JPH0571190B2 - - Google Patents
Info
- Publication number
- JPH0571190B2 JPH0571190B2 JP61197609A JP19760986A JPH0571190B2 JP H0571190 B2 JPH0571190 B2 JP H0571190B2 JP 61197609 A JP61197609 A JP 61197609A JP 19760986 A JP19760986 A JP 19760986A JP H0571190 B2 JPH0571190 B2 JP H0571190B2
- Authority
- JP
- Japan
- Prior art keywords
- channel
- drain
- source
- gate
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/637—Lateral IGFETs having no inversion channels, e.g. buried channel lateral IGFETs, normally-on lateral IGFETs or depletion-mode lateral IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
- H10D62/235—Channel regions of field-effect devices of FETs of IGFETs
- H10D62/299—Channel regions of field-effect devices of FETs of IGFETs having lateral doping variations
- H10D62/307—Channel regions of field-effect devices of FETs of IGFETs having lateral doping variations the doping variations being parallel to the channel lengths
Description
(産業上の利用分野)
本発明はMISトランジスタ及びその製造方法に
関する。
(従来の技術)
MISトランジスタの微細化とりわけ短チヤネル
化は高性能LISを実現する上で最も効果的であ
る。しかしながら通常構造でのMISトランジスタ
ではチヤネルに沿つた電界Exはチヤネル内で一
定でなく、ドレイン端で最も高くソース端で最も
低くなる。たとえば、ピンチオフ時にExに分布
は次式に従う。
(Industrial Application Field) The present invention relates to a MIS transistor and a method for manufacturing the same. (Prior art) Miniaturization of MIS transistors, especially short channelization, is the most effective way to realize high-performance LIS. However, in a MIS transistor with a normal structure, the electric field Ex along the channel is not constant within the channel, and is highest at the drain end and lowest at the source end. For example, the distribution of E x at the time of pinch-off follows the following equation.
【化】
MISトランジスタはその動作原理上、ソース端
でのExによつて電流は決定されるために、この
不均一なExの分布は、より多くの電流を得るた
めには好ましいものではない。
また、ドレイン端で発生する高電界は、キヤリ
アのエネルギーを必要以上に高めるために、閾値
電圧の変動、相互コンダクタンスの低下など、い
わゆるホツトキヤリア効果による長期信頼性の低
下をまねくことになる。これらの問題、特にホツ
トキヤリア効果を抑制するために近年LDD
(Lightly Doped Drsin)構造を代表とするドレ
イン構造を変化させたMISトランジスタが提案さ
れている。これらにより、一応はドレイン端での
電界を弱めることは可能となるが、ドレイン端の
み不純物分布を変更しているだけなのでその効果
は弱い。従つて電流を決定しているソース近傍の
チヤネルにおけるExはあまり高くならない。し
かもドレイン端の、低濃度領域のみでほとんどの
ドレイン電圧をささえなければならず、必然的に
低濃度領域を長く取るためにかえつて寄生抵抗が
増加し電流の増加は望めない。
(発明が解決しようとする問題点)
以上の様に従来構造MISトランジスタでは、た
とえオン状態であつてもドレイン端に電界が集中
するために、ホツトキヤリア効果が異常に強調さ
れかつ、本来高電界が必要なソース側でそれが得
られないという問題があつた。又、LDDに代表
される新構造では、ホツトキヤリア効果に対して
多少改善されるが、必ずしも充分ではない。
本発明の目的は、希望するバイアス条件でチヤ
ネル内のExをほぼ均一にし、異常なホツトキヤ
リア効果を抑制すると共にそのバイアス条件で効
率的に大電流を流せる。MISトランジスタとその
製造方法を提供することにある。
(問題点を解決するための手段)
本発明のMISトランジスタはソース・ドレイン
間のチヤネルが形成されるべき半導体表面にnチ
ヤネルであればドナー、pチヤネルであればアク
セプターとなる不純物がソース側からドレイン側
に向つて徐々に濃度が高くなる様にドープされて
いることを特徴としている。
本発明の製造方法はゲート絶縁膜及びゲート電
極を形成したあと、収束イオンビーム法を用い
て、ソース・ドレイン及びチヤネルへの不純物導
入を注入エネルギー及び注入量を制御しながら、
一括して行なうことを特徴とし、上記、本発明の
MISトランジスタの製造を容易に達成できるもの
である。
(作用)
次に本発明の原理を説明する。ここでは便宜上
nチヤネルMISトランジスタについて説明する。
MISトランジスタではゲート界面におけるキヤリ
アの面密度nSは
qnS=COX(VG−V(x))QB(x)+QD(x) …(1)
となる。ここでCOXはゲート容量、VGはゲート電
圧、V(x)はチヤネルの電化、QB(x)はチヤ
ネル下のアクセプタによる空乏層チヤージ、QD
(x)は表面にドープしたドナーの面密度である。
第1次近似としてQB(x)がチヤネルの電位に依
存しないと仮定すると、反転層が形成されるとき
の基板から測つた表面電位はpn接合の電位とほ
ぼ同じと考えられるのでQD(x)によらずQBは一
定であると考えることができる。一方、チヤネル
中のExを一定にしようと思えば電流連続の条件
からnSは一定であることが必要とされる。そこで
V(x)=QD/Lxとすれば(1)式は
qnS0=COX(VG−QD/Lx)QB0+QD(x) …(2)
となる。すなわちQDのチヤネルに沿つた分布を
(2)式に従つて設定できればある設定のVD,VGに
おいてチヤネル内のExを第2図に示すように一
定にすることができる。
ソース端ではパンチスルーを防ぐ意味からQD
(0/)はゼロであることが望ましく、従つてnSOは
nSO=COX/qVG−QB0とすれば良い。
VGがゼロの場合はソース近傍で反転層が消滅
するので通常のMISトランジスタと同様、オフ状
態を設定できる。
(実施例)
次に本発明の典型的な一実施例につき、第1図
a〜cの一連の工程図を用いて説明する。以下の
説明では説明の便宜上nチヤネルMISFETを仮
定するが、pチヤネルMISFETでも取り扱う不
純物の種類が異なるだけで全く同様であり、これ
も当然本発明に含まれる。
第1図aはp型Si基板1にゲート酸化膜4を厚
さ200Å成長させ次にリンをドープしたポリシリ
コンを厚さ約2000Å成長させた後、エツチングに
よりゲート電極5を形成した所である。第1図b
はAsの収束イオンビームを用い、ゲート電極の
存在しないソース・ドレイン領域となるべき所
に、50keVで5×1015/cm2の量だけAsを打ち込
み、チヤネルになる部分についてはゲート電極5
を通して500keVの加速エネルギーでソース側か
らドレイン側へ向かつて徐々に濃度が高くなるよ
うに(2)式に従つてビーム電流即ち注入量を制御し
てAsを打ち込んだ所を示している。
第1図cはSiO2などの層間絶縁膜7を厚さ約
5000Å推積したのち、コンタクトホールをあけて
金属配線8を施した所である。第1図cが本発明
の構造の典型的な一実施例である。
(発明の効果)
異常説明した様に、本発明のMISトランジスタ
では、ある特定のバイアス条件下つまりその回路
に適したバイアス条件下でキヤリアのチヤネルに
沿つた分布が一定になる。従つてExも一定であ
り最も効率良いキヤリアの輸送が行なえる。この
ためオン電流は通常構造のMISトランジスタより
も大きく取れると同時に異常なホツトキヤリアの
発生もない。一方VGがゼロであればトランジス
タは完全にオフ状態となりしかも、ドレイン電圧
が加わつていればチヤネルのドレイン近傍ではn
型領域(Asが打ち込まれている領域)が完全に
空乏化するのでオフ状態でも、異常な高電界領域
は発生しない。従つて特定の動作モードに合わせ
て特定のバイアス点で(2)時が成立する様にチヤネ
ル中でのAs分布を決定してやれば多くの場合、
ホツトキヤリア効果を充分抑制しながら、従来
MISトランジスタよりも高速な動作が可能とな
る。
本発明の製造方法いよれば収束イオンビームを
用いているので各トランジスタごとに最適なチヤ
ネル内As分布を形成することが容易にできる。
又、収束イオンビームの位置決めの精度は高いの
で前もつて弱いイオンないしは電子ビームを用い
てゲート電極のエツヂを検出しておけば、ソー
ス・ドレインとゲートのオーバーラツプは通常の
ポリシリコンゲートMISトランジスタのそれより
短くすることができる。[C] Due to the operating principle of MIS transistors, the current is determined by E x at the source end, so this uneven distribution of E x is not desirable in order to obtain more current. do not have. Furthermore, the high electric field generated at the drain end increases the carrier energy more than necessary, leading to a decrease in long-term reliability due to the so-called hot carrier effect, such as fluctuations in threshold voltage and decrease in mutual conductance. In recent years, LDD has been used to suppress these problems, especially the hot carrier effect.
MIS transistors with modified drain structures, typically the (Lightly Doped Drsin) structure, have been proposed. Although these methods make it possible to weaken the electric field at the drain end, the effect is weak because only the impurity distribution is changed at the drain end. Therefore, Ex in the channel near the source, which determines the current, does not become very high. Moreover, most of the drain voltage must be supported only in the low concentration region at the drain end, and as a result of the length of the low concentration region, parasitic resistance increases and no increase in current can be expected. (Problems to be Solved by the Invention) As described above, in the conventionally structured MIS transistor, the electric field concentrates at the drain end even in the on state, so the hot carrier effect is abnormally emphasized and the originally high electric field is There was a problem that the required source was not available. In addition, new structures such as LDDs provide some improvement in the hot carrier effect, but it is not necessarily sufficient. An object of the present invention is to make Ex in the channel almost uniform under desired bias conditions, to suppress abnormal hot carrier effects, and to efficiently flow a large current under the bias conditions. The purpose of the present invention is to provide a MIS transistor and its manufacturing method. (Means for Solving the Problems) In the MIS transistor of the present invention, impurities, which become donors in the case of an n-channel and acceptors in the case of a p-channel, are introduced from the source side on the semiconductor surface where a channel between the source and drain is to be formed. It is characterized by being doped so that the concentration gradually increases toward the drain side. The manufacturing method of the present invention involves forming a gate insulating film and a gate electrode, and then using a focused ion beam method to introduce impurities into the source, drain, and channel while controlling the implantation energy and amount.
It is characterized in that it is carried out all at once.
This makes it easy to manufacture MIS transistors. (Operation) Next, the principle of the present invention will be explained. For convenience, an n-channel MIS transistor will be described here.
In an MIS transistor, the areal density n S of carriers at the gate interface is qn S = C OX (V G - V(x)) Q B (x) + Q D (x) (1). Here, C OX is the gate capacitance, V G is the gate voltage, V (x) is the channel electrification, Q B (x) is the depletion layer charge due to acceptors under the channel, and Q D
(x) is the areal density of donors doped on the surface.
As a first approximation, assuming that Q B (x) does not depend on the channel potential, the surface potential measured from the substrate when the inversion layer is formed is considered to be approximately the same as the potential of the p-n junction, so Q D ( Q B can be considered to be constant regardless of x). On the other hand, if E x in the channel is to be kept constant, n S must be constant from the condition of continuous current. Therefore, if V(x)=Q D /Lx, equation (1) becomes qn S0 = C OX (V G -Q D /Lx)Q B0 +Q D (x)...(2). In other words, the distribution along the channel of Q D is
If it can be set according to equation (2), E x in the channel can be made constant as shown in FIG. 2 at certain settings of V D and V G. At the source end, Q D is used to prevent punch-through.
(0/) is preferably zero, so n SO is
It is sufficient to set n SO =C OX /qV G −Q B0 . When V G is zero, the inversion layer disappears near the source, so the off state can be set like a normal MIS transistor. (Example) Next, a typical example of the present invention will be described using a series of process diagrams shown in FIGS. 1a to 1c. In the following description, an n-channel MISFET is assumed for convenience of explanation, but a p-channel MISFET is also used in the same manner, except that the types of impurities handled are different, and this is naturally included in the present invention. Figure 1a shows a state where a gate oxide film 4 is grown to a thickness of 200 Å on a p-type Si substrate 1, and then phosphorus-doped polysilicon is grown to a thickness of about 2000 Å, and then a gate electrode 5 is formed by etching. . Figure 1b
Using a focused ion beam of As , 5×10 15 /cm 2 of As is implanted at 50 keV into the source/drain regions where no gate electrode exists, and the gate electrode is used for the channel area. 5
The figure shows where A s was implanted with an acceleration energy of 500 keV through the wafer, controlling the beam current, that is, the implantation amount, according to equation (2) so that the concentration gradually increased from the source side to the drain side. Figure 1c shows an interlayer insulating film 7 made of SiO 2 or the like with a thickness of approximately
After estimating the thickness of 5000 Å, contact holes were opened and metal wiring 8 was applied. FIG. 1c shows a typical embodiment of the structure of the present invention. (Effects of the Invention) Abnormality As explained above, in the MIS transistor of the present invention, the distribution of carriers along the channel becomes constant under a certain bias condition, that is, under a bias condition suitable for the circuit. Therefore, E x is also constant and the most efficient carrier transport can be achieved. Therefore, the on-state current can be larger than that of an MIS transistor with a normal structure, and at the same time, no abnormal hot carrier occurs. On the other hand, if V G is zero, the transistor is completely off, and if a drain voltage is applied, n
Since the type region (the region where As is implanted) is completely depleted, no abnormal high electric field region occurs even in the off state. Therefore, in many cases, if the A s distribution in the channel is determined so that (2) holds at a specific bias point according to a specific operating mode,
While sufficiently suppressing the hot carrier effect,
It enables faster operation than MIS transistors. According to the manufacturing method of the present invention, since a focused ion beam is used, it is possible to easily form an optimal intra-channel As distribution for each transistor.
In addition, since the positioning accuracy of the focused ion beam is high, if the edge of the gate electrode is detected in advance using a weak ion or electron beam, the overlap between the source/drain and gate can be avoided in a normal polysilicon gate MIS transistor. It can be shorter than that.
第1図a〜cは本発明の製造方法を説明するた
めの工程順に示した断面図、第2図は本発明の原
理を説明するための電界分布図である。
1……p型Si基板、2……ソース、3……ドレ
イン、4……ゲート酸化膜、5……ゲート電極、
6……チヤネル表面に打ち込まれたAs、7……
層間絶縁膜、8……金属配線。
1A to 1C are cross-sectional views showing the order of steps for explaining the manufacturing method of the present invention, and FIG. 2 is an electric field distribution diagram for explaining the principle of the present invention. 1... p-type Si substrate, 2... source, 3... drain, 4... gate oxide film, 5... gate electrode,
6... A s driven into the channel surface, 7...
Interlayer insulating film, 8...metal wiring.
Claims (1)
べき半導体表面にnチヤネルであればドナー、p
チヤネルであればアクセプタとなる不純物QDが QD(x)=qnS0+QB0−COX(VG−VD/LX) (ここでVG及びVDは使用するゲート電圧及び
ドレイン電圧、QB0はチヤネル下の空乏層チヤー
ジ、COXはゲート絶縁膜容量、Lはチヤネル長、
xはソース端からの距離、nS0は与えられたVGに
対するソース端でのキヤリア面密度である。) で記述される式に従つてソース側からドレイン側
に向つて徐々に濃度が高くなる様にドープされて
いることを特徴とするMISトランジスタ。 2 チヤネルとなるべき半導体領域上にゲート絶
縁膜を形成したあと、その上にゲート電極を形成
し、しかるのちに収束イオンビーム法を用いて、
ソース・ドレイン及びチヤネルへの不純物導入
を、注入エネルギ及び注入量を制御しながら、一
括して行ない、前記チヤネルが形成されるべき半
導体表面へは、nチヤネルであればドナー、pチ
ヤネルであればアクセプタとなる不純物QDが QD(x)=qnS0+QB0−COX(VG−VD/LX) (ここでVG及びVDは使用するゲート電圧及び
ドレイン電圧、QB0はチヤネル下の空乏層チヤー
ジ、COXはゲート絶縁膜容量、Lはチヤネル長、
xはソース端からの距離、nS0は与えられたVGに
対するソース端でのキヤリア面密度である。) で記述される式に従つてソース側からドレイン側
に向つて徐々に濃度が高くなる様にドープするこ
とを特徴とするMISトランジスタの製造方法。[Claims] 1. If the channel between the source and drain is to be formed on the semiconductor surface, if it is an n channel, a donor, a p
In the case of a channel, the impurity Q D that becomes an acceptor is Q D (x) = qn S0 + Q B0 −C OX (V G −V D /LX) (Here, V G and V D are the gate voltage and drain voltage used, Q B0 is the depletion layer charge under the channel, C OX is the gate insulating film capacitance, L is the channel length,
x is the distance from the source end, and n S0 is the carrier surface density at the source end for a given V G . ) A MIS transistor characterized by being doped so that the concentration gradually increases from the source side to the drain side according to the formula described by 2. After forming a gate insulating film on the semiconductor region that is to become a channel, forming a gate electrode on it, and then using a focused ion beam method,
Impurities are introduced into the source, drain, and channel all at once while controlling the implantation energy and amount, and the semiconductor surface where the channel is to be formed is a donor for an n-channel and a donor for a p-channel. The impurity Q D that becomes an acceptor is Q D (x) = qn S0 + Q B0 −C OX (V G −V D /LX) (Here, V G and V D are the gate voltage and drain voltage used, and Q B0 is the channel Lower depletion layer charge, C OX is gate insulating film capacitance, L is channel length,
x is the distance from the source end, and n S0 is the carrier surface density at the source end for a given V G . ) A method for manufacturing an MIS transistor, characterized in that doping is performed so that the concentration gradually increases from the source side to the drain side according to the formula described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61197609A JPS6353975A (en) | 1986-08-22 | 1986-08-22 | MIS transistor and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61197609A JPS6353975A (en) | 1986-08-22 | 1986-08-22 | MIS transistor and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6353975A JPS6353975A (en) | 1988-03-08 |
JPH0571190B2 true JPH0571190B2 (en) | 1993-10-06 |
Family
ID=16377317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61197609A Granted JPS6353975A (en) | 1986-08-22 | 1986-08-22 | MIS transistor and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6353975A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4990974A (en) * | 1989-03-02 | 1991-02-05 | Thunderbird Technologies, Inc. | Fermi threshold field effect transistor |
US5440160A (en) * | 1992-01-28 | 1995-08-08 | Thunderbird Technologies, Inc. | High saturation current, low leakage current fermi threshold field effect transistor |
US5369295A (en) * | 1992-01-28 | 1994-11-29 | Thunderbird Technologies, Inc. | Fermi threshold field effect transistor with reduced gate and diffusion capacitance |
US5525822A (en) * | 1991-01-28 | 1996-06-11 | Thunderbird Technologies, Inc. | Fermi threshold field effect transistor including doping gradient regions |
US5786620A (en) * | 1992-01-28 | 1998-07-28 | Thunderbird Technologies, Inc. | Fermi-threshold field effect transistors including source/drain pocket implants and methods of fabricating same |
US5814869A (en) * | 1992-01-28 | 1998-09-29 | Thunderbird Technologies, Inc. | Short channel fermi-threshold field effect transistors |
US5543654A (en) * | 1992-01-28 | 1996-08-06 | Thunderbird Technologies, Inc. | Contoured-tub fermi-threshold field effect transistor and method of forming same |
US5367186A (en) * | 1992-01-28 | 1994-11-22 | Thunderbird Technologies, Inc. | Bounded tub fermi threshold field effect transistor |
-
1986
- 1986-08-22 JP JP61197609A patent/JPS6353975A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6353975A (en) | 1988-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6426279B1 (en) | Epitaxial delta doping for retrograde channel profile | |
US4935379A (en) | Semiconductor device and method of manufacturing the same | |
US7382024B2 (en) | Low threshold voltage PMOS apparatus and method of fabricating the same | |
US4021835A (en) | Semiconductor device and a method for fabricating the same | |
US5320974A (en) | Method for making semiconductor transistor device by implanting punch through stoppers | |
US6680224B2 (en) | Methods of forming and operating field effect transistors having gate and sub-gate electrodes | |
JPH1197674A (en) | Semiconductor device and manufacturing method thereof | |
US7709311B1 (en) | JFET device with improved off-state leakage current and method of fabrication | |
US5352914A (en) | Field-effect transistor with structure for suppressing hot-electron effects, and method of fabricating the transistor | |
JPH0325950B2 (en) | ||
JP2005516389A (en) | Field effect transistor having a source and / or drain forming a Schottky or Schottky contact using a strained semiconductor substrate | |
JPS63115378A (en) | MOSFET manufacturing method | |
JPH01205470A (en) | Semiconductor device and its manufacturing method | |
US11569346B2 (en) | Semiconductor device with low random telegraph signal noise | |
JPH0571190B2 (en) | ||
JPH06268215A (en) | MIS type semiconductor device | |
JP2781918B2 (en) | Method for manufacturing MOS type semiconductor device | |
JPH02203566A (en) | Mos type semiconductor device | |
JP2729298B2 (en) | Manufacturing method of MOS transistor | |
US6611031B2 (en) | Semiconductor device and method for its manufacture | |
JPS63168050A (en) | Semiconductor device | |
US6483157B1 (en) | Asymmetrical transistor having a barrier-incorporated gate oxide and a graded implant only in the drain-side junction area | |
JPS60247974A (en) | semiconductor equipment | |
JPH04127537A (en) | Manufacture of mosfet | |
JPH0350771A (en) | Semiconductor device |