[go: up one dir, main page]

JPH0571296B2 - - Google Patents

Info

Publication number
JPH0571296B2
JPH0571296B2 JP19024685A JP19024685A JPH0571296B2 JP H0571296 B2 JPH0571296 B2 JP H0571296B2 JP 19024685 A JP19024685 A JP 19024685A JP 19024685 A JP19024685 A JP 19024685A JP H0571296 B2 JPH0571296 B2 JP H0571296B2
Authority
JP
Japan
Prior art keywords
inert gas
combustion
pressure
temperature
dehumidifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19024685A
Other languages
Japanese (ja)
Other versions
JPS6249943A (en
Inventor
Yutaka Shiomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP19024685A priority Critical patent/JPS6249943A/en
Publication of JPS6249943A publication Critical patent/JPS6249943A/en
Publication of JPH0571296B2 publication Critical patent/JPH0571296B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 産業上の利用分野: 本発明は、LPG運搬船等に設置されたLPGタ
ンク等の危険域に防爆用として供給するイナート
ガスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application: The present invention relates to a method for producing inert gas to be supplied for explosion protection to hazardous areas such as LPG tanks installed on LPG carriers and the like.

従来の技術: 従来、この種のイナートガスは酸素濃度を下げ
る目的のため、軽油等の燃料を使用して、燃料と
空気との比を理論燃焼空気比1に近い比率で燃焼
させ、燃焼後の高温のガスを海水のシヤワー等に
より直接接触させて冷却するとともに、硫黄酸化
物などの水溶性成分、灰分などの固体粒子を除去
し、デミスター等で水切りを行なつた後、LPG
タンク等に吹き込んでも水滴が発生しないガスに
するため、さらに除湿装置により露点を下げたも
のが使用されている。
Conventional technology: Conventionally, this type of inert gas uses fuel such as light oil to reduce the oxygen concentration, and burns the fuel to air at a ratio close to the theoretical combustion air ratio of 1. The high-temperature gas is cooled by direct contact with seawater showers, water-soluble components such as sulfur oxides, solid particles such as ash are removed, and after draining with a demister etc., LPG
In order to create a gas that does not generate water droplets even when blown into a tank, etc., the dew point is further lowered using a dehumidifier.

このイナートガス中の露点を下げる除湿装置に
は冷却式(冷凍式)と吸着式があり、得られる露
点は冷却式で約−20℃まで、吸着式で約−55℃ま
でであるが、LPG運搬船の場合は、LNG運搬船
のように吸着式除湿装置を併用せず冷却式除湿装
置を単独装備して除湿し露点を約−10〜−20℃ま
で下げたイナートガスを使用するのが一般的であ
る。
There are two types of dehumidification equipment that lower the dew point in inert gas: cooling type (freezing type) and adsorption type. In the case of LNG carriers, it is common to use inert gas with a cooling dehumidifier that dehumidifies and lowers the dew point to approximately -10 to -20°C, instead of using an adsorption dehumidifier together with an adsorption dehumidifier like an LNG carrier. .

一方、この種のイナートガスを製造するイナー
トガス発生装置には、上記除湿装置出口のイナー
トガス圧力を約1〜5Kg/cm2Gにする燃焼用空気
の送風機にコンプレツサーを使用した高圧型と、
イナートガス圧力を0.2〜0.3Kg/cm2G程度の大気
圧に近い状態とする燃焼用空気の送風機にブロワ
ーを使用した低圧型の2種類の型式があるが前者
の高圧型は燃焼系を高圧状態にしているため、燃
焼室内での空気密度が大となつて燃焼状態は著し
く向上し、理論空気での燃焼が容易となり、また
生成ガス中の飽和水分は圧力が高くなるほど減少
するため、露点を下げる除湿装置の能力が小さく
て済む等の利点をもつているので、従来小容量の
イナートガス発生装置は、ほとんどの場合高圧型
が使用されている。
On the other hand, inert gas generators for producing this type of inert gas include a high-pressure type that uses a compressor as a combustion air blower to increase the inert gas pressure at the outlet of the dehumidifier to approximately 1 to 5 kg/cm 2 G;
There are two types of low-pressure types that use a blower for the combustion air blower to keep the inert gas pressure close to atmospheric pressure at about 0.2 to 0.3 Kg/cm 2 G. The former high-pressure type keeps the combustion system under high pressure. This increases the air density in the combustion chamber, significantly improving the combustion conditions, making combustion easier with stoichiometric air, and since the saturated moisture in the produced gas decreases as the pressure increases, the dew point decreases. Conventionally, high-pressure type small-capacity inert gas generators have been used in most cases because they have advantages such as requiring a small dehumidifying capacity.

この高圧型イナートガス発生装置の先行技術と
しては特公昭55−31082号公報があるが、この先
行技術は、供給する所要の燃料を理論空気量によ
り3気圧(3Kg/cm2 abs.)以上の加圧下で燃焼
させて窒素と炭酸ガスより成る不活性ガス(イナ
ートガス)を採り、この不活性ガス(イナートガ
ス)に水を直接接触させるスクラバーによつて冷
却洗滌し、セパレータ付フイルタによつてミスト
を除湿し、次に吸着式除湿と冷凍式(冷却式)除
湿の単独又は併用により且つ加圧状態を維持する
状態に於て所要の除湿を行うことによつて連続し
て不活性ガス(イナートガス)を製造するように
したことを特徴とする不活性ガス(イナートガ
ス)発生装置で、先行技術の明細書に記載されて
いるように、例えば冷凍式(冷却式)除湿装置出
口の不活性ガス圧力3気圧(3Kg/cm2 abs.)の
加圧下で、不活性ガス出口温度を約+7℃程度迄
冷却除湿して露点が大気圧換算で−5℃以下とな
り、また前記除湿装置出口の不活性ガス圧力10気
圧(10Kg/cm2 abs.)の加圧下で、不活性ガス温
度を同じく約+7℃程度迄冷却除湿して、−20℃
程度の露点が得られるように、常に0℃以上の装
置出口の不活性ガス(イナートガス)温度で、露
点が大気圧に換算して約−20℃までの不活性ガス
(イナートガス)をLPGタンク等の対象区画へ送
ることができるのである。
Japanese Patent Publication No. 55-31082 is a prior art for this high-pressure inert gas generator, but this prior art requires that the required fuel to be supplied be pressurized by a theoretical air amount of 3 atm (3 Kg/cm 2 abs.) or more. Inert gas (inert gas) consisting of nitrogen and carbon dioxide gas is collected by combustion under pressure, cooled and washed by a scrubber that brings water into direct contact with this inert gas (inert gas), and mist is dehumidified by a filter with a separator. Then, inert gas (inert gas) is continuously supplied by adsorption type dehumidification and freezing type (cooling type) dehumidification alone or in combination, and by performing the required dehumidification while maintaining the pressurized state. An inert gas (inert gas) generator characterized in that it is produced, as described in the specifications of the prior art, for example at an inert gas pressure of 3 atm at the outlet of a refrigerated (cooled) dehumidifier. (3Kg/cm 2 abs.), the inert gas outlet temperature is cooled and dehumidified to about +7℃, and the dew point becomes -5℃ or less in terms of atmospheric pressure, and the inert gas pressure at the dehumidifier outlet is Under a pressure of 10 atm (10Kg/cm 2 abs.), cool and dehumidify the inert gas temperature to approximately +7℃, and then heat to -20℃.
In order to obtain a dew point of about can be sent to the target area.

発明が解決しようとする問題点: しかし、この先行技術の高圧型不活性ガス(イ
ナートガス)発生装置は、装置内の各機器の耐圧
問題や大容量の燃焼用空気のコンプレツサーが市
販されていない等の理由から、通常イナートガス
発生量が小容量のものにしか使用できないので、
近年需要が出てきたイナートガス発生量の大容量
のものには、もう1つの型式である低圧型イナー
トガス発生装置を使用せねばならぬのである。
Problems to be solved by the invention: However, this prior art high-pressure inert gas (inert gas) generator has problems such as pressure resistance of each device in the device and the fact that a large-capacity combustion air compressor is not commercially available. For this reason, it can usually only be used for products with a small amount of inert gas generation.
Another type of low-pressure inert gas generator must be used for large-capacity inert gas generators that have become in demand in recent years.

とろこが、この低圧型イナートガス発生装置
は、前記したように冷却式除湿装置出口のイナー
トガス圧力が0.2〜0.3Kg/cm2G.程度の大気圧に近
い状態となつているので、例えば要求される露点
が大気圧換算で−13℃の場合には、冷却式除湿装
置出口のイナートガス圧力0.3Kg/cm2Gで装置出
口のイナートガス温度が−10℃となる等、−5℃
以下の低露点を要求された場合には、イナートガ
スの温度が常に0℃以下となる。この低温のイナ
ートガスをイナーテイングのため、即ち、LPG
積荷前にタンク等の空気をイナートガスと置換
し、これら区画を不活性化するために送り込む場
合、LPGタンク等の対象区画までの配管、弁類
に結露や結霜が生じて該部を閉塞したり損傷さ
せ、あるいはLPGタンク等に熱衝撃を与える等
の問題が生ずるのである。
However, in this low-pressure type inert gas generator, as mentioned above, the inert gas pressure at the outlet of the cooling type dehumidifier is close to atmospheric pressure of about 0.2 to 0.3 kg/cm 2 G. If the dew point at the dehumidifier is -13℃ converted to atmospheric pressure, the inert gas temperature at the outlet of the cooling type dehumidifier will be -10℃ when the inert gas pressure at the outlet of the cooling type dehumidifier is 0.3Kg/cm 2 G, etc.
If a low dew point below is required, the temperature of the inert gas will always be below 0°C. This low-temperature inert gas is used for inerting, that is, LPG
When replacing the air in tanks, etc. with inert gas before loading and sending it to inert gas in these compartments, condensation or frost may form on the pipes and valves leading to the target compartments, such as LPG tanks, and block these areas. This may cause problems such as damage to the LPG tank or thermal shock to the LPG tank.

本発明は、このような問題が生じないイナート
ガスの製造方法を提供することを目的とするもの
である。
An object of the present invention is to provide a method for producing inert gas that does not cause such problems.

問題を解決するための手段: このため本発明は、含炭素燃料を制限された空
気比で燃焼させて酸素含有量の少ない燃焼ガスを
生成させ、脱塵、脱湿、SOxなどの酸性ガスの除
去を行い、所望の温度に調温するイナートガスの
製造方法において、燃焼により生じた酸素含有量
の少ない燃焼ガスを常温水で洗浄した後、冷却式
除湿装置で除湿し、低温となつたイナートガスを
燃焼用空気により間接加熱して、調温されたイナ
ートガスをLPGタンク等の対象区画へ供給する
ことにしたのである。
Means for Solving the Problem: Therefore, the present invention burns a carbon-containing fuel at a limited air ratio to produce a combustion gas with low oxygen content, which can be used for dust removal, dehumidification, and removal of acid gases such as SOx. In an inert gas production method in which the temperature is controlled to a desired temperature by cleaning, the combustion gas with low oxygen content generated by combustion is washed with room-temperature water, and then dehumidified with a cooling dehumidifier to remove the low-temperature inert gas. The decision was made to indirectly heat the inert gas using combustion air and supply the temperature-controlled inert gas to target compartments such as LPG tanks.

実施例: 第1図において、送風機1(ブロワー)により
圧縮された空気は、燃焼室2で、燃焼管3から進
入される燃料と混合し燃焼して、燃焼ガス(空気
比が調整され、酸素含有量約0.5〜3%に保たれ
る。)を生成する。この燃焼ガスは、常温冷却水
(通常海水を用いる。簡単のため、水配管は図示
していない。)と向流接触して冷却される。燃焼
室については、燃焼室の形状は種種のものが公知
であるが、所定空気比で実質的に完全燃焼すれば
良く、向流直接接触用充填層2aは燃焼ガス(イ
ナートガス)を、冷却水の温度より若干高い温度
まで冷却する一方向の例示でこれらに拘わらな
い。
Example: In Fig. 1, air compressed by a blower 1 is mixed with fuel entering from a combustion pipe 3 in a combustion chamber 2 and combusted, resulting in combustion gas (the air ratio is adjusted and oxygen The content is kept at about 0.5-3%). This combustion gas is cooled by countercurrent contact with normal temperature cooling water (usually seawater is used; water piping is not shown for simplicity). Regarding the combustion chamber, various shapes of the combustion chamber are known, but it is sufficient to achieve substantially complete combustion at a predetermined air ratio. This is an example of unidirectional cooling to a temperature slightly higher than the temperature of .

充填層2aで冷却除塵され、かつSOxなどの水
溶性ガスを除去されたイナートガスは、デミスタ
ー4を通つて微水滴を除去され、冷却式除湿装置
5に至る。5は通常フロンを冷媒に用い、これ
が、除湿室5a、圧縮器5b、間接冷却器5c、
膨張弁5dを循環して冷凍サイクルを形成する周
知構造のものを例示しているが、そのほかのイナ
ートガス中の露点を下げるための冷却式除湿装置
を用いても良い。
The inert gas, which has been cooled and dedusted in the packed bed 2a and from which water-soluble gases such as SOx have been removed, passes through the demister 4, where fine water droplets are removed, and reaches the cooling type dehumidifier 5. 5 usually uses Freon as a refrigerant, and this is used in the dehumidifying chamber 5a, compressor 5b, indirect cooler 5c,
Although a well-known structure in which the inert gas is circulated through the expansion valve 5d to form a refrigeration cycle is shown as an example, other cooling type dehumidifiers for lowering the dew point in the inert gas may be used.

冷却除湿を終つたイナートガスは、加熱器6に
至り、ここで配管7から送入される燃焼用空気に
より適宜温度まで間接加熱され、LPGタンク等
の使用先(共に図示せず。)に送られる。弁8は
燃焼室2へ直接進入する燃焼用空気と、熱交換器
6を通つて燃焼室2に至る燃焼用空気の配分を司
さどるもので、その閉鎖に応じて、熱交換器6を
通る燃焼用空気が増減する。このことを利用して
自動制御が可能なことは言うまでもない。加熱器
6で冷却除湿後のイナートガスを加熱した燃焼用
空気は、導管9を通つて弁8の下流に送入し燃焼
室に戻して、燃焼用空気として使用する。
The inert gas that has been cooled and dehumidified reaches the heater 6, where it is indirectly heated to an appropriate temperature by the combustion air introduced from the pipe 7, and sent to a destination such as an LPG tank (both not shown). . The valve 8 controls the distribution of the combustion air that directly enters the combustion chamber 2 and the combustion air that passes through the heat exchanger 6 and reaches the combustion chamber 2. The amount of combustion air passing through increases or decreases. It goes without saying that automatic control is possible by utilizing this fact. The combustion air obtained by heating the inert gas after being cooled and dehumidified by the heater 6 is sent downstream of the valve 8 through the conduit 9, returned to the combustion chamber, and used as combustion air.

発明の作用・効果: このようなイナートガスの製造方法によれば、
前記のように冷却式除湿装置出口のイナートガス
圧力が約0.2〜0.3Kg/cm2Gとなる低圧型イナート
ガス発生装置の場合に、冷却式除湿装置で除湿さ
れたイナートガスの温度が0℃以下の低温となつ
て、LPGタンク等の対象区画までの配管弁類の
結露、結霜あるいはタンク等の熱衝撃が生ずるの
を防止するために、冷却式除湿装置出口の低温の
イナートガスを蒸気あるいは電気等の外部熱源に
より加熱することを必要とせず、従来は系外に捨
てられていたイナートガス発生装置における燃焼
用空気の送風機にて断熱圧縮され約100℃位まで
昇温した熱量を回収利用できるので、特に船舶で
要求される省エネルギー化、設備費および運転費
の低減等のニーズに適合し、しかもLPGタンク
等へのイナーテイングの際に生ずる急激な冷却に
よる配管、タンク等の結露、熱衝撃などの障害を
防止できるのである。
Effects and effects of the invention: According to this method of producing inert gas,
As mentioned above, in the case of a low-pressure inert gas generator where the inert gas pressure at the outlet of the cooling type dehumidifier is approximately 0.2 to 0.3 Kg/cm 2 G, the temperature of the inert gas dehumidified by the cooling type dehumidifier is a low temperature of 0°C or less. Therefore, in order to prevent condensation or frost on piping valves leading to target sections such as LPG tanks, or thermal shock in tanks, etc., the low-temperature inert gas at the outlet of the cooling type dehumidifier is replaced with steam or electricity. It is especially effective because it does not require heating with an external heat source and can recover and utilize the heat that was adiabatically compressed by the blower of the combustion air in the inert gas generator and heated to about 100℃, which was conventionally discarded outside the system. It meets the needs of ships to save energy and reduce equipment costs and operating costs, while also preventing problems such as condensation on pipes, tanks, etc. due to rapid cooling that occurs when inerting LPG tanks, etc., and thermal shock. It is possible to prevent this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例として、主要構成装置
の内部構造の概略の例示を含めた流れ図である。 1……送風機、2……燃焼室、3……燃焼管、
4……デミスター、5……冷却式除湿装置、6…
…加熱器(熱交換器)、7……配管、8……弁、
9……導管。
FIG. 1 is a flowchart including a schematic illustration of the internal structure of the main constituent devices as an embodiment of the present invention. 1... Blower, 2... Combustion chamber, 3... Combustion pipe,
4...Demister, 5...Cooling type dehumidifier, 6...
... Heater (heat exchanger), 7 ... Piping, 8 ... Valve,
9... Conduit.

Claims (1)

【特許請求の範囲】 1 含炭素燃料を、制限された空気比で燃焼させ
て酸素含有量の少ない燃焼ガスを生成させ、脱
塵、脱湿、SOxなどの酸性ガスの除去を行い、所
望の温度に調温するイナートガスの製造方法にお
いて: 燃焼により生じた酸素含有量の少ない燃焼ガス
を、常温水で洗浄した後、冷却除湿装置で除湿
し、次に燃焼用空気により間接加熱することを特
徴とするイナートガスの製造方法。
[Claims] 1. Burning carbon-containing fuel at a limited air ratio to generate combustion gas with low oxygen content, removing dust, dehumidification, and removing acidic gases such as SOx to achieve desired results. In a method for producing inert gas whose temperature is controlled: The combustion gas with low oxygen content generated by combustion is washed with room temperature water, dehumidified with a cooling and dehumidifying device, and then indirectly heated with combustion air. A method for producing inert gas.
JP19024685A 1985-08-27 1985-08-27 Production of inert gas Granted JPS6249943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19024685A JPS6249943A (en) 1985-08-27 1985-08-27 Production of inert gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19024685A JPS6249943A (en) 1985-08-27 1985-08-27 Production of inert gas

Publications (2)

Publication Number Publication Date
JPS6249943A JPS6249943A (en) 1987-03-04
JPH0571296B2 true JPH0571296B2 (en) 1993-10-06

Family

ID=16254940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19024685A Granted JPS6249943A (en) 1985-08-27 1985-08-27 Production of inert gas

Country Status (1)

Country Link
JP (1) JPS6249943A (en)

Also Published As

Publication number Publication date
JPS6249943A (en) 1987-03-04

Similar Documents

Publication Publication Date Title
CA2831020C (en) Cryogenic co2 separation using a refrigeration system
CN101553645A (en) Method of and apparatus for CO2 capture in oxy-combustion
US8500886B2 (en) Apparatus for removing carbon dioxide from a gas
CA2824242C (en) A method of cleaning a carbon dioxide containing gas, and a carbon dioxide purification system
JP2001317307A (en) Method of removing carbon dioxide from exhaust gas of gas turbine plant and device for carrying out the method
JP5324701B2 (en) Carbon dioxide recovery type power generation system
WO2010021053A1 (en) Mercury removing system for equipment for carbon dioxide recovery from combustion exhaust gas and method of mercury removing operation for equipment for carbon dioxide recovery from combustion exhaust gas
US4378977A (en) Removal of undesired gaseous components from hot waste gases
JPH0448185A (en) Recovering method of carbon dioxide discharged out of lng burning thermal power station
JP5432098B2 (en) Oxyfuel boiler
US8845786B2 (en) Method for purifying a gas stream including mercury
CN212283448U (en) A fixed bed flue gas low temperature adsorption desulfurization system
JP2627144B2 (en) Method for separating carbon dioxide in exhaust gas and system treatment system for carbon dioxide
JPH0571296B2 (en)
CN216513718U (en) Blast furnace gas adsorption fine desulfurization system
JP2813473B2 (en) Carbon dioxide recovery method
JPS5973416A (en) Preparation of liquefied carbonic acid from waste combustion gas of liquefied natural gas
JPH06134251A (en) Method of reducing make-up water to wet desulfurization equipment
JPS5973415A (en) Preparation of liquefied carbonic acid from waste combustion gas of liquefied natural gas
JPH0594237U (en) Solid carbon dioxide production equipment
JP2004271081A (en) Desiccant air conditioning method and air conditioning system
JPS6060908A (en) Method for recovering liquefied gaseous sulfurous acid from apparatus for dry-desulfurizing stack gas
CN1014447B (en) Regeneration for absorbing dry material
JPH057058B2 (en)
JPH01215333A (en) Method for dehumidifying gas