用される重合体微粒子には、その粒径が均一であ
ることが強く要求される。また、厚み間隙調整材
やクロマトグラフイー用担体として利用するとき
のように各種の溶剤に分散させた状態で適用され
る場合には、その溶剤に溶解ないし膨潤しないこ
とも強く要求される。さらに、クロマトグラフイ
ー用担体として利用するときのように粒子に広表
面積性が望まれる場合もある。 従来、広い表面積を有するあるいは耐溶剤性を
有する重合体微粒子としては、アクリル酸、メタ
クリル酸のような単量体と2以上の官能基を有す
る親水性のビニル系単量体とを、単量体に可溶で
その重合体に不溶の有機溶剤を少量加えた懸濁重
合方式で共重合させたのち、得られた共重合体よ
り溶剤を抽出してなる多孔性粒子が知られていた
(特開昭58−88657号公報)。 また、特殊な懸濁剤を用いたり高速攪拌下に分
散させたりして架橋単量体を含む単量体混合物を
懸濁重合方式下に重合せしめて得たもの、触媒を
含む単量体をアニオン系乳化剤を含む水分散系で
ホモミキサ等による均質化処理下に重合せしめて
得たもの(特開昭59−66406号公報)も知られて
いた。さらに、スチレン系重合体ビーズの懸濁液
にスチレン系の乳化剤を添加して該ビーズの外周
に新たにスチレン系重合体層を播種懸濁重合方式
で形成したものも知られていた(特開昭57−
128708号公報)。 発明が解決しようとする問題点 しかしながら、多孔性粒子を製造する方法では
得られる粒子の粒子径が5〜13μmとその均一性
に劣ること、懸濁重合方式による重合方法では粒
径が約30μm以下のものを高収率で得ることが難
しいこと、またホモミキサ等による均質化処理方
式で重合させる方法では、8μm以下の粒子を得る
ことが難しく、かつ得られたものが例えば平均粒
径8μmのときでもその粒径分布が3〜15μmにも
及ぶなど粒径の均一性に劣ること、さらに播種懸
濁重合方式で重合する方法では得られる粒子の粒
径が30メツシユ程度にもなりその微粒性に劣るこ
となどの問題があつた。したがつて、従来方法で
は粒径が1〜30μmの広表面積で耐溶剤性にすぐ
れる重合体粒子を得ることができず、また粒径分
布の均一化をはかるため重合後に分級処理してい
るのが現状である。 問題点を解決するための手段 本発明者らは、上記の問題点を克服し、広表面
積性と耐溶剤性とにすぐれる重合体微粒子及びこ
れを粒径分布範囲の狭い状態で得ることができる
製造方法を開発するために鋭意研究を重ねた結
果、高分子微粒子をシードとして用い、このシー
ド粒子中に架橋性及び非架橋性の単量体を吸収さ
せてこれを共重合させるとともに、シード粒子表
面上においても共重合させて架橋重合体とするこ
とによりその目的を達成しうることを見出し、本
発明をなすに至つた。 すなわち、本発明は架橋性単量体と非架橋性単
量体とを共重合せしめてなる架橋重合体を高分子
微粒子の内部に含み、かつ、表面に凹凸状態に有
し、粒径が1〜30μmで粒径分布の標準偏差が
1μm以下であると共に耐溶剤型であり、体内にポ
アを含まないことを特徴とする均一粒径微粒子及
び、粒径が20μm以下で粒径分布の標準偏差が
0.5μm以下の高分子微粒子の分散液に、架橋性単
量体と非架橋性単量体からなる単量体混合物の水
分散液を、前記高分子微粒子100重量部あたり単
量体混合物100〜3000重量部を加え、油溶性重合
開始剤の共存下その開始剤の分解温度に速やかに
加温して重合させることを特徴とする前記の均一
粒径微粒子の製造方法を提供するものである。 本発明において用いられる高分子微粒子として
は、粒径が20μm以下、好ましくは0.4〜15μm、
粒径分布の標準偏差が0.5μm以下、好ましくは
0.2μm以下のものをあげることができ、微粒子の
体内にポアを含まない非多孔性のものが用いられ
る。これにより、粒径の均一性にすぐれて分級す
ることなく実用途に供しうる目的物の、体内にポ
アを含まない均一粒径微粒子の形成が可能とな
る。 本発明において高分子微粒子はスチレン系、ア
クリル系、メタクリル系などの重合体からなる非
架橋型のものであつてもいが、好ましくは耐溶剤
性の点で用いる単量体混合物で膨潤しうる程度に
架橋したものである。この架橋高分子微粒子は、
例えば次のようにして得ることができる。 すなわち、非架橋性単量体と架橋性単量体を乳
化剤含有水あるいは乳化剤を含まない水に分散さ
せ、水溶性重合開始剤と共存下に重合(乳化重
合、無乳化重合)させることにより容易に得るこ
とができる。この場合、乳化剤を用いない重合方
式が得られる重合体の粒径がより大きい点で好ま
しい。また、通常の乳化重合方式で得たエマルジ
ヨンにおける重合体をシード粒子とし、これに分
散媒、架橋性単量体、非架橋性単量体、重合反応
の安定化に必要な量の乳化剤(表面張力が
55dyne/cm以上となるようにすることが好まし
い。)及び重合開始剤を加えて重合するシード重
合を1回又は必要に応じ2回以上繰返し適用して
初期のシード粒子としての重合体より大きい粒子
とする方式によつても得ることができる。この方
式で得た粒子は粒径分布がより均一であるので本
発明において好ましく用いうる。その際、単量体
としてはそのものないしその重合体が水に溶解し
ないものが好ましく用いうる。水に溶解するもの
であれば、水中で重合が進行してシード粒子等の
粒径が成長しにくく、また新たな粒子ができやす
くなつて好ましくない。好ましく用いうる非架橋
性単量体としては、例えばスチレン、メチルスチ
レン、エチルスチレンのようなスチレン系単量
体、ブチルアクリレート、ブチルメタクリレー
ト、2−エチルヘキシルアクリレート、2−エチ
ルヘキシルメタクリレートのような炭素数が4以
上のアルキル基を有するアクリル酸ないしメタク
リル酸エステル系単量体などをあげることができ
る。非架橋性単量体は、下記の架橋性単量体と同
様に単独であるいは2種以上を組合せて用いら
れ、目的とする架橋高分子微粒子ひいては均一粒
径微粒子の用途に応じて選択使用される。例え
ば、各種の厚み間隙調整材、クロマトグラフイー
用担体に使用する場合には、該微粒子に耐圧性が
要求されるので、重合体のガラス転移点が高いス
チレン径単量体などが特に適している。一方、架
橋性単量体としては、例えばトリメチロールプロ
パントリアクリレート、ジエチレングリコールジ
メタクリレート、ジビニルベンゼンのようなエチ
レン性二重結合を2以上有する単量体などをあげ
ることができる。なかんづくジビニルベンゼンの
ように水への溶解性の低いものが好ましく用いら
れる。水への溶解性が高いものでは、重合処理過
程でシード粒子以外の新たな粒子が生成するため
である。 前記したように本発明で好ましく用いる架橋高
分子微粒子は使用する単量体で膨潤しうるもので
あるが、これは例えば非架橋性単量体が99〜
99.95重量%、架橋性単量体が1〜0.05重量%と
なるような使用割合で混合し、乳化重合方式等の
上記した方式で共重合させることにより達成しう
る。この使用割合で共重合せしめて得た架橋高分
子微粒子の、膨潤前に対する膨潤後の粒子の容積
比で定義される膨潤度は通常8〜100であり、こ
の程度の膨潤度のものが本発明においては好適で
ある。なお、架橋性単量体の使用割合が過多であ
ると膨潤度の過小(架橋密度過多)なものが得ら
れることとなつて、その架橋高分子微粒子中に架
橋重合体を設ける際の重合処理において単量体が
充分に該粒子中に拡散できず、微粒子中での重合
が不充分となり、該微粒子以外に新たな粒子が生
成することとなつて本発明の目的が充分に達成さ
れにくい。 本発明において用いられる架橋性単量体及び非
架橋性単量体としては、上記した架橋高分子微粒
子の場合と同様のものをあげることができる。架
橋性単量体と非架橋性単量体の使用割合は、非架
橋性単量体1モルあたり架橋性単量体0.1〜1モ
ル、好ましくは0.2〜0.8モルが適当である。その
架橋性単量体の使用割合が0.1モル未満であると
形成される架橋重合体の架橋密度が過少となり、
一方1モルを超えると架橋重合体の架橋密度が過
多となつていずれも本発明の目的が達成されにく
くなる。 本発明方法においては、前記の架橋性単量体と
非架橋性単量体はこれらの混合物の水分散液の状
態で上記した高分子微粒子の分散液に添加され
る。添加割合は、高分子微粒子100重量部あたり、
両単量体の混合物で100〜3000重量部、好ましく
は150〜2500重量部である。その添加割合が100重
量部未満であると得られる均一粒径微粒子の耐溶
剤性が不充分となり、一方3000重量部を超えると
高分子微粒子中以外での重量が進行しやすくなつ
て好ましくない。また、前記両単量体すなわち架
橋性単量体と非架橋性単量体との単量体混合物に
おける架橋性単量体の比率は10〜50重量%が適当
である。用いる単量体としては、水に溶解しやす
い架橋性単量体を用いると高分子微粒子中に有効
にその単量体田が浸入せず、該微粒子以外に新た
な粒子が生じる場合が多くなるのでジビニルベン
ゼンのような水に難溶性のものが好ましく用いう
る。また、同じ理由で非架橋性単量体としても水
に難溶性のものが好ましく用いうる。したがつ
て、本発明における好ましい組合せは、スチレン
系単量体とジビニルベンンゼンからなる架橋高分
子微粒子と架橋重合体とで例示できるような水に
難溶性のものの組合せである。前記のスチレン系
単量体とジビニルベンゼンとの組合せからなるも
のは、それらに基づく高いガラス転移点性により
クロマトグラフイー用担体等に利用するときのよ
うに殊に耐圧性が要求される場合の用途に適する
利点を有している。 本発明方法においては、高分子微粒子の分散液
に単量体混合物の水分散液を加え、油溶性重合開
始材の共存下その開始材の分解温度に速やかに加
温して共重合反応を行わせる。これにより、高分
子微粒子中への単量体混合物の浸入、これに続く
共重合と同時に、該微粒子近傍で単量体混合物の
油滴の重合が進行し、重合開始剤に基づく活性種
を有する油滴が高分子微粒子に接触して該微粒子
に浸入(吸収)した単量体と反応することとな
る。したがつて、単量体混合物の油滴径が均一の
場合、高分子微粒子の表面に規則的な大きさを有
する架橋重合体に基づく凹凸が形成されることと
なり、表面積の大きい粒子が得られる。また、前
記に基づいて大内にポアを含まない架橋重合体が
高分子微粒子の内外に形成され、大内にポアを含
まない状態が維持されて目的物の均一粒径微粒子
が得られる。なお、単量体混合物の油滴は小さい
ほど、また高分子微粒子に接触しやすい状態にあ
るほど本発明においては好都合であるので、例え
ば単量体混合物ないし分散媒としての水に小量、
望ましくは必要最小限の乳化剤を加えその分散液
を超音波処理して乳化液とするなどし、該油滴が
0.1〜0.5μmの大きさのものとなつた状態で単量体
混合物を加えることが好ましい。この点よりすれ
ば高分子微粒子の粒径は0.5μm以上、なかんずく
1μm以上あることが好ましい。高分子微粒子に対
する単量体混合物の油滴を相対的に小さくして、
表面積の増加効率をよくするためである。 一方、前記の重合反応を行わしめる重合開始剤
としては油溶性のラジカル開始剤が通常用いられ
る。水溶性のものであるとシード粒子以外に新た
な粒子が生成するときがあつて不都合を生じる場
合がある。なお、重合開始剤は、単量体ないしそ
の混合物に0.1〜3重量%溶解せしめて用いるこ
とが共重合を円滑に行わしめるうえで望ましい。 上記のようにして重合反応を行わしめることに
より、本発明の高分子微粒子中に架橋重合体を有
し、かつ、高分子微粒子の表面に架橋重合体を凹
凸状態で有する粒径が1〜30μm、好ましくは1
〜20μm、粒径分布の標準偏差が1μm以下、好ま
しくは0.5μm以下で広表面積性、体溶剤性、粒径
の均一性にすぐれると共に体内にポアを含まない
状態の均一粒径微粒子が得られる。均一粒径微粒
子における架橋重合体は、その微粒子と化学的に
結合していてもよいし、結合していなくてもよ
い。 発明の効果 本発明の均一粒径微粒子は、架橋重合体を表面
に凹凸状に有し、かつ、内部にも有するので広い
表面積を有するとともに、耐溶剤性にすぐれ、粒
径の均一性にもすぐれている。さらに、体内にポ
アを含まない構造で耐圧性等の強度にもすぐれて
いる。 また、本発明方法によれば前記均一粒径微粒子
を高収率に、しかも粒径の均一性にすぐれる状態
で得ることができ、分級処理を施すことなく実用
途に供しうるものを製造できる利点を有してい
る。 実施例 参考例 1 ラウリル硫酸ナトリウム0.6部(重量部、以下
同様)を溶解させたイオン交換水70部にジビニル
ベンゼンを0.25%(重量%、以下同様)溶解させ
たスチレン30部を分散させたのち、これを攪拌し
ながら窒素気流下で70℃に昇温させ、ついで過硫
酸カリウム0.03部を溶解させたイオン交換水5部
を加え、70℃に8時間保持して重合体粒子の分散
液を得た。この重合体粒子の粒径は0.043μm、粒
径分布の標準偏差は0.01μmであつた。 次に、得られた重合体粒子の分散液10部とイオ
ン交換水65部を混合して70℃に昇温したのち、ジ
ビニルベンゼンを0.25%溶解させたスチレン30部
を加えて1時間攪拌し、ついで過硫酸カリウム
0.03部を溶解させたイオン交換水5部を加えて70
℃に8時間保持し、粒径が0.149μm、その粒径分
布の標準偏差0.012μmの重合体粒子の水分散液を
得た。さらに、得られた分散液を用いて第1表に
示した組成でシード重合を行ない重合体粒子の水
分散液を得た。
INDUSTRIAL APPLICATION FIELD The present invention relates to uniformly sized fine particles having a structure in which a crosslinked polymer is added to a polymer fine particle and having an uneven surface, which has a uniform particle size and excellent solvent resistance, and a method for producing the same. be. BACKGROUND OF THE INVENTION Polymer particles used as opacifying agents, matting agents, organic pigments, thickness and gap adjusting materials, carriers for chromatography, etc. are strongly required to have uniform particle diameters. Furthermore, when used in a dispersed state in various solvents, such as when used as a thickness gap adjustment material or a carrier for chromatography, it is strongly required that the material does not dissolve or swell in the solvent. Furthermore, there are cases where particles are desired to have a large surface area, such as when used as a carrier for chromatography. Conventionally, polymer fine particles having a large surface area or having solvent resistance have been produced using a monomer such as acrylic acid or methacrylic acid and a hydrophilic vinyl monomer having two or more functional groups. Porous particles are known to be obtained by copolymerizing the polymer by a suspension polymerization method in which a small amount of an organic solvent that is soluble in the body and insoluble in the polymer is added, and then the solvent is extracted from the resulting copolymer ( (Japanese Unexamined Patent Publication No. 1988-88657). In addition, monomer mixtures containing crosslinking monomers are polymerized using a suspension polymerization method using special suspending agents or dispersed under high-speed stirring, and monomers containing catalysts are also used. Also known was a product obtained by polymerizing an aqueous dispersion containing an anionic emulsifier under homogenization treatment using a homomixer or the like (Japanese Unexamined Patent Publication No. 1983-66406). Furthermore, it is also known that a styrene emulsifier is added to a suspension of styrene polymer beads to form a new styrene polymer layer around the beads using a seeding suspension polymerization method (Unexamined Japanese Patent Publication No. Showa 57-
128708). Problems to be Solved by the Invention However, the method for producing porous particles has a particle size of 5 to 13 μm, which is poor in uniformity, and the suspension polymerization method has a particle size of about 30 μm or less. It is difficult to obtain particles with a high yield in a high yield, and it is difficult to obtain particles of 8 μm or less using a homogenization method using a homomixer, etc., and when the obtained particles have an average particle size of 8 μm, for example. However, the uniformity of the particle size is poor, with the particle size distribution ranging from 3 to 15 μm.Furthermore, in the seeded suspension polymerization method, the particle size of the obtained particles is about 30 mesh, and the fineness of the particles is poor. There were problems such as being inferior. Therefore, with conventional methods, it is not possible to obtain polymer particles with a particle size of 1 to 30 μm, a wide surface area, and excellent solvent resistance, and in order to make the particle size distribution uniform, classification treatment is performed after polymerization. is the current situation. Means for Solving the Problems The present inventors have overcome the above problems and have been able to obtain polymer fine particles having a wide surface area and excellent solvent resistance, and having a narrow particle size distribution range. As a result of intensive research to develop a production method that can produce the desired results, we have found that polymer fine particles are used as seeds, crosslinkable and non-crosslinkable monomers are absorbed into these seed particles, and they are copolymerized. The inventors have discovered that the object can be achieved by copolymerizing the particle surface to form a crosslinked polymer, and have completed the present invention. That is, the present invention contains a crosslinked polymer formed by copolymerizing a crosslinkable monomer and a non-crosslinkable monomer inside the polymer fine particles, has an uneven surface, and has a particle size of 1. The standard deviation of the particle size distribution is ~30 μm.
Fine particles with a uniform particle size of 1 μm or less, solvent-resistant, and containing no pores in the body, and particles with a particle size of 20 μm or less with a standard deviation of particle size distribution.
An aqueous dispersion of a monomer mixture consisting of a crosslinking monomer and a non-crosslinking monomer is added to a dispersion of fine polymer particles of 0.5 μm or less in an amount of 100 to 100 parts by weight of the monomer mixture per 100 parts by weight of the fine polymer particles. The present invention provides a method for producing the above-mentioned uniform particle diameter particles, which comprises adding 3,000 parts by weight of the polymer and polymerizing the particles by rapidly heating the mixture to the decomposition temperature of the initiator in the presence of an oil-soluble polymerization initiator. The polymer fine particles used in the present invention have a particle size of 20 μm or less, preferably 0.4 to 15 μm,
Standard deviation of particle size distribution is 0.5μm or less, preferably
The particle size can be 0.2 μm or less, and non-porous particles that do not contain pores inside the particles are used. This makes it possible to form fine particles of uniform size that do not contain pores in the body, which is a target product that has excellent uniformity in particle size and can be used for practical purposes without being classified. In the present invention, the polymer fine particles may be non-crosslinked ones made of styrene, acrylic, or methacrylic polymers, but are preferably to the extent that they can swell with the monomer mixture used in terms of solvent resistance. It is a cross-linked product. This crosslinked polymer fine particle is
For example, it can be obtained as follows. That is, the non-crosslinkable monomer and the crosslinkable monomer are easily dispersed in emulsifier-containing water or emulsifier-free water, and polymerized in the coexistence with a water-soluble polymerization initiator (emulsion polymerization, non-emulsion polymerization). can be obtained. In this case, a polymerization method that does not use an emulsifier is preferable because the particle size of the polymer obtained is larger. In addition, the polymer in the emulsion obtained by the usual emulsion polymerization method is used as a seed particle, and it is mixed with a dispersion medium, a crosslinking monomer, a non-crosslinking monomer, and an emulsifier in the amount necessary to stabilize the polymerization reaction (surface The tension
It is preferable to set it to 55 dyne/cm or more. ) and a polymerization initiator for polymerization, which is repeated once or twice or more if necessary, to form particles larger than the initial seed particles. Particles obtained by this method have a more uniform particle size distribution and can therefore be preferably used in the present invention. In this case, as monomers, monomers that themselves or their polymers do not dissolve in water can be preferably used. If it is soluble in water, polymerization will proceed in water, making it difficult to grow the particle size of seed particles, etc., and making it easier to form new particles, which is undesirable. Examples of non-crosslinking monomers that can be preferably used include styrenic monomers such as styrene, methylstyrene, and ethylstyrene; Examples include acrylic acid or methacrylic acid ester monomers having four or more alkyl groups. The non-crosslinking monomers, like the crosslinking monomers described below, can be used alone or in combination of two or more, and are selected and used depending on the intended use of the crosslinked polymer fine particles and even uniform particle size particles. Ru. For example, when used in various thickness and gap adjustment materials and carriers for chromatography, the fine particles are required to have pressure resistance, so styrene diameter monomers with a high polymer glass transition point are particularly suitable. There is. On the other hand, examples of crosslinkable monomers include monomers having two or more ethylenic double bonds, such as trimethylolpropane triacrylate, diethylene glycol dimethacrylate, and divinylbenzene. Among these, those having low solubility in water, such as divinylbenzene, are preferably used. This is because particles with high water solubility generate new particles other than seed particles during the polymerization process. As mentioned above, the crosslinked polymer fine particles preferably used in the present invention are those that can be swollen by the monomer used, but this is because the non-crosslinkable monomer is, for example, 99 to
This can be achieved by mixing at a ratio of 99.95% by weight and 1 to 0.05% by weight of the crosslinkable monomer, and copolymerizing by the above-mentioned method such as emulsion polymerization method. The degree of swelling, defined as the volume ratio of the particles after swelling to that before swelling, of the crosslinked polymer fine particles obtained by copolymerizing at this usage ratio is usually 8 to 100, and the swelling degree of this degree is the present invention. It is suitable for In addition, if the proportion of the crosslinkable monomer used is too large, a product with too low degree of swelling (excessive crosslinking density) will be obtained, and the polymerization process when providing the crosslinked polymer in the crosslinked polymer fine particles will be difficult. In this case, the monomer cannot be sufficiently diffused into the particles, resulting in insufficient polymerization in the fine particles, and new particles are generated in addition to the fine particles, making it difficult to fully achieve the object of the present invention. As the crosslinkable monomer and non-crosslinkable monomer used in the present invention, the same ones as in the case of the crosslinked polymer fine particles described above can be mentioned. The appropriate ratio of the crosslinking monomer to the non-crosslinking monomer is 0.1 to 1 mole, preferably 0.2 to 0.8 mole, of the crosslinking monomer per mole of the non-crosslinking monomer. If the proportion of the crosslinkable monomer used is less than 0.1 mole, the crosslink density of the crosslinked polymer formed will be too low.
On the other hand, if the amount exceeds 1 mole, the crosslink density of the crosslinked polymer becomes too high, making it difficult to achieve the object of the present invention. In the method of the present invention, the above-mentioned crosslinkable monomer and non-crosslinkable monomer are added to the above-mentioned dispersion of polymer fine particles in the form of an aqueous dispersion of a mixture thereof. The addition ratio is per 100 parts by weight of polymer fine particles.
The amount of the mixture of both monomers is 100 to 3000 parts by weight, preferably 150 to 2500 parts by weight. If the addition ratio is less than 100 parts by weight, the resulting fine particles of uniform particle size will have insufficient solvent resistance, while if it exceeds 3,000 parts by weight, the weight will tend to increase in areas other than the polymer fine particles, which is undesirable. Further, the proportion of the crosslinkable monomer in the monomer mixture of both monomers, that is, the crosslinkable monomer and the non-crosslinkable monomer, is suitably 10 to 50% by weight. If a crosslinking monomer that is easily soluble in water is used as the monomer, the monomer will not effectively penetrate into the polymer fine particles, and new particles will often be generated in addition to the fine particles. Therefore, a material that is sparingly soluble in water, such as divinylbenzene, can be preferably used. Furthermore, for the same reason, a non-crosslinking monomer that is sparingly soluble in water can be preferably used. Therefore, a preferred combination in the present invention is a combination of a crosslinked polymer that is poorly soluble in water, such as a crosslinked polymer and a crosslinked polymer fine particle made of a styrene monomer and divinylbenzene. The combination of the above-mentioned styrene monomer and divinylbenzene has a high glass transition temperature based on them, so it is suitable for use in cases where pressure resistance is particularly required, such as when used as a chromatography carrier. It has advantages suitable for various uses. In the method of the present invention, an aqueous dispersion of a monomer mixture is added to a dispersion of fine polymer particles, and the copolymerization reaction is carried out by rapidly heating to the decomposition temperature of the initiator in the presence of an oil-soluble polymerization initiator. let As a result, at the same time as the monomer mixture penetrates into the polymer fine particles and the subsequent copolymerization occurs, the polymerization of the oil droplets of the monomer mixture proceeds in the vicinity of the fine particles, and active species based on the polymerization initiator are formed. The oil droplets come into contact with the polymer fine particles and react with the monomers that have penetrated (absorbed) into the fine particles. Therefore, if the oil droplet size of the monomer mixture is uniform, irregularities based on the crosslinked polymer having a regular size will be formed on the surface of the polymer fine particles, resulting in particles with a large surface area. . Furthermore, based on the above, a crosslinked polymer that does not contain pores within the inner diameter is formed inside and outside the polymer fine particles, and a state in which the inner diameter does not contain pores is maintained, thereby obtaining uniform-sized fine particles of the target object. It should be noted that the smaller the oil droplets of the monomer mixture, and the easier they are in contact with the fine polymer particles, the more convenient it is in the present invention.
Preferably, the minimum necessary amount of emulsifier is added and the dispersion is treated with ultrasonic waves to form an emulsion, so that the oil droplets are
It is preferable to add the monomer mixture in a state where the size is 0.1 to 0.5 μm. From this point of view, the particle size of polymer fine particles is 0.5 μm or more, especially
It is preferable that the thickness is 1 μm or more. By making the oil droplets of the monomer mixture relatively small with respect to the polymer fine particles,
This is to improve the efficiency of increasing the surface area. On the other hand, as the polymerization initiator for carrying out the above-mentioned polymerization reaction, an oil-soluble radical initiator is usually used. If it is water-soluble, new particles may be generated in addition to the seed particles, which may cause problems. In order to smoothly carry out copolymerization, it is preferable that the polymerization initiator be used in a form of 0.1 to 3% by weight dissolved in the monomer or a mixture thereof. By carrying out the polymerization reaction as described above, the particles having a crosslinked polymer in the fine polymer particles of the present invention and having the crosslinked polymer in an uneven state on the surface of the fine polymer particles have a particle size of 1 to 30 μm. , preferably 1
~20 μm, the standard deviation of the particle size distribution is 1 μm or less, preferably 0.5 μm or less, and it is possible to obtain uniformly sized fine particles that have a wide surface area, excellent solubility, and uniform particle size, and do not contain pores in the body. It will be done. The crosslinked polymer in the uniform particle size fine particles may or may not be chemically bonded to the fine particles. Effects of the Invention The uniform particle size fine particles of the present invention have a crosslinked polymer on the surface in an uneven manner and also on the inside, so they have a wide surface area, excellent solvent resistance, and uniform particle size. It is excellent. Furthermore, it has a structure that does not contain any pores inside the body, and has excellent strength such as pressure resistance. Further, according to the method of the present invention, the uniform particle size fine particles can be obtained in a high yield and in a state with excellent particle size uniformity, and products that can be used for practical purposes can be manufactured without performing classification treatment. It has advantages. Reference Example 1 After dispersing 30 parts of styrene in which 0.25% (by weight, the same below) of divinylbenzene was dissolved in 70 parts of ion-exchanged water in which 0.6 parts (by weight, the same below) of sodium lauryl sulfate was dissolved. This was heated to 70°C under a nitrogen stream while stirring, then 5 parts of ion-exchanged water in which 0.03 part of potassium persulfate was dissolved was added, and the temperature was maintained at 70°C for 8 hours to form a dispersion of polymer particles. Obtained. The particle size of the polymer particles was 0.043 μm, and the standard deviation of the particle size distribution was 0.01 μm. Next, 10 parts of the obtained dispersion of polymer particles and 65 parts of ion-exchanged water were mixed and the temperature was raised to 70°C, and then 30 parts of styrene in which 0.25% divinylbenzene was dissolved was added and stirred for 1 hour. , then potassium persulfate
Add 5 parts of ion-exchanged water in which 0.03 part of
C. for 8 hours to obtain an aqueous dispersion of polymer particles having a particle size of 0.149 .mu.m and a standard deviation of the particle size distribution of 0.012 .mu.m. Furthermore, using the obtained dispersion liquid, seed polymerization was carried out with the composition shown in Table 1 to obtain an aqueous dispersion of polymer particles.

【表】 このようにして、本発明で用いられる、ゆるく
架橋された粒径分布が良好で体内にポアを含まな
い架橋高分子微粒子の分散液Bを得た。なお、こ
こで得られた分散液Bにおける微粒子のスチレン
モノマーに対する膨潤度を測定すると、15であつ
た。 参考例 2 参考例1と同様にして第2表に示す架橋高分子
微粒子の分散液を得た。
[Table] In this way, a dispersion B of loosely crosslinked crosslinked polymer fine particles having a good particle size distribution and containing no pores in the body, which is used in the present invention, was obtained. The degree of swelling of the fine particles in the dispersion B obtained here with respect to the styrene monomer was measured to be 15. Reference Example 2 A dispersion of crosslinked polymer fine particles shown in Table 2 was obtained in the same manner as in Reference Example 1.

【表】 実施例 1 参考例1Bの分散液10部にイオン交換水120部と
ポリビニルアルコール(クラレポバール224、ケ
ン化度88%、クラレ社製)10%水溶液8部を加え
均一に攪拌した後、スチレン65%とジビニルベン
ゼン35%からなる単量体混合物48部に過酸化ベン
ゾイル0.5部を溶解させたものにイオン交換水180
部、ラウリル硫酸ナトリウム0.018部を混合して
これを超音波処理して乳化液としたものを加え、
攪拌しながら窒素気流下80℃で9時間重合させ、
体内にポアを含まない均一粒径微粒子の分散液を
得た。この微粒子の粒径は1.9μm、粒径分布の標
準偏差は0.12μmであつた。 この微粒子を乾燥させた後、各種溶剤に浸漬
し、50℃で800時間保存したのちの重量増加率を
調べた。結果を第3表に示した。
[Table] Example 1 120 parts of ion-exchanged water and 8 parts of a 10% aqueous solution of polyvinyl alcohol (Kuraray Poval 224, degree of saponification 88%, manufactured by Kuraray Co., Ltd.) were added to 10 parts of the dispersion of Reference Example 1B, and the mixture was stirred uniformly. , 0.5 part of benzoyl peroxide was dissolved in 48 parts of a monomer mixture consisting of 65% styrene and 35% divinylbenzene, and 180 parts of ion-exchanged water was added.
1 part and 0.018 part of sodium lauryl sulfate were mixed and treated with ultrasound to make an emulsion, and
Polymerize at 80°C for 9 hours under a nitrogen stream while stirring,
A dispersion of fine particles of uniform particle size without containing pores in the body was obtained. The particle size of the fine particles was 1.9 μm, and the standard deviation of the particle size distribution was 0.12 μm. After drying the fine particles, they were immersed in various solvents and stored at 50°C for 800 hours, after which the weight increase rate was examined. The results are shown in Table 3.

【表】 また、溶剤へのポリマーの溶出は全く認められ
ず、耐溶剤性は良好で、電子顕微鏡観察による表
面の凹凸状態も良好であつた。 実施例 2 参考例2Fの分散液10部にイオン交換水120部と
ポリビニルアルコール10%水溶液5部を加え均一
に攪拌した後、スチレン75%とジビニルベンゼン
25%からなる単量体混合物60部に過酸化ベンゾイ
ル0.6部を溶解させたものにイオン交換水200部、
ラウリル硫酸ナトリウム0.016部を混合してこれ
を超音波処理して乳化液としたものを加え、攪拌
しながら窒素気流下80℃で9時間重合させ、体内
にポアを含まない均一粒径微粒子の分散液を得
た。この微粒子の粒径は7.7μm、粒径分布の標準
偏差0.30μmであつた。また、その耐溶剤性もす
ぐれたものであつた。さらに、添付の電子顕微鏡
写真よりも明らかなようにその表面の凹凸状態ひ
いては広表面積性にすぐれたものであつた。
[Table] Furthermore, no elution of the polymer into the solvent was observed, the solvent resistance was good, and the surface roughness was also good when observed with an electron microscope. Example 2 120 parts of ion-exchanged water and 5 parts of a 10% polyvinyl alcohol aqueous solution were added to 10 parts of the dispersion of Reference Example 2F, stirred uniformly, and then mixed with 75% styrene and divinylbenzene.
200 parts of ion-exchanged water in which 0.6 parts of benzoyl peroxide was dissolved in 60 parts of a monomer mixture consisting of 25%;
Add 0.016 parts of sodium lauryl sulfate and apply ultrasonic treatment to make an emulsion. Polymerize with stirring at 80°C under a nitrogen stream for 9 hours to disperse fine particles with a uniform size and no pores in the body. I got the liquid. The particle size of the fine particles was 7.7 μm, and the standard deviation of the particle size distribution was 0.30 μm. Moreover, its solvent resistance was also excellent. Furthermore, as is clear from the attached electron micrograph, the surface was uneven and had an excellent wide surface area.

【図面の簡単な説明】[Brief explanation of the drawing]

写真は、本発明の実施例の電子顕微鏡写真
(2000倍)である。
The photograph is an electron micrograph (2000x magnification) of an example of the present invention.

Claims (1)

【特許請求の範囲】 1 架橋性単量体と非架橋性単量体とを共重合せ
しめてなる架橋重合体を高分子微粒子の内部に含
み、かつ、表面に凹凸状態に有し、粒径が1〜
30μmで粒径分布の標準偏差が1μm以下であると
共に耐溶剤型であり、体内にポアを含まないこと
を特徴とする均一粒径微粒子。 2 粒径が20μm以下で粒径分布の標準偏差が
0.5μm以下の高分子微粒子の分散液に、架橋性単
量体と非架橋性単量体からなる単量体混合物の水
分散液を、前記高分子微粒子100重量部あたり単
量体混合物100〜3000重量部を加え、油溶性重合
開始剤の共存下その開始剤の分解温度に速やかに
加温して重合させることを特徴とする、架橋性単
量体と非架橋性単量体とを共重合せしめてなる架
橋重合体を高分子微粒子の内部に含み、かつ、表
面に凹凸状態に有し、粒径が1〜30μmで粒径分
布の標準偏差が1μm以下であると共に耐溶剤型で
あり、体内にポアを含まない均一粒径微粒子の製
造方法。 3 単量体混合物が架橋性単量体を10〜50重量%
含有し、かつ、油溶性重合開始剤を溶解したもの
である特許請求の範囲第2項記載の方法。
[Scope of Claims] 1 A crosslinked polymer formed by copolymerizing a crosslinkable monomer and a non-crosslinkable monomer is contained inside the polymer fine particles, and the surface is uneven, and the particle size is is 1~
Uniform particle size particles with a particle size distribution of 30 μm and a standard deviation of 1 μm or less, solvent resistant, and containing no pores in the body. 2 When the particle size is 20 μm or less, the standard deviation of the particle size distribution is
An aqueous dispersion of a monomer mixture consisting of a crosslinking monomer and a non-crosslinking monomer is added to a dispersion of fine polymer particles of 0.5 μm or less in an amount of 100 to 100 parts by weight of the monomer mixture per 100 parts by weight of the fine polymer particles. 3,000 parts by weight of a crosslinkable monomer and a non-crosslinkable monomer are polymerized by adding 3000 parts by weight and rapidly heating to the decomposition temperature of the initiator in the coexistence of an oil-soluble polymerization initiator. Contains a crosslinked polymer formed by polymerization inside the polymer fine particles, has an uneven surface, has a particle size of 1 to 30 μm, has a standard deviation of particle size distribution of 1 μm or less, and is solvent resistant. , a method for producing uniformly sized fine particles that do not contain pores in the body. 3 Monomer mixture contains 10 to 50% by weight of crosslinkable monomer
3. The method according to claim 2, which contains an oil-soluble polymerization initiator dissolved therein.
JP6796385A 1985-03-30 1985-03-30 Fine particle having uniform particle size and production thereof Granted JPS61225254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6796385A JPS61225254A (en) 1985-03-30 1985-03-30 Fine particle having uniform particle size and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6796385A JPS61225254A (en) 1985-03-30 1985-03-30 Fine particle having uniform particle size and production thereof

Publications (2)

Publication Number Publication Date
JPS61225254A JPS61225254A (en) 1986-10-07
JPH0572923B2 true JPH0572923B2 (en) 1993-10-13

Family

ID=13360126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6796385A Granted JPS61225254A (en) 1985-03-30 1985-03-30 Fine particle having uniform particle size and production thereof

Country Status (1)

Country Link
JP (1) JPS61225254A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480329B1 (en) * 2001-12-27 2005-04-06 제일모직주식회사 Preparation of Highly Crosslinked Monodisperse Particles with a Diameter of a Micron Size
US7741378B2 (en) 2005-03-01 2010-06-22 Soken Chemical & Engineering Co., Ltd. Porous monodispersed particles and method for production thereof, and use thereof
JP2007009192A (en) * 2005-05-31 2007-01-18 Fujifilm Holdings Corp Non-spherical polymer fine particle, method for producing the same, and composition containing the fine particle
JP4994474B2 (en) * 2009-05-21 2012-08-08 竹本油脂株式会社 Hollow irregular fine particles, production method thereof, cosmetic raw material containing hollow irregular fine particles and resin composition
JP5171766B2 (en) * 2009-09-08 2013-03-27 竹本油脂株式会社 Amorphous fine particles, method for producing irregularly shaped fine particles, cosmetics and resin compositions containing irregularly shaped fine particles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521958B2 (en) * 1973-08-15 1977-01-19
JPS5594902A (en) * 1979-01-11 1980-07-18 Hitachi Chem Co Ltd Preparation of particulate polymer with uniform fine particle diameter
JPS5626912A (en) * 1979-08-14 1981-03-16 Mitsui Toatsu Chem Inc Preparation of soft vinyl chloride resin
JPS5780557A (en) * 1980-11-10 1982-05-20 Showa Denko Kk Manufacture of filling agent for liquid-phase chromatography
JPS58103514A (en) * 1981-12-15 1983-06-20 Shin Etsu Chem Co Ltd Method for producing modified vinyl chloride graft copolymer
US4419245A (en) * 1982-06-30 1983-12-06 Rohm And Haas Company Copolymer process and product therefrom consisting of crosslinked seed bead swollen by styrene monomer
CA1207950A (en) * 1982-08-02 1986-07-15 William I. Harris Ion exchange resins

Also Published As

Publication number Publication date
JPS61225254A (en) 1986-10-07

Similar Documents

Publication Publication Date Title
US5147937A (en) Process for making controlled, uniform-sized particles in the 1 to 50 micrometer range
US5216096A (en) Process for the preparation of cross-linked polymer particles
FI95585C (en) Polymer particles and their preparation
JP4448930B2 (en) Hollow polymer fine particles and production method thereof
JPH0198606A (en) Polymer particle and preparation thereof
CN111171221B (en) Method for preparing thermal expansion microspheres by using SPG emulsion membrane technology
Cao et al. Micron-size uniform poly (methyl methacrylate) particles by dispersion polymerization in polar media: 1. Particle size and particle size distribution
JPS61215604A (en) Production of polymer particle
JPH0572923B2 (en)
EP1242490A1 (en) Single stage seed polymerisation for the production of large polymer particles with a narrow size distribution
JPH04132705A (en) Production of hydrophilic fine grain
EP0308864B1 (en) Process for preparing uniformly sized, fine particles of polymer
JPS6379065A (en) Filler for liquid chromatography
JP3440197B2 (en) Method for producing flat irregular shaped fine particles and emulsion containing the fine particles
JPS6372713A (en) Production of solvent-resistant fine particle of uniform particle diameter
JPS6284156A (en) Fine particle having uniform particle diameter and production thereof
JPH0562605B2 (en)
JPH0717688B2 (en) Highly crosslinked polymer particles and method for producing the same
JPS6372714A (en) Solvent-resistant fine particle of uniform particle diameter and its production
JPS6372712A (en) Production of solvent-resistant fine particle of uniform-particle diameter
JPS62227903A (en) Production of solvent-resistant porous fine particle of uniform particle diameter
JPH01133A (en) Porous composite particles and their manufacturing method
JPS6372715A (en) Production of solvent-resistant, porous fine particle of uniform-particle diameter
JPH08100006A (en) Production of monodisperse polymer particle
JPS61225209A (en) Production of solvent-resistant fine particle of uniform particle diameter