[go: up one dir, main page]

JPH0571000A - Method for removing iron ion in plating bath solution - Google Patents

Method for removing iron ion in plating bath solution

Info

Publication number
JPH0571000A
JPH0571000A JP23654991A JP23654991A JPH0571000A JP H0571000 A JPH0571000 A JP H0571000A JP 23654991 A JP23654991 A JP 23654991A JP 23654991 A JP23654991 A JP 23654991A JP H0571000 A JPH0571000 A JP H0571000A
Authority
JP
Japan
Prior art keywords
plating bath
bath solution
iron ion
nickel
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23654991A
Other languages
Japanese (ja)
Inventor
Toshishige Suzuki
敏重 鈴木
Toshiro Yokoyama
敏郎 横山
Fujio Koide
富士夫 小出
Hajime Uchino
肇 内野
Hitoshi Usami
仁 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nippon Rensui Co filed Critical Agency of Industrial Science and Technology
Priority to JP23654991A priority Critical patent/JPH0571000A/en
Publication of JPH0571000A publication Critical patent/JPH0571000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To selectively adsorb and remove only iron ion by oxidizing an iron ion in plating bath solution to trivalent by an oxidizing agent, thereafter coming a polystyrene resin base body into contact with a chelate resin having an aminocarboxylic multi-dentate ligand as a chelate ligand. CONSTITUTION:After addition of the oxidizing agent such as a hydroperoxide or ozone into the nickel (alloy) plating bath solution containing iron ion the solution is agitated to oxidizing the iron ion to trivalent. Iron ion is easily removed since bivalent iron ion, which is similar to another bivalent ion such as bivalent nickel ion in chemical property and is difficult to removed with a chelate resine, is oxidized to the trivalent. When the chelate resin having the aminocarboxylic multi-dentate ligand expressed by formula I as the chelate ligand on the polystyrene resin base body is come into contact with the plating solution, only trivalent iron ion is selectively adsobed and removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鍍金浴液の精製方法に係
わり、特に鋼板の電気鍍金に用いられた鉄イオンを含む
ニッケル鍍金浴液又はニッケル合金鍍金浴液中の夾雑物
イオンである鉄イオンを選択的に吸着除去する鍍金浴液
の精製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining a plating bath solution, and more particularly to iron which is a contaminant ion in a nickel plating bath solution or a nickel alloy plating bath solution containing iron ions used for electroplating steel sheets. The present invention relates to a method for refining a plating bath liquid that selectively removes ions by adsorption.

【0002】[0002]

【従来の技術】鋼板には防錆のために鍍金処理が行なわ
れるが、ニッケル鍍金又はニッケル合金鍍金は、耐食性
がすぐれているため近年その需要が急速に拡がりつつあ
る。このニッケル鍍金又はニッケル合金鍍金で用いられ
る鍍金浴液中には、鍍金膜の主組成分となるニッケル及
びその他の金属が金属イオンとして多量に溶解してい
る。この鍍金浴液は、長期使用していると主組成分であ
るニッケル及びその他の金属イオンは鍍金され減少する
一方、浴液中には鋼板から溶出する鉄イオンが増加して
くる。鍍金浴液中の鉄イオンの増加は鋼板の鍍金表面に
むらを生じさせたり、くもりを生じさせる等の要因とな
るため、鍍金浴液中の鉄イオン濃度が基準値を超えると
鍍金浴液の一部更新あるいは鉄イオンの除去操作が行な
われる。
2. Description of the Related Art Steel plates are plated for rust prevention, but nickel plating or nickel alloy plating has excellent corrosion resistance, and thus the demand thereof is rapidly expanding in recent years. In the plating bath solution used in this nickel plating or nickel alloy plating, a large amount of nickel and other metals, which are the main components of the plating film, are dissolved as metal ions. When this plating bath solution is used for a long period of time, nickel and other metal ions, which are main components, are plated and decreased, while iron ions eluted from the steel plate increase in the bath solution. If the iron ion concentration in the plating bath solution exceeds the standard value, an increase in iron ions in the plating bath solution may cause unevenness or clouding on the plating surface of the steel sheet. Partial renewal or iron ion removal operation is performed.

【0003】従来鍍金浴液中の鉄イオンを除去して浴液
を精製する方法として、鍍金浴液をイミノジカルボン酸
基を有するキレート樹脂に接触させることにより鉄イオ
ンを除去する方法が採用されている。
Conventionally, as a method for removing iron ions in a plating bath solution to purify the bath solution, a method of removing iron ions by bringing the plating bath solution into contact with a chelating resin having an iminodicarboxylic acid group has been adopted. There is.

【0004】[0004]

【発明が解決しようとする課題】通常ニッケル鍍金又は
ニッケル合金鍍金が行なわれる鍍金浴液中には、ニッケ
ルが硫酸塩として200〜500g/l、その他の金属
塩は硫酸塩として100〜200g/lが主組成分とし
て溶解している。このような鍍金浴液を用いて鍍金操作
を行なうと、鍍金浴液中には被鍍金物である鋼板から溶
出する鉄イオンが増加する。通常、鉄イオン濃度が10
00mg/l程度になると除鉄イオン操作が行なわれる
が、溶出する鉄イオンは大部分がII価の鉄(II)イオン
であり、少量のIII 価の鉄(III )イオンが混在してい
る。この除鉄イオン操作では前記した様にキレート樹脂
を用いる方法が採用されるが、特に鉄(II)イオンの化
学的性質は、ニッケル(II)イオンや他のII価金属イオ
ンと類似するので、大量のニッケル(II)イオンの共存
下に鉄(II)イオンを除去するのは一般に困難である。
すなわち鍍金浴液中の鉄イオン濃度は、ニッケルまたは
他の金属イオンに比してはるかに小さく、また従来のキ
レート樹脂では鉄イオンに対する親和力が共存する他の
金属イオンとあまり差がないため、鉄イオンと同時にニ
ッケルや他の金属イオンも吸着する欠点を有している。
In a plating bath solution in which nickel plating or nickel alloy plating is usually performed, nickel is 200 to 500 g / l as a sulfate and 100 to 200 g / l of other metal salts is a sulfate. Is dissolved as the main component. When a plating operation is performed using such a plating bath solution, iron ions eluted from the steel plate to be plated are increased in the plating bath solution. Usually, iron ion concentration is 10
When the amount is about 00 mg / l, the iron removal ion operation is performed, but most of the eluted iron ions are II-valent iron (II) ions, and a small amount of III-valent iron (III) ions are mixed. In this iron removal ion operation, a method using a chelate resin is adopted as described above, but since the chemical properties of iron (II) ions are similar to nickel (II) ions and other II-valent metal ions, It is generally difficult to remove iron (II) ions in the presence of a large amount of nickel (II) ions.
That is, the iron ion concentration in the plating bath solution is much smaller than that of nickel or other metal ions, and in conventional chelate resins, the affinity for iron ions does not differ much from that of other coexisting metal ions. It has a drawback that nickel and other metal ions are adsorbed simultaneously with the ions.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等はニ
ッケル鍍金又はニッケル合金鍍金浴液からの鉄イオンを
除去する方法について鋭意検討の結果、鉄(III )イオ
ンはニッケル(II)イオン等の他のII価金属イオンと異
なる化学特性を有すること、そして、鉄イオンを鉄(II
I )イオンに化学変換した後、特定のキレート配位子を
有するキレート樹脂に接触させることにより当該問題を
解決できることを見い出し、本発明に到達した。
The inventors of the present invention have made earnest studies on a method of removing iron ions from a nickel plating or nickel alloy plating bath solution. As a result, iron (III) ions are converted to nickel (II) ions and the like. Having different chemical properties from other II-valent metal ions of
I) The present invention has been achieved by finding that the problem can be solved by contacting with a chelating resin having a specific chelating ligand after the chemical conversion into ions.

【0006】すなわち本発明は、鉄イオンを含むニッケ
ル鍍金浴液又はニッケルの合金鍍金浴液を、酸化剤の存
在下で該鍍金浴液中の該鉄イオンをIII 価にした後、ポ
リスチレン樹脂母体にキレート性配位子として、下記構
造式(A) で示されるアミノポリカルボン酸型多座配位子を有する
キレート樹脂に接触させ、該鍍金浴液中の鉄イオンを除
去することを特徴とする鍍金浴液中の鉄イオンの除去方
法を要旨とするものである。
That is, according to the present invention, a nickel plating bath solution or an alloy plating bath solution of nickel containing iron ions is made to have a trivalent value of the iron ions in the plating bath solution in the presence of an oxidizing agent, and then the polystyrene resin matrix is formed. As a chelating ligand, the following structural formula (A) And a method for removing iron ions in a plating bath solution, which comprises contacting a chelating resin having an aminopolycarboxylic acid type polydentate ligand to remove iron ions in the plating bath solution. To do.

【0007】以下に本発明を詳細に説明する。本発明の
対象とする鍍金浴液は、鋼板の表面にニッケル又はニッ
ケル合金の鍍金皮膜を形成させる電気鍍金に使用された
鉄イオンを含むニッケル鍍金浴液又はニッケル合金鍍金
浴液である。これらの鍍金浴液は電解槽に貯蔵され、鋼
板の鍍金に供されるが、通常ニッケル鍍金浴液ではニッ
ケルは硫酸塩として100〜250g/l、pH1〜3
であるように維持管理され、又ニッケル合金鍍金浴液で
はさらにその他の金属塩、例えば亜鉛、アルミニウム等
の硫酸塩が50〜250g/l加えられ管理されてい
る。鉄イオンは鍍金の進行とともに増大し、その濃度が
管理値を超えるような値付近になると、鋼板の鍍金表面
を常に安定した状態に保持するために、この電解槽の鍍
金浴液から鉄イオンを除去しなければならない。鉄イオ
ンはキレート樹脂により除去されるが、本発明に用いら
れるキレート樹脂は鉄(III )イオンに対する親和力が
鉄(II)イオン、ニッケル(II)イオン、亜鉛(II)イ
オン及びアルミニウム(III )と比べて著しく大きいと
いう特徴を有する。
The present invention will be described in detail below. The plating bath solution targeted by the present invention is a nickel plating bath solution or a nickel alloy plating bath solution containing iron ions used in electroplating for forming a plating film of nickel or a nickel alloy on the surface of a steel sheet. These plating bath solutions are stored in an electrolytic bath and are used for plating steel sheets. Usually, in nickel plating bath solutions, nickel is 100 to 250 g / l as a sulfate, pH 1 to 3
In the nickel alloy plating bath solution, 50 to 250 g / l of another metal salt, for example, a sulfate salt of zinc, aluminum or the like is added and controlled. Iron ions increase with the progress of plating, and when the concentration reaches a value near the control value, in order to keep the plating surface of the steel plate stable at all times, iron ions are added from the plating bath solution of this electrolytic bath. Must be removed. Iron ions are removed by a chelate resin, but the chelate resin used in the present invention has an affinity for iron (III) ions of iron (II) ions, nickel (II) ions, zinc (II) ions and aluminum (III) ions. It has a feature that it is significantly larger than the above.

【0008】そこで、本発明方法では上述のごとき鍍金
浴液を電解槽より抜き出した後、これらに酸化剤の存在
下に酸化処理を施し、浴液中に主として存在するII価の
鉄イオンをIII 価に移行させる前処理を行う。鉄イオン
をIII 価にする方法としては、鍍金浴液に過酸化水素、
オゾン等の酸化剤を添加後、撹拌機、空気等によるエア
レーションによる方法が採用され、鉄イオンのII価から
III 価への移行の確認は鉄イオンの酸化還元電位を測定
することにより行う。このように前処理が施された鍍金
浴液はついでキレート性配位子として前記構造式(A)
を有するキレート樹脂の充填層に通液して鉄イオンを除
去した後、再び電解槽に戻すことにより、電解槽中の浴
液の鉄イオンを減少させる。
Therefore, in the method of the present invention, after the plating bath solution as described above is withdrawn from the electrolytic cell, they are subjected to an oxidation treatment in the presence of an oxidizing agent to remove the II-valent iron ions mainly present in the bath solution. Perform the pre-processing to transfer the value. To change the iron ion to III-valent, hydrogen peroxide in a plating bath solution,
After adding an oxidizing agent such as ozone, a method of aeration with a stirrer, air, etc. is adopted.
Confirmation of transition to III valence is performed by measuring the redox potential of iron ion. The plating bath solution thus pretreated is then used as a chelating ligand in the above structural formula (A).
After passing through the packed layer of the chelate resin having the above to remove iron ions, the iron ions in the bath solution in the electrolytic cell are reduced by returning to the electrolytic cell again.

【0009】通常は、電解槽、予備受槽、酸化槽、必要
に応じて濾過器、及びキレート樹脂塔が管路で接続され
た循環系が構成され、かつ電解槽及びキレート樹脂塔出
口には鉄イオン濃度センサー、酸化槽には酸化還元電位
計を設備した装置で行なわれる。そして、電解槽の浴液
の鉄イオン濃度が所定の値以上になると鉄イオン濃度セ
ンサーの信号によりこの装置が作動するようにし、該浴
液は一旦予備受槽に受け入れられた後、酸化槽、濾過
塔、キレート樹脂塔の順に流通して鉄イオンが除去さ
れ、次に再び予備受槽に受け入れられるが、キレート樹
脂塔出口の鉄イオン濃度が所定の値以上になると鉄イオ
ン濃度センサーの信号により通液を停止するようにす
る。予備浴槽では浴液中のニッケル及びその他の金属イ
オン濃度がチェックされた後、浴液は電解槽に返送され
電気鍍金に供される。
Usually, an electrolysis tank, a preliminary receiving tank, an oxidation tank, a filter if necessary, and a circulation system in which a chelate resin tower is connected by a pipeline, and an iron tank is provided at the outlet of the electrolysis tank and the chelate resin tower. An ion concentration sensor and an oxidation tank are equipped with a redox potential meter. Then, when the iron ion concentration of the bath liquid in the electrolysis tank exceeds a predetermined value, this device is activated by the signal of the iron ion concentration sensor, the bath liquid is once received in the preliminary receiving tank, and then the oxidation tank and the filtration tank are filtered. The iron ion is removed by flowing through the tower and the chelate resin tower in that order, and then is received again in the preliminary receiving tank, but when the iron ion concentration at the outlet of the chelate resin tower reaches or exceeds the specified value, liquid is passed by the signal of the iron ion concentration sensor. To stop. In the preliminary bath, after the nickel and other metal ion concentrations in the bath solution are checked, the bath solution is returned to the electrolytic cell and used for electroplating.

【0010】本発明で使用されるキレート配位子として
前記構造式(A)を有するキレート樹脂は従来公知の方
法で製造される。例えば、α−アミノ−ε−カプロラク
タムを出発原料とし、モノクロル酢酸と反応させた後カ
ルボキシメチル化し、さらに強アルカリ中において加水
分解し、末端にニトリロ三酢酸類似の多座配位子を持つ
The chelate resin having the above structural formula (A) as the chelate ligand used in the present invention is produced by a conventionally known method. For example, α-amino-ε-caprolactam is used as a starting material, reacted with monochloroacetic acid, carboxymethylated, further hydrolyzed in a strong alkali, and has a polydentate ligand similar to nitrilotriacetate at the end.

【0011】[0011]

【化1】 [Chemical 1]

【0012】を合成する。このものを、クロロメチル化
ポリスチレン樹脂とジメチルスルフィドを反応させ、ジ
メチルスルホニル化したキレート樹脂の母体樹脂、ある
いはトリメチルアミンやジメチルアニリン等と反応させ
第4級アンモニウム化した母体樹脂と直接反応を行い、
キレート樹脂を一段の高分子反応により合成することが
できる。キレート樹脂の母体となる架橋高分子体として
は、上述のスチレンをジビニルベンゼンで架橋したもの
が採用される。また母体樹脂の物理的構造は非多孔質形
又は多孔質形の何れでも採用できるが、本発明では使用
条件等から多孔質形の方が好ましい。但し多孔質形の場
合、細孔容積0.1〜2.0ml/g、細孔半径10〜1
0,000Å、比表面積1〜1000m2/gの範囲のも
のを採用するのが好ましい。
Is synthesized. This product is reacted with a chloromethylated polystyrene resin and dimethyl sulfide to directly react with a base resin of a dimethylsulfonylated chelate resin, or with a quaternary ammonium-modified base resin by reacting with trimethylamine or dimethylaniline.
The chelate resin can be synthesized by a one-step polymer reaction. As the cross-linked polymer serving as the base of the chelate resin, the above-mentioned styrene cross-linked with divinylbenzene is adopted. The physical structure of the base resin may be either a non-porous type or a porous type, but in the present invention, the porous type is preferred from the use conditions and the like. However, in the case of porous type, the pore volume is 0.1 to 2.0 ml / g, the pore radius is 10 to 1
It is preferable to employ those having a specific surface area of 10,000 Å and a specific surface area of 1 to 1000 m 2 / g.

【0013】このようにして製造されたキレート樹脂の
充填層に鉄イオンを含んだメッキ浴液をSV3〜10l
/hrで通液する。その際、このキレート樹脂はII価の鉄
イオンに対しては吸着能が小さいので、浴液中の鉄イオ
ンはあらかじめすべてIII 価にしておくことが必須の要
件である。キレート樹脂塔からの鉄イオン(III )の漏
洩が所定の値以上になればキレート樹脂の再生を行う。
キレート樹脂の再生には再生剤として鉱酸を用いて常法
により行うことができるが、鍍金浴液中への塩素イオン
の混入も鍍金表面のむらの要因となるので、再生剤とし
ては硫酸の採用が好ましい。再生剤としての硫酸は濃度
5〜20w/v%、好ましくは10%、再生レベル10
0〜300g−硫酸/l−樹脂で通液し、再生後のキレ
ート樹脂は再びメッキ浴液の通液に供することができ
る。
A plating bath solution containing iron ions was added to the packed layer of the chelate resin produced as described above at an SV of 3 to 10 liters.
/ Hr. At this time, since this chelating resin has a small adsorption capacity for II-valent iron ions, it is an essential requirement that all the iron ions in the bath liquid be III-valent in advance. When the leakage of iron ions (III) from the chelate resin tower exceeds a predetermined value, the chelate resin is regenerated.
The chelate resin can be regenerated by a conventional method using a mineral acid as a regenerant, but since chlorine ions are mixed in the plating bath solution also causes unevenness of the plating surface, sulfuric acid is used as a regenerant. Is preferred. Sulfuric acid as a regenerant has a concentration of 5 to 20 w / v%, preferably 10%, a regeneration level of 10
It is possible to pass a solution of 0 to 300 g-sulfuric acid / l-resin, and the chelate resin after regeneration can be used again as a plating bath solution.

【0014】[0014]

【発明の効果】このように本発明によれば、鋼板の鍍金
処理に用いられた鉄イオンを含むニッケル鍍金浴又はニ
ッケル合金鍍金浴から鉄イオンのみを選択的に吸着除去
することができる。
As described above, according to the present invention, only iron ions can be selectively adsorbed and removed from the nickel plating bath or the nickel alloy plating bath containing the iron ions used for the plating treatment of the steel sheet.

【0015】[0015]

【実施例】次に本発明を実施例及び比較例により更に詳
細に説明するが、これら実施例により、本発明は何ら限
定されるものではない。 〔実施例1〕ポリスチレン樹脂母体にキレート性配位子
として前記構造式(A)で示されるアミノポリカルボン
酸型多座配位子を有するキレート樹脂を以下の手順で合
成した。
The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 A chelate resin having an aminopolycarboxylic acid type polydentate ligand represented by the structural formula (A) as a chelating ligand in a polystyrene resin matrix was synthesized by the following procedure.

【0016】ジビニルベンゼン架橋の多孔質なMR型ク
ロロメチル化ポリスチレン樹脂(32〜60メッシュ、
Cl含有率5ml/g−樹脂)とジメチルアニリンを公知
の方法により以下のように反応させ、第4級アンモニウ
ム化樹脂を合成した。ジメチルアニリン31g、ジクロ
ルメタン50ml、メタノール50mlおよび水100mlの
混合溶液にクロロメチル化ポリスチレン樹脂25gを加
え、25℃で4日間かき混ぜ、第4級アンモニウム化樹
脂(湿潤体積140ml)を得た。
Divinylbenzene crosslinked porous MR type chloromethylated polystyrene resin (32 to 60 mesh,
Cl content 5 ml / g-resin) and dimethylaniline were reacted by a known method as follows to synthesize a quaternary ammonium resin. To a mixed solution of 31 g of dimethylaniline, 50 ml of dichloromethane, 50 ml of methanol and 100 ml of water was added 25 g of chloromethylated polystyrene resin, and the mixture was stirred at 25 ° C for 4 days to obtain a quaternary ammonium compound (wet volume 140 ml).

【0017】[0017]

【化2】 [Chemical 2]

【0018】を含む300mlの水溶液中に該樹脂を加
え、水酸化ナトリウムにて反応液のpHを10〜12に
保持し、80℃にて24時間加熱してかき混ぜた。得ら
れた反応物をろ過し、2規定の塩酸で洗浄し、水洗乾燥
したところ、
The resin was added to 300 ml of an aqueous solution containing, the pH of the reaction solution was maintained at 10 to 12 with sodium hydroxide, and the mixture was heated at 80 ° C. for 24 hours and stirred. The reaction product obtained was filtered, washed with 2N hydrochloric acid, washed with water and dried.

【0019】[0019]

【化3】 [Chemical 3]

【0020】が導入された樹脂31.2gが得られた。
以下この樹脂をNTAという。NTAと市販キレート樹
脂の一般性能分析値を後記表2に示す。 〔実施例2〕実施例1の手順で合成したNTA50mlを
内径10mmのガラスカラムに充填した。次にこのガラス
カラムに10%硫酸150mlを毎時150mlの流量で通
液し、引き続き脱塩水150mlを同じ流速で通液し、N
TAを再生した。次いで下記の組成の電気ニッケル合金
鍍金浴液に過酸化水素水を添加して酸化処理を行い、酸
化還元電位を500mVに調整後、毎時200mlの流速で
4l通液した。
31.2 g of a resin containing was obtained.
Hereinafter, this resin is referred to as NTA. Table 2 below shows general performance analysis values of NTA and a commercially available chelate resin. Example 2 50 ml of NTA synthesized by the procedure of Example 1 was packed in a glass column having an inner diameter of 10 mm. Next, 150 ml of 10% sulfuric acid was passed through this glass column at a flow rate of 150 ml per hour, and subsequently 150 ml of demineralized water was passed through at the same flow rate to obtain N 2.
Played the TA. Then, hydrogen peroxide solution was added to an electrolytic nickel alloy plating bath solution having the following composition to perform oxidation treatment, and after adjusting the redox potential to 500 mV, 4 liters were passed at a flow rate of 200 ml per hour.

【0021】電気鍍金浴組成 ZnSO4 110g/l:Total−Fe 500
mg/l:通液温度50℃ NiSO4 220g/l:pH 1.34 at 5
0℃
Electroplating bath composition ZnSO 4 110 g / l: Total-Fe 500
mg / l: flow temperature 50 ° C. NiSO 4 220 g / l: pH 1.34 at 5
0 ° C

【0022】通液終了後、カラム内に残存する電気鍍金
浴液を純水にて十分に洗浄した後、再生を行った。再生
工程は10%硫酸150mlを毎時150mlの流量で通液
し、引き続き脱塩水150mlを同じ流速で通液すること
によりおこなった。上記再生工程に於いて、カラム出口
より流出する再生廃液を容器に受け、この再生廃液中に
含まれる鉄,亜鉛,ニッケルを分析したところ、下記
〔表1〕に示す結果が得られた。
After completion of passing the solution, the electroplating bath solution remaining in the column was thoroughly washed with pure water and then regenerated. The regeneration step was carried out by passing 150 ml of 10% sulfuric acid at a flow rate of 150 ml per hour, and subsequently passing 150 ml of demineralized water at the same flow rate. In the above-mentioned regeneration process, the waste reclaimed liquid flowing out from the column outlet was received in a container and analyzed for iron, zinc and nickel contained in the reclaimed waste, and the results shown in [Table 1] below were obtained.

【0023】〔比較例1〕NTAの代わりに市販のイミ
ノジ酢酸型キレート樹脂UR50(商品名、ユニチカ社
製)をカラムに充填した以外は実施例と全く同一の操作
手順及び条件で電気鍍金液を通液した。再生工程に於い
てカラム出口より流出する再生廃液を容器に受け、この
再生廃液中に含まれる鉄,亜鉛,ニッケルを分析したと
ころ、下記表1に示す結果が得られた。
[Comparative Example 1] An electroplating solution was prepared in the same operating procedure and conditions as in Example except that a commercially available iminodiacetic acid type chelating resin UR50 (trade name, manufactured by Unitika Ltd.) was packed in the column instead of NTA. It passed. In the regeneration process, the waste recycling liquid flowing out from the column outlet was received in a container, and iron, zinc, and nickel contained in the waste recycling liquid were analyzed, and the results shown in Table 1 below were obtained.

【0024】〔比較例2〕電気鍍金液の酸化処理を省略
した以外は実施例と同一の手順及び条件で通液した。再
生工程に於いて、カラム出口より流出する再生廃液を容
器に受け、この再生廃液中に含まれる鉄,亜鉛,ニッケ
ルを分析したところ、下記表1に示す結果が得られた。
[Comparative Example 2] Liquid was passed under the same procedure and conditions as in Example except that the oxidation treatment of the electroplating liquid was omitted. In the regeneration process, the waste waste liquid flowing out from the column outlet was received in a container, and iron, zinc, and nickel contained in the waste waste liquid were analyzed, and the results shown in Table 1 below were obtained.

【0025】[0025]

【表1】 [Table 1]

【0026】上記実施例1,2及び比較例1,2から本
発明方法によれば電気ニッケル合金鍍金浴液中の鉄イオ
ンを選択的に除去することができ且つ再生して繰り返し
て長期間使用できるなど省資源、省エネルギーに寄与す
るところが大きい。
According to the method of the present invention from Examples 1 and 2 and Comparative Examples 1 and 2, the iron ions in the electrolytic nickel alloy plating bath solution can be selectively removed and regenerated for repeated long-term use. It greatly contributes to resource saving and energy saving.

【0027】[0027]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 敏郎 宮城県仙台市郡山一丁目19番1−903 (72)発明者 小出 富士夫 東京都千代田区丸の内三丁目2番3号 日 本錬水株式会社内 (72)発明者 内野 肇 東京都千代田区丸の内三丁目2番3号 日 本錬水株式会社内 (72)発明者 宇佐美 仁 東京都千代田区丸の内三丁目2番3号 日 本錬水株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toshiro Yokoyama 1-193-1 Koriyama, Sendai-shi, Miyagi 1-903 (72) Inventor Fujio Koide 3- 2-3 Marunouchi, Chiyoda-ku, Tokyo Nihon Ren Rensui Co., Ltd. In-company (72) Inventor Hajime Hajime 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Nihon Rensui Co., Ltd. (72) Inventor Hitoshi Usami 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Nihon Rensui Co., Ltd. In the company

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄イオンを含むニッケル鍍金浴液又はニ
ッケルの合金鍍金浴液を、酸化剤の存在下で該鍍金浴液
中の該鉄イオンをIII 価にした後、ポリスチレン樹脂母
体にキレート性配位子として、下記構造式(A) で示されるアミノポリカルボン酸型多座配位子を有する
キレート樹脂に接触させ、該鍍金浴液中の鉄イオンを除
去することを特徴とする鍍金浴液中の鉄イオンの除去方
法。
1. A nickel plating bath solution or an alloy plating bath solution of nickel containing iron ions is made chelating to a polystyrene resin matrix after the iron ions in the plating bath solution are made to have a trivalent value in the presence of an oxidizing agent. As a ligand, the following structural formula (A) A method for removing iron ions from a plating bath solution, which comprises contacting a chelating resin having an aminopolycarboxylic acid type polydentate ligand shown in 1 above to remove iron ions from the plating bath solution.
JP23654991A 1991-09-17 1991-09-17 Method for removing iron ion in plating bath solution Pending JPH0571000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23654991A JPH0571000A (en) 1991-09-17 1991-09-17 Method for removing iron ion in plating bath solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23654991A JPH0571000A (en) 1991-09-17 1991-09-17 Method for removing iron ion in plating bath solution

Publications (1)

Publication Number Publication Date
JPH0571000A true JPH0571000A (en) 1993-03-23

Family

ID=17002304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23654991A Pending JPH0571000A (en) 1991-09-17 1991-09-17 Method for removing iron ion in plating bath solution

Country Status (1)

Country Link
JP (1) JPH0571000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057615A (en) * 2007-09-03 2009-03-19 Nippon Steel Corp Method and equipment for removing iron ions in displacement plating solution
JP5980677B2 (en) * 2010-05-28 2016-08-31 東洋製罐株式会社 Surface treatment bath, method for producing surface-treated steel plate using this surface treatment bath, and surface-treated steel plate comprising this production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057615A (en) * 2007-09-03 2009-03-19 Nippon Steel Corp Method and equipment for removing iron ions in displacement plating solution
JP5980677B2 (en) * 2010-05-28 2016-08-31 東洋製罐株式会社 Surface treatment bath, method for producing surface-treated steel plate using this surface treatment bath, and surface-treated steel plate comprising this production method
US10000858B2 (en) 2010-05-28 2018-06-19 Toyo Seikan Group Holdings, Ltd. Bath for surface treatment, method of producing surface-treated steel plate by using the bath for surface treatment, and surface treated steel plate produced by the same method

Similar Documents

Publication Publication Date Title
CN1129482C (en) Prepn. art and application of monodisperse ion exchange agent contg. chelate functional group
US3788983A (en) Selective separation of cyanide from waste streams by adsorption process
CN109231544A (en) A kind of processing method for the effluent brine that polycarbonate production generates in the process
US4481087A (en) Process for removing chromate from solution
CN109499544A (en) The method that modification method synthesizes mercapto-functionalized metal-organic framework MIL-101-SH afterwards
JPS62279844A (en) Use of macroporous weakly basic anion exchangers
JPH0571000A (en) Method for removing iron ion in plating bath solution
EP0199335B1 (en) Process for removing metal complexes from waste solutions
JPS63153229A (en) Reactive resin useful for recovery of metal
CN114807609A (en) A kind of method for efficiently recovering nickel in wastewater
JP4321231B2 (en) Method for removing chloride ions in non-ferrous metal sulfate solutions
GB2037608A (en) Regeneration of anion exchange resins
CN107555654A (en) A kind of Treated sewage reusing technique for metal industry cooling system
US3043867A (en) Method for the purification of aminocarboxylic acids
RU2343120C1 (en) Method of sewage water purification from hexacyanoferrates
US5154757A (en) Method of making pure cobalt metal powder substantially free of divalent cationic impurities
CN113582415B (en) A desalination treatment method for reverse osmosis concentrated water
KR100231681B1 (en) Regeneration of Ferric Chloride Aqueous Solution by Continuous Process
Mindler et al. Metal recovery by cation exchange
JPS62228436A (en) Method for separating and recovering cobalt
JPS6023176B2 (en) Copper removal from nickel and/or cobalt containing solutions
JP2000144472A (en) Refining treatment of salt water for electrolysis
JPS5836606B2 (en) Adsorption treatment method
US4231864A (en) Process for preparation of a water for hemodialysis, and its application in renal hemodialysis
JPH02107526A (en) Production of electrolyte for producing alkali bichromate and chromic acid