JPH0570580B2 - - Google Patents
Info
- Publication number
- JPH0570580B2 JPH0570580B2 JP61280646A JP28064686A JPH0570580B2 JP H0570580 B2 JPH0570580 B2 JP H0570580B2 JP 61280646 A JP61280646 A JP 61280646A JP 28064686 A JP28064686 A JP 28064686A JP H0570580 B2 JPH0570580 B2 JP H0570580B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- reflectance
- thickness
- transmittance
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
Description
[産業上の利用分野]
本発明は高透過率を有する赤外反射物品に関す
るものである。
[従来の技術]
従来より、赤外反射物品として知られているも
のには、主に冷房負荷を軽減する目的で用いられ
るソーラーコントロールと呼ばれるタイプのもの
と、主に暖房負荷と軽減する目的で用いられるヒ
ートミラーと呼ばれるタイプのものがある。後者
に最低限必要とされる特性は可視域での高い透過
率と赤外域での十分高い反射率とであるが、近赤
外域での反射率を上げることができれば、同時に
ソーラーコントロールとしての働きも合わせ持つ
ことになり、より好ましい。
従来このタイプの熱線反射ガラスとしては
(1) 金属の100Å程度の薄膜
(2) ドープされた酸化物半導体の膜
(3) 誘電体/金属/誘電体の3層構造
の3種類が知られていた。具体的には(1)としては
Au、Ag、Cuの薄膜などが用いられており、(2)と
してはSnO2、In2O3などの5000Å以上の膜が用い
られている。又(3)としてはAgを誘電体の膜でサ
ンドイツチした構成が特公昭47−6315に開示され
ている。
これらのうち(1)のタイプでは赤外域での反射率
を十分高くするためには金属膜の膜厚を大きくす
る必要があり、可視域での透過率が下がつてしま
うことが欠点となる。又(2)のタイプでは赤外域で
の反射率を十分高くするためには膜厚が5000Å以
上と大きくなる点と、近赤外域での反射率を上げ
られないなどの欠点がある。
これに対し(3)のタイプでは金属膜を挟んだ誘電
体膜が反射防止膜として作用するため、赤外域で
の十分高い反射率と可視域での高い透過率とを全
体として1000Å以下の膜厚で実現できるなどの利
点があり、広く用いられている。しかしこのタイ
プのものでも、可視域での高透過率を得るために
は中間の金属層の厚みはおよそ200Å以下、好ま
しくは150Å以下であることが必要であるため、
赤外域での反射率はせいぜい95%程度であり、故
に放射率は5%程度となる。又近赤外域の反射が
上がらず、太陽エネルギー反射率は25%程度以下
となつてしまう。更にあとで比較例として述べる
ように、分光反射特性は可視域でU字型となり、
反射色としては紫系統の色調しか出すことができ
ないため、色彩上のバリエーシヨンが限られてし
まい、意匠性の点からは大きな欠点となつてい
た。
以上をまとめると、従来の技術では
(a) 可視域の高透過率と赤外域での十分高い反応
率を得るためには(3)のタイプが最も良いが、な
お不十分であり、更に
(b) 反射色調が紫系統に限られる
(c) 近赤外域での反射の立上がりが鈍い
という欠点を有していたのである。
[発明の解決しようとする問題点]
本発明の目的は、従来技術の有していた前述の
欠点を解消し赤外域での非常に高い反射率と可視
域での十分高い透過率とを有し、かつ反射色がか
なりの自由度で変化させることができるような新
規な赤外反射物品を提供することにある。
又、本発明の別の目的は、赤外域での非常に高
い反射率と可視域での十分高い透過率とを有し、
かつ近赤外域で反射率が鋭い立ち上がりを示すよ
うな新規な赤外反射物品を提供することにある。
[問題点を解決するための手段]
本発明は前述の問題点を解決すべくなされたも
のであり、透明基板と該基板上に形成された5層
コーテイングとからなり、該コーテイングは基板
側から透明酸化物の第1層、銀の第2層、透明酸
化物の第3層、銀の第4層、透明酸化物の第5層
から成り、該銀層の厚みが各々110Å以下であり、
可視光線透過率が70%以上であることを特徴とす
る高透過率を有する赤外反射物品を提供するもの
である。
本発明の透明基板としてはガラス、プラスチツ
ク等を使用することができる。本発明の透明酸化
物としてはTiO2、ZrO2、In2O3、SnO2、ZnO、
Ta2O5及びこれらの混合物などの屈折率の大きい
材料、例えばn=1.7〜2.5の屈折率を有する材料
が用いられる。
本発明の好ましい態様における各層の膜厚範囲
としては、使用する材料によつて若干の変化があ
るが、おおよそ次の通りである。
すなわち、第1層としては200〜600Å、第2層
としては60〜110Å、第3層としては400〜1200
Å、第4層としては60〜110Å、第5層としては
200〜600Åである。これらの膜厚範囲は、可視域
での高透過率を実現させるために設定されたもの
であり、膜厚がこの範囲を逸脱すると、干渉条件
からはずれ、反射防止効果が発揮されず、可視光
線透過率が低下してしまう。
特に銀層の膜厚は可視域での十分な透過率を確
保するためと膜厚調整による反射色調の可変範囲
を充分大きくとるために110Å以下である必要が
ある。すなわち、銀膜が厚くなると可視域での透
過率が減少すると共に低反射率の波長範囲が狭く
なり反射色調が紫系統になりやすいのである。一
方、膜厚を薄くしすぎると銀が島状態となつてし
まい、所期の特性が得られなくなるため、銀の膜
厚として約60Å以上であることが望ましい。
本発明の5層コーテイングは、真空蒸着法やス
パツタリング法又はイオンプレーテイング法によ
り容易に形成することができるが、これらの方法
に限定されるものではなく、他の手法、例えばデ
イツピング法、スプレー法等により形成してもよ
い。
又、本発明の5層コーテイングは付着力や耐久
性を向上させる等を目的により、その基板との界
面又は各層間の界面又は空気との界面においてそ
の光学的特性を変化させない程度の膜厚をもつた
境界層が挿入されていてもよい。
又、本発明の透明誘電体層は、第1層、第3
層、第5層と同じ材料から構成することが生産上
の観点からは望ましいが、本発明はこれに限定さ
れるものではなく、3つの層のうちのいずれか1
層と異なる材料により構成してもよいし、又、3
つの層を全て異なる材料により構成してもよい。
[作用]
本発明において、第2層と第4層の銀層は近赤
外域より長波長領域における反射率を上げる働き
をする。この意味では銀層は厚い程好ましいが、
可視域での透過率を上げるためには薄い方が良
い。
又、本発明において第1層、第3層及び第5層
の透明酸化物層は銀膜の可視域における反射防止
層として作用し、可視域の透過率を上昇させる働
きをする。
又、本発明において各層の膜厚を適当な範囲で
調整することにより、可視域での高透過率と近赤
外域〜赤外域における高反射率とを保持したま
た、反射色調を相当自由に変化させることができ
る。
以下、実施例に即して本発明をより詳細に述べ
ることにする。
[実施例]
実施例 1
ガラス基板を真空槽にセツトし、1×
10-6Torrまで排気した。次に酸素ガスを導入し、
圧力を1.7×10-3Torrとし、亜鉛ターゲツトを高
周波マグネトロンスパツタして、基板上に第1層
としてZnOの膜を形成した。このときの膜厚は約
400Åとなるようにした。次にアルゴン雰囲気で
1.4×10-3Torrの圧力で銀ターゲツトを高周波マ
グネトロンスパツタして、第2層としてAgの膜
を形成した。このときの膜圧は約100Åとなるよ
うにした。次いで、第1層と同じ条件でZnOの第
3層を約800Å形成した。次いで第2層と同じ条
件でAgの第4層を約100Å形成した。次いで第1
層と同じ条件でZnOの第5層を約400Å形成した。
こうして得られた試料の分光透過率及び分光反
射率を示したのが図2の21,22である。可視
域での高透過率と、近赤外域での反射の鋭い立ち
上がり及び可視中央部における反射の極大の存在
を示しており、反射色はグリーンであつた。又、
波長10μにおける反射率は95%であつた。
特性を下にまとめた。
[Industrial Application Field] The present invention relates to an infrared reflective article having high transmittance. [Prior Art] Conventionally, there are two types of infrared reflective products known as solar control products, which are mainly used for the purpose of reducing cooling loads, and a type called solar control, which is mainly used for the purpose of reducing cooling loads. There is a type called a heat mirror that is used. The minimum characteristics required for the latter are high transmittance in the visible range and sufficiently high reflectance in the infrared range, but if the reflectance in the near-infrared range can be increased, it will also work as a solar control device. It is more preferable to have both. Conventionally, three types of heat-reflecting glass of this type are known: (1) a thin metal film of about 100 Å, (2) a doped oxide semiconductor film, and (3) a three-layer structure of dielectric/metal/dielectric. Ta. Specifically, (1)
Thin films of Au, Ag, Cu, etc. are used, and as (2), films of 5000 Å or more such as SnO 2 and In 2 O 3 are used. As for (3), a structure in which Ag is sandwiched with a dielectric film is disclosed in Japanese Patent Publication No. 47-6315. Among these, in type (1), it is necessary to increase the thickness of the metal film in order to sufficiently increase the reflectance in the infrared region, and the disadvantage is that the transmittance in the visible region decreases. . In addition, type (2) has drawbacks such as the film thickness being 5000 Å or more in order to sufficiently increase the reflectance in the infrared region, and the inability to increase the reflectance in the near-infrared region. On the other hand, in type (3), the dielectric film sandwiching the metal film acts as an antireflection film, so the overall film thickness of less than 1000 Å provides sufficiently high reflectance in the infrared region and high transmittance in the visible region. It has the advantage of being thick and is widely used. However, even with this type, in order to obtain high transmittance in the visible range, the thickness of the intermediate metal layer must be approximately 200 Å or less, preferably 150 Å or less.
The reflectance in the infrared region is about 95% at most, so the emissivity is about 5%. In addition, reflection in the near-infrared region is not increased, and the solar energy reflectance is about 25% or less. Furthermore, as will be described later as a comparative example, the spectral reflection characteristics are U-shaped in the visible range,
Since it is only possible to produce reflective colors in purple tones, color variations are limited, which is a major drawback in terms of design. To summarize the above, in the conventional technology, (a) type (3) is the best in order to obtain high transmittance in the visible range and sufficiently high reaction rate in the infrared range, but it is still insufficient, and furthermore, ( (b) The reflected color tone was limited to purple. (c) The rise of reflection in the near-infrared region was slow. [Problems to be Solved by the Invention] The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a system that has extremely high reflectance in the infrared region and sufficiently high transmittance in the visible region. The object of the present invention is to provide a novel infrared reflective article whose reflective color can be changed with a considerable degree of freedom. Another object of the present invention is to have a very high reflectance in the infrared region and a sufficiently high transmittance in the visible region,
Another object of the present invention is to provide a novel infrared reflective article whose reflectance exhibits a sharp rise in the near-infrared region. [Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and consists of a transparent substrate and a five-layer coating formed on the substrate, and the coating is formed from the substrate side. Consisting of a first layer of transparent oxide, a second layer of silver, a third layer of transparent oxide, a fourth layer of silver, and a fifth layer of transparent oxide, each of the silver layers has a thickness of 110 Å or less,
The present invention provides an infrared reflective article having a high transmittance characterized by a visible light transmittance of 70% or more. Glass, plastic, etc. can be used as the transparent substrate of the present invention. The transparent oxide of the present invention includes TiO 2 , ZrO 2 , In 2 O 3 , SnO 2 , ZnO,
A material with a high refractive index such as Ta 2 O 5 and mixtures thereof, for example a material with a refractive index of n=1.7 to 2.5, is used. The thickness range of each layer in a preferred embodiment of the present invention varies slightly depending on the material used, but is approximately as follows. That is, the first layer is 200 to 600 Å, the second layer is 60 to 110 Å, and the third layer is 400 to 1200 Å.
Å, 60-110Å for the 4th layer, and 60-110Å for the 5th layer.
It is 200-600 Å. These film thickness ranges have been set to achieve high transmittance in the visible range. If the film thickness deviates from this range, it will deviate from the interference conditions, the anti-reflection effect will not be achieved, and visible light will be lost. Transmittance will decrease. In particular, the thickness of the silver layer needs to be 110 Å or less in order to ensure sufficient transmittance in the visible range and to ensure a sufficiently wide range of variation in reflected color tone by adjusting the film thickness. That is, as the silver film becomes thicker, the transmittance in the visible range decreases, the wavelength range of low reflectance becomes narrower, and the reflected color tone tends to be purple. On the other hand, if the film thickness is made too thin, the silver becomes islands and the desired characteristics cannot be obtained, so it is desirable that the silver film thickness be about 60 Å or more. The five-layer coating of the present invention can be easily formed by a vacuum evaporation method, a sputtering method, or an ion plating method, but is not limited to these methods. It may also be formed by, etc. Furthermore, in order to improve adhesion and durability, the five-layer coating of the present invention has a film thickness that does not change the optical properties at the interface with the substrate, the interface between each layer, or the interface with air. A tangled boundary layer may also be inserted. Further, the transparent dielectric layer of the present invention has a first layer, a third layer, and a third layer.
From a production point of view, it is desirable that the fifth layer be made of the same material as the fifth layer, but the present invention is not limited to this.
It may be composed of a material different from the layer, or 3.
The two layers may all be composed of different materials. [Function] In the present invention, the second and fourth silver layers serve to increase the reflectance in the longer wavelength region than in the near-infrared region. In this sense, the thicker the silver layer, the better.
In order to increase the transmittance in the visible range, the thinner the material, the better. Further, in the present invention, the first, third, and fifth transparent oxide layers act as antireflection layers of the silver film in the visible range, and serve to increase the transmittance in the visible range. In addition, in the present invention, by adjusting the thickness of each layer within an appropriate range, it is possible to maintain high transmittance in the visible range and high reflectance in the near-infrared to infrared range, and also to change the reflected color tone fairly freely. can be done. Hereinafter, the present invention will be described in more detail with reference to Examples. [Example] Example 1 A glass substrate was set in a vacuum chamber, and
Exhausted to 10 -6 Torr. Next, introduce oxygen gas,
A ZnO film was formed as a first layer on the substrate by high-frequency magnetron sputtering with a zinc target at a pressure of 1.7×10 -3 Torr. The film thickness at this time is approximately
The thickness was set to 400Å. Then in an argon atmosphere
A silver film was formed as a second layer by high-frequency magnetron sputtering on a silver target at a pressure of 1.4×10 -3 Torr. The film thickness at this time was set to about 100 Å. Next, a third layer of ZnO was formed to a thickness of about 800 Å under the same conditions as the first layer. Next, a fourth layer of Ag was formed to a thickness of about 100 Å under the same conditions as the second layer. Then the first
A fifth layer of ZnO was formed to a thickness of about 400 Å under the same conditions as the first layer. 21 and 22 in FIG. 2 show the spectral transmittance and spectral reflectance of the sample thus obtained. It exhibited high transmittance in the visible region, a sharp rise in reflection in the near-infrared region, and a maximum reflection in the central visible region, and the reflected color was green. or,
The reflectance at a wavelength of 10μ was 95%. The characteristics are summarized below.
【表】
実施例 2
第3層の厚みを約650Åとした以外は実施例1
と同じ条件でガラス基板上へ5層コーテイングを
行なつた。得られた試料の分光曲線は可視域での
高い透過率と近赤外域における反射率の鋭い立ち
上がり及び可視域における右上がりの反射特性を
示し、反射色はブロンズであつた。又、波長10μ
における反射率は95%であつた。
特性を下にまとめた。[Table] Example 2 Example 1 except that the thickness of the third layer was approximately 650 Å
A five-layer coating was performed on a glass substrate under the same conditions as described above. The spectral curve of the obtained sample showed high transmittance in the visible region, a sharp rise in reflectance in the near-infrared region, and reflection characteristics that rose to the right in the visible region, and the reflected color was bronze. Also, wavelength 10μ
The reflectance was 95%. The characteristics are summarized below.
【表】
実施例 3
第3層の厚みを約950Åとした以外は実施例1
と同じ条件でガラス基板上へ5層コーテイングを
行なつた。得られた試料の分光曲線は可視域での
高い透過率と近赤外域での反射率が鋭い立ち上が
り及び可視域における左上がりの反射特性を示
し、反射色はブルーグリーンであつた。又、波長
10μにおける反射率は95%であつた。
特性を下にまとめた。[Table] Example 3 Example 1 except that the thickness of the third layer was approximately 950 Å
A five-layer coating was performed on a glass substrate under the same conditions as described above. The spectral curve of the obtained sample showed a high transmittance in the visible region, a sharp rise in the reflectance in the near-infrared region, and a left-sloping reflection characteristic in the visible region, and the reflected color was blue-green. Also, wavelength
The reflectance at 10μ was 95%. The characteristics are summarized below.
【表】
実施例 4
透明酸化物としてTiO2を用いた。実施例1と
同様にしてガラス基板を準備した後、まずチタン
ターゲツトを高周波マグネトロンスパツタして基
板上に第1層としてTiO2の膜を形成した。この
ときの膜厚は約350Åとなるようにした。次に実
施例1と同様にして第2層としてAgの膜を約100
Å形成した。次いで第1層と同じ条件でTiO2の
第3層を約700Å形成した。次いで第2層と同じ
条件でAgの第4層を約100Å形成した。次いで第
1層と同じ条件でTiO2の第5層を約350Å形成し
た。
こうして得られた試料の分光曲線は可視域での
高い透過率と近赤外域での反射率の鋭い立ち上が
り及び可視中央部における反射の極大の存在を示
しており反射色はグリーンであつた。又、波長
10μにおける反射率は95%であつた。
特性を下にまとめた。[Table] Example 4 TiO 2 was used as the transparent oxide. After preparing a glass substrate in the same manner as in Example 1, a titanium target was first subjected to high frequency magnetron sputtering to form a TiO 2 film as a first layer on the substrate. The film thickness at this time was approximately 350 Å. Next, in the same manner as in Example 1, a film of approximately 100% Ag was applied as a second layer.
A was formed. Next, a third layer of TiO 2 was formed to a thickness of about 700 Å under the same conditions as the first layer. Next, a fourth layer of Ag was formed to a thickness of about 100 Å under the same conditions as the second layer. Next, a fifth layer of TiO 2 was formed to a thickness of about 350 Å under the same conditions as the first layer. The spectral curve of the sample thus obtained showed high transmittance in the visible region, a sharp rise in reflectance in the near-infrared region, and the presence of a maximum reflection in the central visible region, and the reflected color was green. Also, wavelength
The reflectance at 10μ was 95%. The characteristics are summarized below.
【表】
比較例 1
実施例1と同様にしてガラス基板を準備した
後、まず亜鉛ターゲツトを高周波マグネトロンス
パツタして基板上に第1層としてZnOの膜を約
400Å形成した。次に実施例1と同様にして、第
2層としてAgの膜を約100Å形成した。次いで第
1層と同じ条件で第3層としてZnOの膜を約400
Å形成した。
こうして得られた試料の分光透過率及び反射率
を示したのが図3の31,32である。
図2と比べると近赤外域での反射の立上がりが
鈍く、可視域での反射カーブがU字型を示してお
り、反射色は青紫であつた。又、波長10μにおけ
る反射率は85%であり、実施例1〜4に比べて劣
つていた。
特性を下にまとめた。[Table] Comparative Example 1 After preparing a glass substrate in the same manner as in Example 1, first a ZnO film was deposited as the first layer on the substrate by high-frequency magnetron sputtering using a zinc target.
400Å was formed. Next, in the same manner as in Example 1, a second layer of Ag was formed to a thickness of about 100 Å. Next, under the same conditions as the first layer, a ZnO film with a thickness of approximately 400% was added as the third layer.
A was formed. 31 and 32 in FIG. 3 show the spectral transmittance and reflectance of the sample thus obtained. Compared to FIG. 2, the rise of reflection in the near-infrared region was slow, the reflection curve in the visible region was U-shaped, and the reflected color was blue-violet. Further, the reflectance at a wavelength of 10μ was 85%, which was inferior to Examples 1 to 4. The characteristics are summarized below.
【表】
比較例 2
第2層の銀の厚みを約200Åとした以外は比較
例1と同じ条件でガラス基板上へ3層コーテイン
グを行なつた。得られた試料の分光透過率及び反
射率を示したのが図3の33,34である。図2
と比べると近赤外域での立上がりは同程度に鋭く
なつているが、可視域での透過率は下がり、反射
率が大きく上昇してしまつている。反射色は赤紫
であつた。
特性を下にまとめた。[Table] Comparative Example 2 Three-layer coating was performed on a glass substrate under the same conditions as Comparative Example 1 except that the thickness of the second layer of silver was approximately 200 Å. 33 and 34 in FIG. 3 show the spectral transmittance and reflectance of the obtained sample. Figure 2
Compared to , the rise in the near-infrared region is about the same sharpness, but the transmittance in the visible region has decreased and the reflectance has increased significantly. The reflected color was reddish-purple. The characteristics are summarized below.
【表】
[発明の効果]
以上の実施例及び比較例を通じて明らかになつ
たように、本発明によれば、十分高い可視光線透
過率と非常に高い赤外反射率及び近赤外域での反
射率の鋭い立上がりを有する赤外反射物品を得る
ことができる。
又、各層の膜厚を適当な範囲で調整することに
より、反射色調を相当自由に変化させることがで
き、意匠面でのメリツトが非常に大きいという特
長を持つている。
本発明の好ましい実施態様としては、5層コー
テイングの施された透明基板を単独に用いるばか
りでなく、本発明による透明プラスチツクフイル
ムをガラスに貼り付けて用いる他、複層窓の一部
として用いることもできるし、又、三重窓の一部
として使用することもできる。
このようにして本発明を用いることにより、十
分高い可視光線透過率と多彩な反射色調を有する
ヒートミラーを構成することができ、ビルや一般
住宅などにおける暖房負荷を効果的に軽減するこ
とができる。[Table] [Effects of the Invention] As clarified through the above Examples and Comparative Examples, the present invention has sufficiently high visible light transmittance, extremely high infrared reflectance, and reflection in the near-infrared region. An infrared reflective article having a sharp rise in rate can be obtained. Furthermore, by adjusting the thickness of each layer within an appropriate range, the reflected color tone can be changed quite freely, which is a great advantage in terms of design. In a preferred embodiment of the present invention, the transparent substrate coated with five layers is not only used alone, but also the transparent plastic film of the present invention is used by pasting it on glass, or as part of a multi-layer window. It can also be used as part of a triple glazed window. In this way, by using the present invention, it is possible to construct a heat mirror that has sufficiently high visible light transmittance and a variety of reflection colors, and it is possible to effectively reduce the heating load in buildings and general residences. .
図1は、本発明の一実施例の断面を模式的に示
したものであり、10は透明基板、11,13,
15は透明酸化物膜、12,14は銀膜を示して
いる。
図2は実施例1の分光特性を示したものであ
り、21,22はそれぞれ実施例1の分光透過率
及び反射率を示す。
図3は比較例1、2の分光特性を示したもので
あり、31,32はそれぞれ比較例1の分光透過
率及び反射率を示し、33,34はそれぞれ比較
例2の分光透過率及び反射率を示している。
図4は比較例1の断面図を模式的に示したもの
であり、40は透明基板、41,43は透明誘電
体膜、42は銀膜を示している。
FIG. 1 schematically shows a cross section of an embodiment of the present invention, in which 10 is a transparent substrate, 11, 13,
15 is a transparent oxide film, and 12 and 14 are silver films. FIG. 2 shows the spectral characteristics of Example 1, and 21 and 22 represent the spectral transmittance and reflectance of Example 1, respectively. Figure 3 shows the spectral characteristics of Comparative Examples 1 and 2, 31 and 32 show the spectral transmittance and reflectance of Comparative Example 1, respectively, and 33 and 34 show the spectral transmittance and reflectance of Comparative Example 2, respectively. It shows the rate. FIG. 4 schematically shows a cross-sectional view of Comparative Example 1, in which 40 is a transparent substrate, 41 and 43 are transparent dielectric films, and 42 is a silver film.
Claims (1)
1層、銀の第2層、透明酸化物の第3層、銀の第
4層、透明酸化物の第5層から成る5層コーテイ
ングが設けられた赤外反射物品において、該銀層
の厚みが110Å以下であり、可視光線透過率が70
%以上であることを特徴とする高透過率を有する
赤外反射物品。1 A five-layer coating consisting of a first layer of transparent oxide, a second layer of silver, a third layer of transparent oxide, a fourth layer of silver, and a fifth layer of transparent oxide is formed on a transparent substrate in order from the substrate side. In the provided infrared reflective article, the thickness of the silver layer is 110 Å or less, and the visible light transmittance is 70 Å.
An infrared reflective article having a high transmittance of at least %.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61280646A JPS63134232A (en) | 1986-11-27 | 1986-11-27 | Infrared reflective article with high transmittance |
US07/125,236 US4859532A (en) | 1986-11-27 | 1987-11-25 | Transparent laminated product |
US07/377,953 US4996105A (en) | 1986-11-27 | 1989-07-11 | Transparent laminated product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61280646A JPS63134232A (en) | 1986-11-27 | 1986-11-27 | Infrared reflective article with high transmittance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63134232A JPS63134232A (en) | 1988-06-06 |
JPH0570580B2 true JPH0570580B2 (en) | 1993-10-05 |
Family
ID=17627954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61280646A Granted JPS63134232A (en) | 1986-11-27 | 1986-11-27 | Infrared reflective article with high transmittance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63134232A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1108693A1 (en) | 1999-12-06 | 2001-06-20 | Nippon Sheet Glass Co., Ltd. | Heat shading glass, method for manufacturing the same, and heat shading laminated glass using the same |
JP2012073623A (en) * | 2010-03-02 | 2012-04-12 | Sony Corp | Optical body, window material, fitting and solar radiation shielding device |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4965121A (en) * | 1988-09-01 | 1990-10-23 | The Boc Group, Inc. | Solar control layered coating for glass windows |
JPH03501351A (en) * | 1988-09-14 | 1991-03-28 | マリンクロッド・インコーポレイテッド | Radioactive liquid oral administration device |
DE19733053A1 (en) * | 1997-07-31 | 1999-02-04 | Leybold Ag | Oxide and metal coated transparent substrate useful for monitor |
JP2004352567A (en) | 2003-05-29 | 2004-12-16 | Nippon Sheet Glass Co Ltd | Heat-insulating/heat-shielding glass panel |
WO2007072877A1 (en) * | 2005-12-22 | 2007-06-28 | Central Glass Company, Limited | Low emissivity glass |
WO2016006610A1 (en) | 2014-07-09 | 2016-01-14 | 日本ゼオン株式会社 | Laminated glass |
WO2016202799A1 (en) * | 2015-06-19 | 2016-12-22 | Agc Glass Europe | Laminated glazing for solar control |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3272986A (en) * | 1963-09-27 | 1966-09-13 | Honeywell Inc | Solar heat absorbers comprising alternate layers of metal and dielectric material |
US3682528A (en) * | 1970-09-10 | 1972-08-08 | Optical Coating Laboratory Inc | Infra-red interference filter |
US4179181A (en) * | 1978-04-03 | 1979-12-18 | American Optical Corporation | Infrared reflecting articles |
NO157212C (en) * | 1982-09-21 | 1988-02-10 | Pilkington Brothers Plc | PROCEDURE FOR THE PREPARATION OF LOW EMISSION PATIENTS. |
JPS62296117A (en) * | 1986-06-17 | 1987-12-23 | Seiko Epson Corp | contact lens |
-
1986
- 1986-11-27 JP JP61280646A patent/JPS63134232A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1108693A1 (en) | 1999-12-06 | 2001-06-20 | Nippon Sheet Glass Co., Ltd. | Heat shading glass, method for manufacturing the same, and heat shading laminated glass using the same |
JP2012073623A (en) * | 2010-03-02 | 2012-04-12 | Sony Corp | Optical body, window material, fitting and solar radiation shielding device |
Also Published As
Publication number | Publication date |
---|---|
JPS63134232A (en) | 1988-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1335887C (en) | Neutral sputtered films of metal alloy oxides | |
JP4824150B2 (en) | Transparent substrate with thin film laminate | |
US4902580A (en) | Neutral reflecting coated articles with sputtered multilayer films of metal oxides | |
JP3902676B2 (en) | Transparent substrate with a thin film stack acting on sunlight and / or infrared | |
US5372874A (en) | DC reactively sputtered optical coatings including niobium oxide | |
EP0548972B1 (en) | A transparent film-coated substrate | |
KR920001387B1 (en) | Low emissivity film for automotive heat load reduction | |
KR920005650B1 (en) | Low reflectance highly saturated colored coating for monolothic glazing | |
EP3802448B1 (en) | Coated article with ir reflecting layer(s) and silicon zirconium oxynitride layer(s) and method of making same | |
HK1006834B (en) | Neutral sputtered films of metal alloy oxides | |
WO1999065838A9 (en) | Anti-solar and low emissivity functioning multi-layer coatings on transparent substrates | |
HU217802B (en) | Multilayer transparent substrates | |
JP2000129464A (en) | Transparent substrate provided with thin-film stack | |
WO2004011382A2 (en) | Temperable high shading performance coatings | |
JPH0522657B2 (en) | ||
JPS63206333A (en) | Single plate heat reflective glass | |
FI96507C (en) | Glass product and process for making a titanium-containing coating on a glass support | |
US4900630A (en) | Glass plate with reflective multilayer coatings to give golden appearance | |
JPH0570580B2 (en) | ||
US4348453A (en) | Glazing possessing selective transmission and reflection spectra | |
JP2003104758A (en) | Heat ray shielding glass and double grazing using the same | |
JPS5918134A (en) | Method for forming a heat ray reflective laminate having an oxide film | |
JPS63239043A (en) | infrared reflective articles | |
KR100461215B1 (en) | Improvements in or related to coated glass | |
JPH0460061B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |