[go: up one dir, main page]

JPH0569846B2 - - Google Patents

Info

Publication number
JPH0569846B2
JPH0569846B2 JP15584786A JP15584786A JPH0569846B2 JP H0569846 B2 JPH0569846 B2 JP H0569846B2 JP 15584786 A JP15584786 A JP 15584786A JP 15584786 A JP15584786 A JP 15584786A JP H0569846 B2 JPH0569846 B2 JP H0569846B2
Authority
JP
Japan
Prior art keywords
copolymer
acrylamide
meth
thermoreversible
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15584786A
Other languages
Japanese (ja)
Other versions
JPS6312611A (en
Inventor
Shoji Ito
Kensaku Mizoguchi
Masao Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15584786A priority Critical patent/JPS6312611A/en
Publication of JPS6312611A publication Critical patent/JPS6312611A/en
Publication of JPH0569846B2 publication Critical patent/JPH0569846B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、新芏な銅キレヌト胜を持぀芪氎性−
疎氎性熱可逆型共重合䜓に関するものである。曎
に詳しく蚀えば、本発明は、遮光䜓、枩床センサ
ヌ、吞着剀、銅むオン指瀺剀、曎には玩具、むン
テリア、捺染剀、デむスプレむ、分離膜、メカノ
ケミカル材料に利甚しうる加枩により䞍溶化する
銅キレヌト胜を持぀芪氎性−疎氎性熱可逆型共重
合䜓に関するものである。 埓来の技術 氎溶性高分子化合物の䞭には、氎溶液状態にお
いおある枩床転移枩床又は曇点以䞊では析出
癜濁化し、その枩床以䞋では溶解透明化するずい
う特殊な可逆的溶解挙動を瀺すものがあり、この
ものは、芪氎性−疎氎性熱可逆型高分子化合物ず
呌ばれ、近幎、枩宀、化孊実隓宀などの遮光䜓、
枩床センサヌ等ずしお泚目されるようにな぀おき
た。 このような熱可逆型高分子化合物ずしおは、こ
れたでポリ酢酞ビニル郚分けん化物、ポリビニル
メチル゚ヌテル、メチルセルロヌス、ポリ゚チレ
ンオキシド、ポリビニルメチルオキサゟリデむノ
ン及びポリアクリルアミド誘導䜓などが知られお
いる。 これらの熱可逆型重合䜓の䞭でポリアクリルア
ミド誘導䜓は、氎䞭で安定であり、か぀比范的安
䟡に補造しうるので、前蚘甚途に奜適であるが、
熱可逆性を有するものずしおは、これたでポリ
−゚チルメタアクリルアミド、ポリ
−−プロピルメタアクリルアミド、ポリ
−む゜プロピルメタアクリルアミド、ポ
リ−シクロプロピルメタアクリルアミ
ド、ポリ−ゞ゚チルアクリルアミド、
ポリ−メチル−−゚チルアクリルアミド、
ポリ−ゞ゚チルアクリルアミド、ポリ
−メチル−−゚チルアクリルアミド、ポリ
−メチル−−−プロピルアクリルアミ
ド、ポリ−メチル−−む゜プロピルアク
リルアミド、ポリ−アクリルピロリゞン、
ポリ−アクリルピペリゞン、ポリ−テ
トラヒドロフルフリルメタアクリルアミド、
ポリ−メトキシプロピルメタアクリルア
ミド、ポリ−゚トキシプロピルメタアク
リルアミド、ポリ−む゜プロポコシプロピル
メタアクリルアミド、ポリ−゚トキシ゚
チルメタアクリルアミド、ポリ−
−ゞメトキシ゚チル−−メチルアクリルア
ミド等が知られおいる。 しかしながら、このような化合物は、䟋えば枩
床センサヌや遮光䜓などに利甚しようずしおも、
転移枩床が限られたものずなり、又、金属むオン
ずキレヌト胜を持たないので適甚範囲が制限され
るのを免れなか぀た。 発明が解決しようずする問題点 本発明の目的は、このような事情のもずで、芪
氎性−疎氎性熱可逆型ポリアクリルアミド誘導䜓
の利甚範囲を拡倧すべく、銅キレヌト胜を持ち加
枩により氎に䞍溶化する新芏な芪氎性−疎氎性熱
可逆型共重合䜓を提䟛するこずにある。 問題点を解決するための手段 本発明は、鋭意研究を重ねた結果、 䞀般匏 CH2CR1−CO−NH−NH−CO−C6H5
   ただし、R1は氎玠原子又はメチル基 で衚されるビニル化合物ず、䞀般匏
Industrial Application Field The present invention provides a novel hydrophilic copper-chelating compound with copper chelating ability.
This invention relates to a hydrophobic thermoreversible copolymer. More specifically, the present invention provides copper that can be insolubilized by heating, which can be used in light shielding bodies, temperature sensors, adsorbents, copper ion indicators, toys, interior decorations, printing agents, displays, separation membranes, and mechanochemical materials. This invention relates to a hydrophilic-hydrophobic thermoreversible copolymer having chelating ability. Prior Art Some water-soluble polymer compounds exhibit a special reversible dissolution behavior in which they precipitate and become cloudy above a certain temperature (transition temperature or cloud point) in an aqueous solution state, and dissolve and become transparent below that temperature. Yes, this compound is called a hydrophilic-hydrophobic thermoreversible polymer compound, and in recent years it has been used as a light-shielding material in greenhouses, chemical laboratories, etc.
It has started to attract attention as a temperature sensor, etc. As such thermoreversible polymer compounds, partially saponified polyvinyl acetate, polyvinyl methyl ether, methylcellulose, polyethylene oxide, polyvinylmethyloxazolidinone, polyacrylamide derivatives, and the like have been known. Among these thermoreversible polymers, polyacrylamide derivatives are suitable for the above uses because they are stable in water and can be produced at relatively low cost.
So far, poly(N-ethyl(meth)acrylamide), poly(N-ethyl(meth)acrylamide), poly(N-ethyl(meth)acrylamide),
-n-propyl(meth)acrylamide), poly(N-isopropyl(meth)acrylamide), poly(N-cyclopropyl(meth)acrylamide), poly(N,N-diethylacrylamide),
poly(N-methyl-N-ethylacrylamide),
Poly(N,N-diethylacrylamide), poly(N-methyl-N-ethylacrylamide), poly(N-methyl-N-n-propylacrylamide), poly(N-methyl-N-isopropylacrylamide), poly( N-acrylpyrrolidine),
Poly(N-acrylicpiperidine), poly(N-tetrahydrofurfuryl(meth)acrylamide,
Poly(N-methoxypropyl(meth)acrylamide), Poly(N-ethoxypropyl(meth)acrylamide, Poly(N-isopropococypropyl(meth)acrylamide), Poly(N-ethoxyethyl(meth)acrylamide), Poly(N-ethoxypropyl(meth)acrylamide) −(2,
2-dimethoxyethyl)-N-methylacrylamide) and the like are known. However, even if we try to use such compounds for example in temperature sensors or light shields,
The transition temperature is limited, and since it does not have the ability to chelate metal ions, the range of application is inevitably limited. Problems to be Solved by the Invention Under these circumstances, the purpose of the present invention is to expand the scope of use of hydrophilic-hydrophobic thermoreversible polyacrylamide derivatives, which have copper chelating ability and can be heated The object of the present invention is to provide a novel hydrophilic-hydrophobic thermoreversible copolymer that is insolubilized in water. Means for Solving the Problems The present invention was developed as a result of intensive research and has been developed using the general formula CH 2 = CR 1 −CO−NH−NH−CO−C 6 H 5
...() (where R 1 is a hydrogen atom or a methyl group) and a vinyl compound represented by the general formula

【匏】 ただし、R1は前蚘ず同じ、R2及びR3は氎玠
原子、アルキル基、シクロアルキル基、テトラヒ
ドロフルフリル基、アルコキシアルキル基 で衚され、その単独重合䜓氎溶液が熱可逆性を瀺
すビニル化合物、あるいはこれらにさらにこれら
以倖の共重合可胜なビニル化合物を加えた単量䜓
混合物を共重合させるこずにより、可枩により氎
に䞍溶化する銅キレヌト胜を持぀芪氎性−疎氎性
熱可逆型共重合䜓が埗られるこずを芋出し、この
知芋に基づいお本発明を完成するに至぀た。 すなわち、本発明は、(A)䞀般匏
[Formula] (where R 1 is the same as above, R 2 and R 3 are hydrogen atoms, alkyl groups, cycloalkyl groups, tetrahydrofurfuryl groups, alkoxyalkyl groups), and the homopolymer aqueous solution is thermoreversible. By copolymerizing a monomer mixture of a vinyl compound exhibiting a specific property or a monomer mixture in which a copolymerizable vinyl compound other than these is added, a hydrophilic-hydrophobic product with a copper chelating ability that becomes insoluble in water by heating. It was discovered that a thermoreversible copolymer could be obtained, and based on this knowledge, the present invention was completed. That is, the present invention provides (A) general formula

【匏】 ただし、R1は前蚘ず同じ で衚される構成単䜍ず、 (B) 䞀般匏[Formula] (However, R 1 is the same as above) and (B) General formula

【匏】 ただし、R1R2及びR3は前蚘ず同じ で衚される構成単䜍ずを含み、構成単䜍(A)ず構成
単䜍(B)ずの割合がモル比(A)(B)で0.03〜0.12の範
囲にあり、30℃における極限粘床ηが0.01〜
6.0に盞圓する分子量を有する芪氎性−疎氎性熱
可逆型共重合䜓を提䟛するものである。 本発明の共重合䜓は、䞀般匏のビニル化
合物ず䞀般匏のビニル化合物を所定の割合
で共重合させるこずによ぀お埗られるが、所望に
応じ、この皮のビニル化合物にさらに、これら
ず共重合可胜な他のビニル化合物を加えお共重合
させるこずもできる。 本発明で甚いられる䞀般匏 CH2CR1−CO−NH−NH−CO−C6H5 R1の時、−アクリロむルベンズヒド
ラゞド以䞋略しおABHR1CH3の時、−メ
タクリロむルベンズヒドラゞド以䞋略しお
MABHで衚されるビニル化合物の単独重合䜓
は、銅むオンず遞択的にキレヌト化するこずが知
られ、このこずは、䟋えば「デむヌ・マクロモリ
キナラヌ・ピミヌDie Macromolculare
Chemie」85巻、92−105頁1965幎発行に蚘
茉されおいる。 本発明においお、その単独重合䜓がいずれも芪
氎性−疎氎性熱可逆型高分子である䞀般匏
で衚されるビニル化合物を䞀皮以䞊をもちいるこ
ずができる。これらは、具䜓的には、−゚チル
メタアクリルアミド、−−プロピルメ
タアクリルアミド、−む゜プロピルメタ
アクリルアミド、−シクロプロピルメタア
クリルアミド、−ゞ゚チルアクリルアミ
ド、−メチル−−゚チルアクリルアミド、
−メチチル−−−プロピルアクリルアミド、
−メチル−−む゜プロピルアクリルアミド、
−アクリルピロリゞン、−アクリルピペリゞ
ン、−テトラヒドロフルフリルメタアクリ
ルアミド、−メトキシプロピルメタアクリ
ルアミド、−゚トキシプロピルメタアクリ
ルアミド、−む゜プロポコシプロピルメタ
クリルアミド、−゚トキシ゚チルメタアク
リルアミド、−−ゞメトキシ゚チル−
−メチルアクリルアミド等をあげるこずができ
る。 本発明においお、第成分ずしお甚いうる他の
共重合しうるビニル化合物ずしおは、芪氎性ビニ
ル化合物䞊蚘の熱可逆性ビニル化合物を陀く、
むオン性ビニル化合物、芪氎性ビニル化合物の䞀
皮以䞊を甚いるこずができる。芪氎性ビニル化合
物ずしおは、䟋えば−メチロヌルアクリルアミ
ド、アクリルアミド、メタクリルアミド、−メ
チルアクリルアミド、−ゞメチルアクリル
アミド、アクリロむルモルホリン、ゞアセトンア
クリルアミド、ヒドロキシ゚チルメタクリレヌ
ト、ヒドロキシメチルメタクリレヌト、ヒドキシ
メチルアクリレヌト、ヒドロキシプロピルメタク
リレヌト、ヒドロキシプロピルアクリレヌト、
−メトキシプロピルアクリルアミド、−メトキ
シプロピルメタクリルアミド、−メチル−−
ビニルピリゞン、−ビニル−−ピロリドン等
をあげるこずができる。むオン性単量䜓ずしお
は、䟋えばアクリル酞、メタクリル酞、−アク
リルアミド−−メチル−プロパンスルホン酞、
スチレンスルホン酞等の酞及びそれらの塩
−ゞメチルアミノアチルメタクリレヌト、
−ゞ゚チルアミノ゚チルメタクリレヌト、
−ゞ゚チルアミノ゚チルアクリレヌト、−
ゞメチルアミノプロピルメタクリルアミド、
−ゞメチルアミノプロピルアクリルアミド等の
アミン及びそれらの塩をあげるこずができる。芪
油性ビニル化合物ずしおは、䟋えば−−ブチ
ルアクリルアミド、−−ブチルメタクリルア
ミド、−sec−ブチルアクリルアミド、−sec
ブチルメタクリルアミド、−tert−ブチルメタ
クリルアミド、−tert−ブチルメタクリルアミ
ド、−−ヘキシルアクリルアミド、−−
ヘキシルメタクリルアミド等の−アルキルメ
タアクリルアミド誘導䜓、゚チルアクリレヌ
ト、メチルメタクリレヌト、ブチルメタクリレヌ
ト、グリシゞルメタクリレヌト、等のメタア
クリレヌト誘導䜓、アクリロニトリル、酢酞ビニ
ル、塩化ビニル、スチレン、α−メチルスチレン
等をあげるこずができる。 前蚘の䞀般匏で衚されるビニル化合物
ず、䞀般匏で衚されるビニル化合物ずの䜿
甚割合は、埌者モル圓り前者0.03〜0.12モルの
範囲内で遞ばれる。これよりも前者の䜿甚割合が
少ないず転移枩床が高くお実甚䞊利甚しにくくな
るし、たた倚くなるず䞍溶化する。 䞊蚘の䞀般匏で衚されるビニル化
合物及び第成分ずなるビニル化合物を共重合し
お芪氎性−疎氎性熱可逆型共重合䜓を補造する具
䜓的方法ずしおは、䟋えば(1)単量䜓を溶剀で垌釈
しないでそのたた共重合する方法、(2)単量䜓を溶
剀で垌釈しお溶液共重合する方法、(3)懞濁共重合
する方法、(4)乳化共重合する方法等が採甚でき
る。その際の重合様匏は、ラゞカル重合である。
重合を開始する方法ずしおは、(1)重合開始剀を䜿
甚する方法、(2)玫倖線、可芖光等の光照射、(3)熱
による方法、(4)攟射線、電子線、プラズマ等の電
離゚ネルギヌ線を照射する方法等が採甚できる。
重合開始剀ずしおはラゞカル重合を開始する胜力
を有するものであれば制限はなく、䟋えば無機過
酞化物、有機過酞化物、それらの過酞化物ず還元
剀ずの組み合わせ及びアゟ化合物等がある。具䜓
的には、過硫酞アンモニりム、過硫酞カリ、過酞
化氎玠、tert−ブチルパヌオキシド、ベンゟむル
パヌオキシド、クメンヒドロパヌオキシド等があ
り、それらず組み合わせる還元剀ずしおは亜硫酞
塩、亜硫酞氎玠塩等がある。アゟ化合物ずしお
は、アゟビスむ゜ブチロニトリル、2′−アゟ
ビス−−アミノゞプロパン二塩酞塩、2′−
アゟビス−−ゞメチルバレロニトリル
4′−アゟビス−−シアノバレむン酞等を䜿
甚するこずができる。又、䞊蚘の重合開始剀の
皮以䞊を䜵甚するこずも可胜である。この堎合の
重合開始剀の添加量は、構造単䜍のビニル化合物
圓り0.01〜重量、奜たしくは0.05〜重量
の範囲である。 本発明においおは、通垞溶液共重合する方法が
奜たしく甚いられる。この溶液共重合においお
は、溶剀䞭に、䞊蚘の皮以䞊のビニル化合物を
溶かし〜80重量濃床の溶液ずしお、通垞知ら
れおいるラゞカル重合法を甚いるこずができる。
このような溶液共重合に甚いられる溶剀に぀いお
は特に制限はないが、䟋えば氎、アルコヌル類、
−ゞメチルホルムアミド、−ゞメチ
ルアセトアミド、アセトン、ゞオキサン、テトラ
ヒドロフラン、ベンれン、クロロホルム、四塩化
炭玠等を単独で䜿甚しおもよいし、皮以䞊組み
合わせお甚いおもよい。 このようにしお埗られた本発明の共重合䜓は、
䞀郚に䞀般匏(1)の重合䜓単䜍を有し、Cu2+むオ
ンず次匏に埓぀おキレヌトを圢成する。
[Formula] (where R 1 , R 2 and R 3 are the same as above) (B) is in the range of 0.03 to 0.12, and the intrinsic viscosity [η] at 30℃ is 0.01 to
The present invention provides a hydrophilic-hydrophobic thermoreversible copolymer having a molecular weight corresponding to 6.0. The copolymer of the present invention can be obtained by copolymerizing the vinyl compound of the general formula () and the vinyl compound of the general formula () at a predetermined ratio. Furthermore, other vinyl compounds copolymerizable with these can be added and copolymerized. General formula used in the present invention () CH 2 = CR 1 -CO-NH-NH-CO-C 6 H 5 (When R 1 = H, N-acryloylbenzhydrazide, hereinafter abbreviated as ABH, R 1 = CH 3 When , N-methacryloylbenzhydrazide, hereinafter abbreviated as
Homopolymers of vinyl compounds represented by MABH) are known to selectively chelate with copper ions, and this has been demonstrated, for example, by
Chemie), Vol. 85, pp. 92-105 (published in 1965). In the present invention, the general formula () whose homopolymers are all hydrophilic-hydrophobic thermoreversible polymers
One or more types of vinyl compounds represented by can be used. Specifically, these include N-ethyl (meth)acrylamide, N-n-propyl (meth)acrylamide, and N-isopropyl (meth)acrylamide.
Acrylamide, N-cyclopropyl (meth)acrylamide, N,N-diethylacrylamide, N-methyl-N-ethylacrylamide, N
-Methyl-N-n-propylacrylamide,
N-methyl-N-isopropylacrylamide,
N-acrylicpyrrolidine, N-acrylicpiperidine, N-tetrahydrofurfuryl (meth)acrylamide, N-methoxypropyl (meth)acrylamide, N-ethoxypropyl (meth)acrylamide, N-isopropococypropyl (meth)
Acrylamide, N-ethoxyethyl (meth)acrylamide, N-(2,2-dimethoxyethyl)-
Examples include N-methylacrylamide. In the present invention, other copolymerizable vinyl compounds that can be used as the third component include hydrophilic vinyl compounds (excluding the above thermoreversible vinyl compounds),
One or more types of ionic vinyl compounds and hydrophilic vinyl compounds can be used. Examples of the hydrophilic vinyl compound include N-methylolacrylamide, acrylamide, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, acryloylmorpholine, diacetone acrylamide, hydroxyethyl methacrylate, hydroxymethyl methacrylate, hydroxymethyl acrylate, Hydroxypropyl methacrylate, hydroxypropyl acrylate, N
-Methoxypropyl acrylamide, N-methoxypropyl methacrylamide, 2-methyl-5-
Examples include vinylpyridine and N-vinyl-2-pyrrolidone. Examples of ionic monomers include acrylic acid, methacrylic acid, 2-acrylamido-2-methyl-propanesulfonic acid,
Acids such as styrene sulfonic acid and their salts N, N
-dimethylaminoacyl methacrylate, N,N
-diethylaminoethyl methacrylate, N,N
-diethylaminoethyl acrylate, N,N-
dimethylaminopropyl methacrylamide, N,
Amines such as N-dimethylaminopropylacrylamide and their salts can be mentioned. Examples of lipophilic vinyl compounds include N-n-butylacrylamide, N-butylmethacrylamide, N-sec-butylacrylamide, N-sec
Butyl methacrylamide, N-tert-butyl methacrylamide, N-tert-butyl methacrylamide, N-n-hexyl acrylamide, N-n-
N-alkyl (meth)acrylamide derivatives such as hexyl methacrylamide, (meth)acrylate derivatives such as ethyl acrylate, methyl methacrylate, butyl methacrylate, glycidyl methacrylate, acrylonitrile, vinyl acetate, vinyl chloride, styrene, α-methylstyrene, etc. I can give it to you. The usage ratio of the vinyl compound represented by the above general formula () and the vinyl compound represented by the general formula () is selected within the range of 0.03 to 0.12 mol of the former per 1 mol of the latter. If the proportion of the former used is lower than this, the transition temperature will be high and it will be difficult to use it practically, and if it is too large, it will become insolubilized. As a specific method for producing a hydrophilic-hydrophobic thermoreversible copolymer by copolymerizing the vinyl compound represented by the above general formulas () and () and the vinyl compound serving as the third component, for example, ( 1) A method of copolymerizing the monomer as it is without diluting it with a solvent, (2) A method of solution copolymerization by diluting the monomer with a solvent, (3) A method of suspension copolymerization, (4) A method of emulsion copolymerization. A method such as polymerization can be adopted. The polymerization mode at that time is radical polymerization.
Methods for starting polymerization include (1) using a polymerization initiator, (2) irradiation with light such as ultraviolet rays and visible light, (3) methods using heat, and (4) ionizing methods such as radiation, electron beams, and plasma. A method such as irradiation with energy rays can be adopted.
The polymerization initiator is not limited as long as it has the ability to initiate radical polymerization, and includes, for example, inorganic peroxides, organic peroxides, combinations of these peroxides and reducing agents, and azo compounds. Specifically, there are ammonium persulfate, potassium persulfate, hydrogen peroxide, tert-butyl peroxide, benzoyl peroxide, cumene hydroperoxide, etc. Reducing agents used in combination with these include sulfites, bisulfites, etc. . Examples of azo compounds include azobisisobutyronitrile, 2,2'-azobis-2-aminodipropane dihydrochloride, 2,2'-
azobis-2,4-dimethylvaleronitrile,
4,4'-azobis-4-cyanovaleic acid and the like can be used. In addition, 2 of the above polymerization initiators
It is also possible to use more than one species in combination. In this case, the amount of the polymerization initiator added is in the range of 0.01 to 5% by weight, preferably 0.05% to 2% by weight, based on the vinyl compound of the structural unit. In the present invention, a method of ordinary solution copolymerization is preferably used. In this solution copolymerization, a commonly known radical polymerization method can be used, in which two or more of the above-mentioned vinyl compounds are dissolved in a solvent to form a solution having a concentration of 1 to 80% by weight.
There are no particular restrictions on the solvent used in such solution copolymerization, but examples include water, alcohols,
N,N-dimethylformamide, N,N-dimethylacetamide, acetone, dioxane, tetrahydrofuran, benzene, chloroform, carbon tetrachloride, etc. may be used alone or in combination of two or more. The copolymer of the present invention thus obtained is
It has a polymer unit of general formula (1) in part, and forms a chelate with Cu 2+ ion according to the following formula.

【化】 たた、本発明の共重合䜓は、䞀般匏の重
合䜓単䜍を有し、銅キレヌト圢成の劂䜕んにかか
わらず、䜎枩域で氎に溶け、高枩域で氎に䞍溶ず
なる高枩疎氎化型の熱可逆性を有しおいる。 䞀般に熱可逆性を有する共重合䜓氎溶液の転移
枩床は、構成単䜍ずなるビニル化合物の皮類、組
み合わせ及びその組成比によ぀お制埡するこずが
できる。その堎合、単独重合䜓が熱可逆性を有す
るビニル化合物皮以䞊で圢成された共重合䜓で
は、各単独重合䜓の転移枩床ずその組成ずの間に
加成性が成り立぀こずが倚い。又、単独重合䜓が
熱可逆性であるビニル化合物䞀皮以䞊ず、他の共
重合しうる熱可逆性でないビニル化合物䞀皮以䞊
ずを共重合する堎合がある。他の共重合しうる熱
可逆性でないビニル化合物ずしお、芪氎性ビニル
化合物、むオン性ビニル化合物、芪油性ビニル化
合物の䞀皮以䞊を採甚できる。その堎合、それら
ビニル化合物の導入により、共重合䜓氎溶液の転
移枩床は倉化するが、䞀般には芪氎性ビニル化合
物の導入は転移枩床を䞊昇させ、䞀方少量の芪油
性ビニル化合物の導入は転移枩床を加工させる傟
向にある。倚量の芪油性ビニル化合物の導入は、
共重合䜓を氎䞍溶性にする。 本発明の共重合䜓に぀いおは、構成単䜍ずなる
䞀般匏で衚されるビニル化合物の単独重合
䜓が氎に䞍溶の高分子であるので、熱可逆性をも
たせるには共重合䜓䞭のABH成分、
MABH成分は、10以䞋ずするこずが望たし
い。本発明の共重合䜓氎溶液の転移枩床は、共重
合䜓䞭の構成単䜍ずなる䞀般匏、䞀般匏
で衚されるビニル化合物、他の共重合しう
る熱可逆性でないビニル化合物の皮類ず組成及び
その組成比ずから掚定するこずが可胜である。
又、銅キレヌト化した埌の共重合䜓氎溶液の転移
枩床は、キレヌト圢成の皋床にもよるが、䞀般に
未キレヌト化共重合䜓のそれず比し転移枩床を䞋
降させる。 本発明の共重合䜓は、メタノヌル溶液䞊、30℃
における極限粘床ηが0.01〜6.0、奜たしく
は0.1〜3.0に盞圓する高分子量を有しおいる。 発明の効果 本発明のアクリルアミド系熱可逆型共重合䜓
は、䜎枩域で氎に溶け、高枩域で氎に䞍溶ずなる
高枩疎氎化型の熱可逆性を有するものであ぀お、
埓来知られおいるアクリルアミド系熱可逆型重合
䜓ずは異なり、銅キレヌト胜をも぀おおり、か぀
ビニル化合物の組み合わせによ぀お広い範囲に転
移枩床を倉化させるこずが可胜であり、遮光䜓、
枩床センサヌ、吞着剀、銅むオン指瀺剀、曎には
玩具、むンテリア、捺染剀、デむスプレむ、分離
膜、メカノケミカル材料に利甚するこずができ
る。䟋えば、本発明の共重合䜓を氎溶液のたた
で、あるいは含氎ゲルやマむクロカプセルの圢態
で透明板䞊に積局したものは、倪陜盎射光によ぀
お必芁以䞊に宀枩枩床が䞊昇するのを自動的に防
止するための遮光䜓ずしお奜適である。 以䞋に実斜䟋により本発明をさらに詳现に説明
する。 実斜䟋 〜 重合開始剀ずしおアゟビスむ゜ブチロニトリル
を甚い、その濃床50mgmlのメタノヌル溶液20
mlに所定重量の皮以䞊の䞊蚘ビニル化合物を加
え、これをアンプルに入れ、液䜓窒玠を甚いお枛
圧脱気した埌封管し、枩床60℃で20時間反応させ
た。反応埌、メタノヌルを蒞発させたのちアセト
ン溶液ずし、ゞ゚チル゚ヌテル䞭に沈殿させ共重
合䜓を回収した。 この共重合䜓に぀いお、氎䞭における熱可逆性
を調べた。転移枩床は、その氎溶液の枩床倉化に
䌎う光透過性から決定した。即ち、重量濃床
の共重合䜓氎溶液を調敎しお枩床コントロヌラヌ
付分光光床蚈を甚い、昇枩速床℃分で昇枩さ
せながら、波長500nmでの光透過率を枬定し、転
移枩床は、この光透過率が初期透過率の0.5ずな
る枩床TLから求めた。
[Chemical formula] Furthermore, the copolymer of the present invention has a polymer unit of the general formula (), and is soluble in water at low temperatures and insoluble at high temperatures, regardless of copper chelate formation. It has high-temperature hydrophobization type thermoreversibility. Generally, the transition temperature of an aqueous solution of a thermoreversible copolymer can be controlled by the types and combinations of vinyl compounds serving as constituent units and their composition ratios. In that case, in the case of a copolymer in which the homopolymer is formed of two or more thermoreversible vinyl compounds, additivity often exists between the transition temperature of each homopolymer and its composition. Further, the homopolymer may copolymerize one or more thermoreversible vinyl compounds with one or more other copolymerizable non-thermoreversible vinyl compounds. As other copolymerizable non-thermoreversible vinyl compounds, one or more of hydrophilic vinyl compounds, ionic vinyl compounds, and lipophilic vinyl compounds can be employed. In that case, the introduction of these vinyl compounds changes the transition temperature of the aqueous copolymer solution, but in general, introduction of a hydrophilic vinyl compound increases the transition temperature, while introduction of a small amount of lipophilic vinyl compound lowers the transition temperature. They tend to be processed. The introduction of large amounts of lipophilic vinyl compounds
Makes the copolymer water-insoluble. Regarding the copolymer of the present invention, since the homopolymer of the vinyl compound represented by general formula ( (ABH) component,
The (MABH) component is preferably 10% or less. The transition temperature of the copolymer aqueous solution of the present invention is determined by the general formula (), the vinyl compound represented by the general formula (), and other copolymerizable non-thermoreversible vinyl compounds, which are the constituent units in the copolymer. It can be estimated from the type, composition, and composition ratio.
Further, the transition temperature of the aqueous copolymer solution after copper chelation is generally lower than that of an unchelated copolymer, although it depends on the degree of chelate formation. The copolymer of the present invention was prepared on a methanol solution at 30°C.
It has a high molecular weight corresponding to an intrinsic viscosity [η] of 0.01 to 6.0, preferably 0.1 to 3.0. Effects of the Invention The acrylamide-based thermoreversible copolymer of the present invention has high-temperature hydrophobization type thermoreversibility that is soluble in water at low temperatures and insoluble in water at high temperatures, and
Unlike conventionally known thermoreversible acrylamide polymers, it has copper chelating ability, and the transition temperature can be varied over a wide range by combining vinyl compounds, making it suitable for light shielding materials,
It can be used in temperature sensors, adsorbents, copper ion indicators, toys, interiors, textile printing agents, displays, separation membranes, and mechanochemical materials. For example, if the copolymer of the present invention is laminated on a transparent plate in the form of an aqueous solution or in the form of a hydrogel or microcapsule, it will automatically prevent the room temperature from rising more than necessary due to direct sunlight. It is suitable as a light shielding body to prevent this. The present invention will be explained in more detail below using Examples. Examples 1 to 5 Using azobisisobutyronitrile as a polymerization initiator, a methanol solution with a concentration of 50 mg/1 ml was prepared.
A predetermined weight of two or more of the above-mentioned vinyl compounds was added to the ampoule, which was then degassed under reduced pressure using liquid nitrogen, sealed, and allowed to react at a temperature of 60° C. for 20 hours. After the reaction, methanol was evaporated, the solution was made into an acetone solution, and the copolymer was recovered by precipitation in diethyl ether. The thermoreversibility of this copolymer in water was investigated. The transition temperature was determined from the light transmittance associated with the temperature change of the aqueous solution. That is, a copolymer aqueous solution with a concentration of 1% by weight was prepared, and using a spectrophotometer with a temperature controller, the light transmittance at a wavelength of 500 nm was measured while increasing the temperature at a rate of 1°C/min, and the transition temperature was determined. was determined from the temperature (T L ) at which this light transmittance becomes 0.5 of the initial transmittance.

【衚】【table】

【衚】 これらの結果を第衚に瀺す。たた、実斜䟋
、実斜䟋、実斜䟋共重合䜓氎溶液の透過率
−枩床曲線を第図に瀺す。この䞭で実線は昇枩
時、点線は降枩時のデヌタである。実斜䟋、実
斜䟋、実斜䟋共重合䜓氎溶液に硫酞銅を加え
たずころ氎溶液の色が青からオリヌブグリヌンに
倉色し銅キレヌトの生成が確認された。生成した
銅キレヌト化共重合䜓の氎溶液は、熱可逆的な溶
解特性を瀺した。 実斜䟋 〜10 メタノヌル溶液20mlに所定重量の皮類以䞊の
䞊蚘ビニル化合物を加え、これをアンプルに入
れ、液䜓窒玠を甚いお枛圧脱気した埌封管し、照
射線量率3.9×104hr、枩床24℃の条件䞋で10
時間コバルト60からのγ線照射を行い反応させ
た。反応埌、メタノヌルを蒞発させたのちアセト
ン溶液ずし、ゞ゚チル゚ヌテル䞭に沈殿させ共重
合䜓を回収した。
[Table] These results are shown in Table 1. Further, the transmittance-temperature curves of the aqueous solutions of the copolymers of Examples 1, 2, and 4 are shown in FIG. Among these, the solid line is the data when the temperature is rising, and the dotted line is the data when the temperature is falling. Examples 2, 3, and 4 When copper sulfate was added to the copolymer aqueous solution, the color of the aqueous solution changed from blue to olive green, confirming the formation of copper chelate. The aqueous solution of the copper chelated copolymer produced showed thermoreversible dissolution properties. Examples 6 to 10 Add a predetermined weight of two or more of the above vinyl compounds to 20 ml of methanol solution, put this into an ampoule, degas it under reduced pressure using liquid nitrogen, then seal the tube, and set the irradiation dose rate to 3.9×10 4 R. /hr, 10 at a temperature of 24℃
Gamma ray irradiation from cobalt-60 was performed for a period of time to cause a reaction. After the reaction, methanol was evaporated, the solution was made into an acetone solution, and the copolymer was recovered by precipitation in diethyl ether.

【衚】 これら共重合䜓氎溶液の熱可逆性を、䞊蚘の方
法を甚いお調べた。これらの結果を第衚に瀺
す。実斜䟋、実斜䟋共重合䜓氎溶液に銅むオ
ンを加えたずころ氎溶液の色が青からオリヌブグ
リヌンに倉色し銅キレヌトの生成が確認された。
たた、生成した銅キレヌト化共重合䜓の氎溶液
は、熱可逆的な溶解特性を瀺した。 実斜䟋共重合䜓及び銅キレヌト化した実斜䟋
共重合䜓氎溶液の透過率−枩床曲線を第図に
瀺す。 実斜䟋 11〜24 重合開始剀ずしおアゟビスむ゜ブチロニトリル
を甚い、その濃床mgmlのメタノヌル溶液20
mlに所定量の皮類以䞊の䞊蚘ビニル化合物を加
え、これをアンプルに入れ、液䜓窒玠を甚いお枛
圧脱気した埌封管し、枩床60℃で所定時間反応さ
せた。次いで反応埌、メタノヌルを蒞発させたの
ちアセトン溶液ずし、−ヘキサン䞭に沈殿させ
共重合䜓を回収した。 これら共重合䜓氎溶液の熱可逆性を、䞊蚘の方
法を甚いお調べた。これらの結果を第衚に瀺
す。実斜䟋11〜22共重合䜓氎溶液に銅むオンを加
えたずころ氎溶液の色が青からオリヌブグリヌン
に倉色し銅キレヌトの生成が確認された。たた、
生成した銅キレヌト化共重合䜓の氎溶液は、熱可
逆的な溶解特性を瀺した。
[Table] The thermoreversibility of these copolymer aqueous solutions was investigated using the above method. These results are shown in Table 2. Examples 7 and 8 When copper ions were added to the copolymer aqueous solution, the color of the aqueous solution changed from blue to olive green, confirming the formation of copper chelate.
Furthermore, the aqueous solution of the copper chelating copolymer produced showed thermoreversible dissolution characteristics. FIG. 2 shows the transmittance-temperature curves of the Example 7 copolymer and the copper-chelated Example 7 copolymer aqueous solution. Examples 11-24 Using azobisisobutyronitrile as a polymerization initiator, a methanol solution with a concentration of 5 mg/1 ml20
A predetermined amount of two or more of the above-mentioned vinyl compounds was added to the ampoule, which was then degassed under reduced pressure using liquid nitrogen, sealed, and allowed to react at a temperature of 60° C. for a predetermined time. After the reaction, the methanol was evaporated, an acetone solution was prepared, and the copolymer was precipitated in n-hexane to recover the copolymer. The thermoreversibility of these copolymer aqueous solutions was investigated using the method described above. These results are shown in Table 3. Examples 11-22 When copper ions were added to the copolymer aqueous solution, the color of the aqueous solution changed from blue to olive green, confirming the formation of copper chelate. Also,
The aqueous solution of the copper chelated copolymer produced showed thermoreversible dissolution properties.

【衚】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第図及び第図は本発明共重合䜓の重量
氎溶液における透過率−枩床曲線を瀺す。
Figures 1 and 2 are 1% by weight of the copolymer of the present invention.
The transmittance-temperature curve in an aqueous solution is shown.

Claims (1)

【特蚱請求の範囲】  (A) 䞀般匏 【匏】 ただし、R1は氎玠原子又はメチル基 で衚される構成単䜍ず、 (B) 䞀般匏 【匏】 ただしR1は前蚘ず同じ、R2およびR3は氎玠
原子、アルキル基、シクロアルキル基、テトラヒ
ドロフルフリル基又はアルコキシアルキル基 で衚される構成単䜍ずを含み、構成単䜍(A)ず構成
単䜍(B)ずの割合がモル比(A)(B)で0.03〜0.12の範
囲にあり、30℃における極限粘床ηが0.01〜
6.0に盞圓する分子量を有する芪氎性−疎氎性熱
可逆型共重合䜓。
[Claims] 1 (A) A structural unit represented by the general formula [formula] (wherein R 1 is a hydrogen atom or a methyl group), and (B) a general formula [formula] (wherein R 1 is the same as the above) Same, R 2 and R 3 contain a hydrogen atom, a structural unit represented by an alkyl group, a cycloalkyl group, a tetrahydrofurfuryl group, or an alkoxyalkyl group, and the combination of the structural unit (A) and the structural unit (B) The molar ratio (A)/(B) is in the range of 0.03 to 0.12, and the intrinsic viscosity [η] at 30°C is 0.01 to
A hydrophilic-hydrophobic thermoreversible copolymer with a molecular weight corresponding to 6.0.
JP15584786A 1986-07-02 1986-07-02 Heat-sensitive high polymer having copper chelating ability Granted JPS6312611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15584786A JPS6312611A (en) 1986-07-02 1986-07-02 Heat-sensitive high polymer having copper chelating ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15584786A JPS6312611A (en) 1986-07-02 1986-07-02 Heat-sensitive high polymer having copper chelating ability

Publications (2)

Publication Number Publication Date
JPS6312611A JPS6312611A (en) 1988-01-20
JPH0569846B2 true JPH0569846B2 (en) 1993-10-01

Family

ID=15614799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15584786A Granted JPS6312611A (en) 1986-07-02 1986-07-02 Heat-sensitive high polymer having copper chelating ability

Country Status (1)

Country Link
JP (1) JPS6312611A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259003A (en) * 1988-08-26 1990-02-28 Hitachi Zosen Corp Method for removing heavy metal ions using water-absorbing polymers
JPH0649733B2 (en) * 1990-03-22 1994-06-29 工業技術院長 Thermosensitive polymer compound that undergoes phase transition in monohydric alcohol solvent and method for producing the same
JPH06145646A (en) * 1992-11-06 1994-05-27 Agency Of Ind Science & Technol Heat-sensitive copolymer having chelating ability

Also Published As

Publication number Publication date
JPS6312611A (en) 1988-01-20

Similar Documents

Publication Publication Date Title
US4279795A (en) Hydrophilic-hydrophobic graft copolymers for self-reinforcing hydrogels
US4380600A (en) Aqueous dispersion of water-soluble polymer composition
US3336269A (en) Preparation of acrylamide-type water-soluble polymers
US5484865A (en) Copolymers of ampholytic ion pairs containing vinylic tertiary amine
JPH05331244A (en) Thermally reversible graft copolymer
US5130389A (en) Superabsorbent crosslinked ampholytic ion pair copolymers containing 2-methacryloyloxyethyldimethylammonium
US5216098A (en) Superabsorbent crosslinked ampholytic ion pair copolymers
US5106929A (en) Superabsorbent crosslinked ampholytic ion pair copolymers
US4260713A (en) Process for producing water-soluble polymers
US5130391A (en) Superabsorbent crosslinked ampholytic ion pair copolymers
US3634366A (en) Polymerizing method
JPH0569846B2 (en)
US5281673A (en) Superabsorbent polymers
US5357000A (en) Grafted copolymers highly absorbent to aqueous electrolyte solutions
JP2991241B2 (en) Method for producing ultrahigh molecular weight thermosensitive polyacrylamide derivative
US5376729A (en) Grafted copolymers highly absorbent to aqueous electrolyte solutions
US5252690A (en) Superabsorbent polymers
EP0534015A1 (en) Thermally reversible graft-copolymer
US5334685A (en) Grafted copolymers highly absorbent to aqueous electrolyte solutions
JP2000319304A (en) Copolymer having reversible hydrophilicity- hydrophobicity transition and its production
US5219970A (en) Grafted copolymers highly absorbent to aqueous electrolyte solutions
JPS63117016A (en) Production of heat-sensitive polymer
JPS63117017A (en) Production of heat-sensitive polymer compound
EP0161104A2 (en) Polymer emulsions and process of preparing polymer emulsions
JPS61247716A (en) Temperature-sensitive polymer emulsion

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term