JPH0567712A - Cooling mechanism of integrated circuit - Google Patents
Cooling mechanism of integrated circuitInfo
- Publication number
- JPH0567712A JPH0567712A JP4054449A JP5444992A JPH0567712A JP H0567712 A JPH0567712 A JP H0567712A JP 4054449 A JP4054449 A JP 4054449A JP 5444992 A JP5444992 A JP 5444992A JP H0567712 A JPH0567712 A JP H0567712A
- Authority
- JP
- Japan
- Prior art keywords
- integrated circuit
- liquid refrigerant
- refrigerant
- storage member
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【技術分野】本発明は集積回路の冷却機構に関し、特に
情報処理装置などの電子機器を構成する集積回路素子の
近傍に水などの液体冷媒を循環させ、集積回路素子で発
生した熱を液体冷媒に伝播させて冷却する冷却構造に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling mechanism for an integrated circuit, and in particular, a liquid refrigerant such as water is circulated in the vicinity of the integrated circuit element that constitutes an electronic device such as an information processing device, and heat generated in the integrated circuit element is liquefied. The present invention relates to a cooling structure for propagating to and cooling.
【0002】[0002]
【従来技術】従来、この種の冷却構造においては、図8
に示すように、配線基板40上の集積回路41にバネ4
3によりピストン42が押付けられている。集積回路4
1に発生した熱をピストン42が奪うと、その熱がヘリ
ウムガス48を充満した空間を通してハット44および
介在層45に伝達され、介在層45から冷却板46に伝
達されて冷媒47内に放熱されるようになっている。上
記の冷却方法は「A Conduction-Cooled Module for Hig
h-Performance LSI Devices 」(S.Oktay,H.C.Kammere
r,IBM Journal of Reseach and Development.Vol.26 N
o.1 Jan.1982)に詳述されている。2. Description of the Related Art Conventionally, in this type of cooling structure, FIG.
As shown in FIG.
The piston 42 is pressed by 3. Integrated circuit 4
When the piston 42 takes away the heat generated in No. 1, the heat is transferred to the hat 44 and the intervening layer 45 through the space filled with the helium gas 48, is transferred from the intervening layer 45 to the cooling plate 46, and is radiated into the refrigerant 47. It has become so. The above cooling method is `` A Conduction-Cooled Module for Hig
h-Performance LSI Devices "(S.Oktay, HCKammere
r, IBM Journal of Reseach and Development.Vol.26 N
o.1 Jan.1982).
【0003】また、図9に示すように、プリント基板5
0上のチップ51で発生した熱が、伝熱基板52と可変
形性伝熱体53と伝熱板54とに夫々伝達され、ベロー
ズ56内でこの伝熱板54にノズル55から液体冷媒を
噴出させて冷却を行っている。このノズル55から噴射
された液体冷媒はベローズ56からクーリングヘッダ5
7内の流路に排出される。上記の冷却方法については特
開昭60-160150 号公報に掲載されている。Further, as shown in FIG. 9, the printed circuit board 5
The heat generated in the chip 51 on the 0 is transmitted to the heat transfer substrate 52, the deformable heat transfer body 53, and the heat transfer plate 54, respectively, and the liquid refrigerant is supplied from the nozzle 55 to the heat transfer plate 54 in the bellows 56. It is jetted and cooled. The liquid refrigerant ejected from the nozzle 55 is passed from the bellows 56 to the cooling header 5
It is discharged to the flow path in 7. The cooling method described above is disclosed in JP-A-60-160150.
【0004】このような従来の冷却構造では、バネ43
により付勢されたピストン42を集積回路41に当接さ
せて冷却している場合、集積回路41に常時力が加わっ
た状態となり、集積回路41と配線基板40との接続部
分の信頼性に悪影響を及ぼす恐れがあるという問題があ
る。In such a conventional cooling structure, the spring 43 is used.
When the piston 42 urged by is contacted with the integrated circuit 41 for cooling, a force is constantly applied to the integrated circuit 41, which adversely affects the reliability of the connection portion between the integrated circuit 41 and the wiring board 40. There is a problem that it may cause
【0005】また、集積回路41を配線基板40に取付
けたときに生じる高さや傾きのばらつきに追従させるた
めに、ピストン42の集積回路41との接触面を球面と
し、ハット44とピストン42との間に隙間を設けてい
るが、これにより有効伝熱面積が減少し、冷却能力の低
下をもたらすという問題がある。Further, in order to follow variations in height and inclination that occur when the integrated circuit 41 is attached to the wiring board 40, the contact surface of the piston 42 with the integrated circuit 41 is made spherical, and the hat 44 and the piston 42 are made contact with each other. Although a gap is provided between them, this causes a problem that the effective heat transfer area is reduced and the cooling capacity is reduced.
【0006】さらに、冷却板46内の冷媒47の流路は
強制対流による熱伝達を目的として形成されており、得
られる熱伝達係数は0.1 〜0.5 w/cm2 ℃程度であって、
集積回路41の高集積化が進むにつれて消費電力が増大
すると、冷却能力が不足するという問題がある。Further, the flow path of the refrigerant 47 in the cooling plate 46 is formed for the purpose of heat transfer by forced convection, and the obtained heat transfer coefficient is about 0.1 to 0.5 w / cm 2 ° C.
If the power consumption increases as the degree of integration of the integrated circuit 41 increases, there is a problem that the cooling capacity becomes insufficient.
【0007】一方、ノズル55から噴出された液体冷媒
によりチップ51の冷却を行っている場合、ノズル55
から噴出された液体冷媒とチップ51との間に伝熱基板
52と可変形性伝熱体53と伝熱板54とが介在するた
めに、高い熱伝達率が得られず、冷却能力が不足すると
いう問題がある。On the other hand, when the chip 51 is cooled by the liquid refrigerant ejected from the nozzle 55,
Since the heat transfer substrate 52, the deformable heat transfer body 53, and the heat transfer plate 54 are interposed between the liquid refrigerant ejected from the chip and the chip 51, a high heat transfer rate cannot be obtained and the cooling capacity is insufficient. There is a problem of doing.
【0008】[0008]
【発明の目的】本発明は上記のような従来のものの問題
点を除去すべくなされたもので、集積回路から冷媒まで
の熱抵抗を小さくすることができる集積回路の冷却機構
の提供を目的とする。SUMMARY OF THE INVENTION The present invention has been made to eliminate the above-mentioned problems of the prior art, and an object thereof is to provide a cooling mechanism for an integrated circuit which can reduce the thermal resistance from the integrated circuit to the refrigerant. To do.
【0009】[0009]
【発明の構成】本発明による集積回路の冷却機構は、底
面側に開口部を有し、集積回路を冷却するための液体冷
媒を蓄積する蓄積部材と、前記蓄積部材の前記開口部と
前記集積回路とを固着するシール材と、前記蓄積部材に
設けられ、前記底面側に固着された前記集積回路に前記
液体冷媒を直接噴射するノズルとを含むことを特徴とす
る。A cooling mechanism for an integrated circuit according to the present invention has an opening on the bottom surface side, a storage member for storing a liquid refrigerant for cooling the integrated circuit, the opening of the storage member and the integrated member. It is characterized by including a seal material for fixing the circuit to the circuit, and a nozzle provided on the storage member for directly injecting the liquid refrigerant to the integrated circuit fixed to the bottom surface side.
【0010】本発明による他の集積回路の冷却機構は、
底面側に開口部を有し、集積回路を冷却するための液体
冷媒を蓄積する蓄積部材と、前記集積回路の前記蓄積部
材設置側に密着して設けられた枠部材と、前記蓄積部材
の前記開口部の内壁および外壁のうち一方と前記枠部材
の外壁および内壁のうち一方とを密着状態で固着するシ
ール材と、前記蓄積部材に設けられ、前記底面側に固着
された前記集積回路に前記液体冷媒を直接噴射するノズ
ルとを含むことを特徴とする。Another integrated circuit cooling mechanism according to the present invention is
A storage member that has an opening on the bottom surface side and stores a liquid refrigerant for cooling the integrated circuit; a frame member that is provided in close contact with the storage member installation side of the integrated circuit; A sealing material for fixing one of the inner wall and the outer wall of the opening and one of the outer wall and the inner wall of the frame member in a close contact state, and the integrated circuit provided on the storage member and fixed to the bottom surface side. And a nozzle for directly injecting the liquid refrigerant.
【0011】本発明による別の集積回路の冷却機構は、
底面側に開口部を有し、集積回路を冷却するための液体
冷媒を蓄積する蓄積部材と、前記集積回路の前記蓄積部
材設置側に密着して設けられた枠部材と、前記蓄積部材
の前記開口部と前記枠部材との間に設けられ、前記蓄積
部材と前記枠部材とからなる空間を密封状態に維持する
部材と、前記蓄積部材に設けられ、前記底面側に固着さ
れた前記集積回路に前記液体冷媒を直接噴射するノズル
とを含むことを特徴とする。Another integrated circuit cooling mechanism according to the present invention is
A storage member that has an opening on the bottom surface side and stores a liquid refrigerant for cooling the integrated circuit; a frame member that is provided in close contact with the storage member installation side of the integrated circuit; A member provided between the opening and the frame member for maintaining a sealed state of a space formed by the storage member and the frame member, and the integrated circuit provided on the storage member and fixed to the bottom surface side. And a nozzle for directly injecting the liquid refrigerant.
【0012】本発明によるさらに別の集積回路の冷却機
構は、底面側に開口部を有し、集積回路を冷却するため
の液体冷媒を蓄積する蓄積部材と、前記集積回路の前記
蓄積部材設置側に密着して設けられた枠部材と、前記蓄
積部材の前記開口部と前記枠部材との間に設けられ、前
記蓄積部材と前記枠部材とからなる空間を密封状態に維
持しかつ柔軟性を有するジョイント部材と、前記蓄積部
材に設けられ、前記底面側に固着された前記集積回路に
前記液体冷媒を直接噴射するノズルとを含むことを特徴
とする。Still another integrated circuit cooling mechanism according to the present invention has an accumulation member for accumulating a liquid refrigerant for cooling the integrated circuit, the accumulation member having an opening on the bottom side, and the accumulation member installation side of the integrated circuit. A frame member that is provided in close contact with the storage member, and is provided between the opening of the storage member and the frame member, and maintains the space formed by the storage member and the frame member in a sealed state and provides flexibility. It is characterized by including a joint member which has, and a nozzle which is provided in the accumulation member and directly injects the liquid refrigerant to the integrated circuit fixed to the bottom surface side.
【0013】[0013]
【実施例】次に、本発明について図面を参照して説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.
【0014】図1は本発明の第1の実施例を示す縦断面
図である。図において、配線基板1上に搭載された集積
回路2にはシール材3によって、底面側に開口部を有す
る筒状の冷却ブロック4が固着されている。ここで、集
積回路2としてはLSIがケースに収容されたチップキ
ャリアやLSIが裸の状態で搭載されているフリップチ
ップなどの形状が考えられる。また、シール材3として
はエポキシ系あるいはシリコン系接着剤などが用いられ
る。FIG. 1 is a vertical sectional view showing a first embodiment of the present invention. In the figure, a cylindrical cooling block 4 having an opening on the bottom surface side is fixed to the integrated circuit 2 mounted on the wiring board 1 by a sealing material 3. Here, as the integrated circuit 2, a shape such as a chip carrier in which an LSI is housed in a case or a flip chip in which the LSI is mounted in a bare state can be considered. Further, as the sealing material 3, an epoxy-based or silicon-based adhesive or the like is used.
【0015】冷却ブロック4には液体冷媒8を流入させ
るための冷媒流入口7と、冷媒流入口7から流入した液
体冷媒8を内部に噴射するためのノズル5と、内部に蓄
積された液体冷媒8を排出するための冷媒排出口6とが
設けられている。よって、冷媒流入口7から流入した液
体冷媒8がノズル5によって集積回路2に直接噴射され
るため、集積回路2は伝熱板などの介在なしに液体冷媒
8によって直接冷却されることになる。The cooling block 4 has a refrigerant inlet 7 for introducing the liquid refrigerant 8, a nozzle 5 for injecting the liquid refrigerant 8 flowing from the refrigerant inlet 7, and a liquid refrigerant accumulated therein. A coolant discharge port 6 for discharging 8 is provided. Therefore, since the liquid refrigerant 8 flowing in from the refrigerant inlet 7 is directly jetted to the integrated circuit 2 by the nozzle 5, the integrated circuit 2 is directly cooled by the liquid refrigerant 8 without interposing a heat transfer plate or the like.
【0016】このとき、集積回路2と冷却ブロック4と
の接続部はシール材3によって密封されているので、液
体冷媒8が配線基板1上に漏出することはない。したが
って、液体冷媒8を特に絶縁性を有する液体冷媒とする
必要はなく、水などの非絶縁性の液体冷媒を用いること
が可能となる。これにより、液体冷媒8としては絶縁性
の有無に関係なく、冷却能力の高いものを用いることが
できる。At this time, since the connecting portion between the integrated circuit 2 and the cooling block 4 is sealed by the sealing material 3, the liquid coolant 8 does not leak onto the wiring board 1. Therefore, the liquid coolant 8 does not need to be a liquid coolant having an insulating property, and a non-insulating liquid coolant such as water can be used. As a result, the liquid coolant 8 having a high cooling capacity can be used regardless of the insulation property.
【0017】図2は本発明の第2の実施例を示す縦断面
図である。図において、本発明の第2の実施例は貫通し
た筒9aと筒9aの上面に取付けた蓋9bとから冷却ブ
ロック9を構成するようにした以外は、図1に示す本発
明の第1の実施例と同様の構成となっており、同一構成
部品には同一符号を付してある。また、それら同一構成
部品の動作も本発明の第1の実施例と同様である。FIG. 2 is a vertical sectional view showing a second embodiment of the present invention. In the figure, the second embodiment of the present invention is different from the first embodiment of the present invention shown in FIG. 1 except that the cooling block 9 is composed of a penetrating cylinder 9a and a lid 9b attached to the upper surface of the cylinder 9a. The configuration is similar to that of the embodiment, and the same components are designated by the same reference numerals. The operation of those same components is also the same as that of the first embodiment of the present invention.
【0018】本発明の第2の実施例では蓋9bに冷媒流
入口7とノズル5と冷媒排出口6とを設けており、蓋9
bは筒9aにろう付けもしくは接着剤にて固着されてい
る。よって、本発明の第2の実施例でも本発明の第1の
実施例と同様に、冷媒流入口7から流入した液体冷媒8
がノズル5によって集積回路2に直接噴射され、集積回
路2が伝熱板などの介在なしに液体冷媒8によって直接
冷却されることになる。In the second embodiment of the present invention, the lid 9b is provided with a refrigerant inlet 7, a nozzle 5 and a refrigerant outlet 6, and the lid 9b
b is fixed to the cylinder 9a by brazing or an adhesive. Therefore, also in the second embodiment of the present invention, as in the first embodiment of the present invention, the liquid refrigerant 8 flowing from the refrigerant inlet port 7 is introduced.
Is directly jetted to the integrated circuit 2 by the nozzle 5, and the integrated circuit 2 is directly cooled by the liquid refrigerant 8 without the interposition of a heat transfer plate or the like.
【0019】図3は本発明の第3の実施例を示す縦断面
図である。図において、配線基板1上には集積回路2-1
〜2-5がマトリクス状に配列されて搭載されている。ま
た、配線基板1の外縁部を囲むように基板枠10が固着
されている。FIG. 3 is a vertical sectional view showing a third embodiment of the present invention. In the figure, an integrated circuit 2-1 is provided on the wiring board 1.
2-5 are arranged and mounted in a matrix. A board frame 10 is fixed so as to surround the outer edge of the wiring board 1.
【0020】冷却ブロック11は配線基板1上の集積回
路2-1〜2-5各々に対応する位置に、冷媒8が蓄積さ
れ、底面側が開口した蓄積部12-1〜12-5が設けられ
ている。冷却ブロック11は蓄積部12-1〜12-5各々
の開口部が集積回路2-1〜2-5各々の上面にくるように
基板枠10に取付けられており、蓄積部12-1〜12-5
各々の開口部と集積回路2-1〜2-5各々の上面とは夫々
シール材3によって固着されている。さらに、冷却ブロ
ック11の蓄積部12-1〜12-5各々の所定位置には冷
媒流入口7-1〜7-5と冷媒排出口6-1〜6-5とが設けら
れており、冷媒流入口7-1〜7-5には液体冷媒8を集積
回路2-1〜2-5に噴射するためのノズル13-1〜13-5
が夫々取付けられている。The cooling block 11 is provided with accumulating portions 12-1 to 12-5 in which the cooling medium 8 is accumulated and the bottom side is opened at positions corresponding to the integrated circuits 2-1 to 2-5 on the wiring board 1. ing. The cooling block 11 is attached to the substrate frame 10 such that the openings of the accumulating units 12-1 to 12-5 are on the upper surfaces of the integrated circuits 2-1 to 2-5, and the accumulating units 12-1 to 12-5. -Five
Each opening and the upper surface of each of the integrated circuits 2-1 to 2-5 are fixed by a sealing material 3, respectively. Further, refrigerant inlets 7-1 to 7-5 and refrigerant outlets 6-1 to 6-5 are provided at predetermined positions of the accumulating sections 12-1 to 12-5 of the cooling block 11, respectively. Nozzles 13-1 to 13-5 for injecting the liquid refrigerant 8 into the integrated circuits 2-1 to 2-5 at the inlets 7-1 to 7-5.
Are installed respectively.
【0021】冷却ブロック11の上にはヘッダ14が取
付けられており、ヘッダ14には冷媒入口15と冷媒導
入路16と冷媒排出路17と冷媒出口18とが設けられ
ている。すなわち、冷媒入口15から流入する液体冷媒
8は冷媒入口15近傍に設けられた冷媒導入路16で複
数の系統に分配され、複数の系統から排出された冷媒は
冷媒出口18近傍に設けられた冷媒排出路17に集めら
れた後に冷媒出口18から排出される。A header 14 is mounted on the cooling block 11, and the header 14 is provided with a refrigerant inlet 15, a refrigerant introducing passage 16, a refrigerant discharging passage 17 and a refrigerant outlet 18. That is, the liquid refrigerant 8 flowing from the refrigerant inlet 15 is distributed to a plurality of systems by the refrigerant introducing passage 16 provided near the refrigerant inlet 15, and the refrigerant discharged from the plurality of systems is a refrigerant provided near the refrigerant outlet 18. After being collected in the discharge passage 17, it is discharged from the refrigerant outlet 18.
【0022】また、ヘッダ14には蓄積部12-1の冷媒
排出口6-1と蓄積部12-2の冷媒流入口7-2とを接続す
るためのざぐり溝19-1と、蓄積部12-2の冷媒排出口
6-2と蓄積部12-3の冷媒流入口7-3とを接続するため
のざぐり溝19-2と、蓄積部12-3の冷媒排出口6-3と
蓄積部12-4の冷媒流入口7-4とを接続するためのざぐ
り溝19-3と、蓄積部12-4の冷媒排出口6-4と蓄積部
12-5の冷媒流入口7-5とを接続するためのざぐり溝1
9-4とが設けられている。Further, the header 14 has a counterbore groove 19-1 for connecting the refrigerant outlet 6-1 of the accumulator 12-1 and the refrigerant inlet 7-2 of the accumulator 12-2, and the accumulator 12. -2 refrigerant outlet 6-2 and the refrigerant inlet 7-3 of the accumulator 12-3, and a counterbore groove 19-2 for connecting the refrigerant outlet 6-3 of the accumulator 12-3 and the accumulator. The counterbore groove 19-3 for connecting with the refrigerant inlet 7-4 of 12-4, the refrigerant outlet 6-4 of the accumulating portion 12-4 and the refrigerant inlet 7-5 of the accumulating portion 12-5. Counterbore for connection 1
9-4 and are provided.
【0023】液体冷媒8がヘッダ14の冷媒入口15か
ら流入すると、液体冷媒8は冷媒導入路16を満たした
後に、ノズル13-1から集積回路2-1の上面に噴射され
て衝突する。集積回路2-1の上面に衝突した液体冷媒8
は蓄積部12-1を満たした後に、冷媒排出口6-1および
ざぐり溝19-1を通ってノズル13-2から集積回路2-2
の上面に噴射されて衝突する。When the liquid refrigerant 8 flows in from the refrigerant inlet 15 of the header 14, the liquid refrigerant 8 fills the refrigerant introduction passage 16 and is then jetted from the nozzle 13-1 onto the upper surface of the integrated circuit 2-1 to collide with it. Liquid refrigerant 8 colliding with the upper surface of integrated circuit 2-1
Fills the accumulating portion 12-1, and then passes through the refrigerant discharge port 6-1 and the counterbore groove 19-1 from the nozzle 13-2 to the integrated circuit 2-2.
Is sprayed on the upper surface of and collides with it.
【0024】集積回路2-2の上面に衝突した液体冷媒8
は、上記と同様にして、夫々冷媒排出口6-2,6-3,6
-4およびざぐり溝19-2,19-3,19-4を通ってノズ
ル13-3,13-4,13-5から集積回路2-3,2-4,2
-5の上面に噴射されて衝突する。Liquid refrigerant 8 colliding with the upper surface of integrated circuit 2-2
In the same manner as above, respectively, the refrigerant discharge ports 6-2, 6-3, 6
-4 and the counterbores 19-2, 19-3, 19-4 to the integrated circuits 2-3, 2-4, 2 from the nozzles 13-3, 13-4, 13-5.
-It is jetted to the upper surface of -5 and collides.
【0025】集積回路2-5の上面に衝突した液体冷媒8
は蓄積部12-5を満たした後に、冷媒排出口6-5から冷
媒排出路17に集められた後に冷媒出口18から外部に
排出される。Liquid refrigerant 8 colliding with the upper surface of integrated circuit 2-5
After being filled in the accumulating portion 12-5, they are collected from the refrigerant discharge port 6-5 to the refrigerant discharge passage 17 and then discharged from the refrigerant outlet 18 to the outside.
【0026】よって、集積回路2-1〜2-5で発生した熱
は、ノズル13-1〜13-5から集積回路2-1〜2-5の上
面に噴射されて衝突した液体冷媒8に熱伝達されること
によって冷却される。Therefore, the heat generated in the integrated circuits 2-1 to 2-5 is jetted from the nozzles 13-1 to 13-5 to the upper surfaces of the integrated circuits 2-1 to 2-5 and is collided with the liquid refrigerant 8. It is cooled by heat transfer.
【0027】図4は本発明の第4の実施例を示す縦断面
図である。図において、本発明の第4の実施例は下面が
開口した筒形の冷却ブロック20を集積回路2上に密着
して設けた枠21に嵌め込むようにした以外は、図1に
示す本発明の第1の実施例と同様の構成となっており、
同一構成部品には同一符号を付してある。また、それら
同一構成部品の動作も本発明の第1の実施例と同様であ
る。FIG. 4 is a vertical sectional view showing a fourth embodiment of the present invention. In the figure, the fourth embodiment of the present invention is the same as that of the present invention shown in FIG. 1 except that a cylindrical cooling block 20 having an opened lower surface is fitted into a frame 21 provided in close contact with the integrated circuit 2. The configuration is similar to that of the first embodiment of
The same components are designated by the same reference numerals. The operation of those same components is also the same as that of the first embodiment of the present invention.
【0028】本発明の第4の実施例では下面が開口した
筒形の冷却ブロック20の上面に冷媒流入口7とノズル
5と冷媒排出口6とを設けており、冷却ブロック20の
開口端を集積回路2上に設けた枠21に嵌め込んでい
る。枠21は断面がL形の形状に加工されており、枠2
1の内壁が嵌め込まれた冷却ブロック20の開口端の外
壁に接触する。In the fourth embodiment of the present invention, a coolant inlet 7, a nozzle 5 and a coolant outlet 6 are provided on the upper surface of a cylindrical cooling block 20 having an open lower surface, and the opening end of the cooling block 20 is provided. It is fitted in a frame 21 provided on the integrated circuit 2. The frame 21 is processed to have an L-shaped cross section.
The inner wall of No. 1 comes into contact with the outer wall of the open end of the cooling block 20 in which it is fitted.
【0029】各々接触する冷却ブロック20の開口端の
外壁と枠21の内壁とはシール材22にて固着されてい
る。シール材22としてはエポキシ系やシリコン系接着
剤、あるいは半田などが用いられる。The outer wall of the open end of the cooling block 20 and the inner wall of the frame 21 which are in contact with each other are fixed by a seal material 22. As the sealing material 22, an epoxy-based or silicon-based adhesive, solder, or the like is used.
【0030】本発明の第4の実施例では、冷却ブロック
20の開口端が枠21に対して内側に嵌め込む構造であ
るが、逆に枠21を冷却ブロック20の開口端に対して
内側に嵌め込む構造も考えられる。In the fourth embodiment of the present invention, the open end of the cooling block 20 is fitted inside the frame 21, but conversely, the frame 21 is placed inside the open end of the cooling block 20. A structure that fits in is also conceivable.
【0031】また、冷却ブロック20の開口端および枠
21の側壁同士をシール材22で接着しているために接
着面積を多く取ることができ、冷却ブロック20の接着
強度を増すことが可能となる。同時に、冷却ブロック2
0の開口端の外壁と枠21の内壁との接着位置を変える
ことによって、冷却ブロック20と集積回路2との距離
を変えることも可能となり、冷却ブロック20と集積回
路2との距離のバラツキを吸収することができる。Further, since the opening end of the cooling block 20 and the side wall of the frame 21 are adhered to each other with the sealing material 22, a large adhesion area can be taken, and the adhesion strength of the cooling block 20 can be increased. .. At the same time, cooling block 2
It is also possible to change the distance between the cooling block 20 and the integrated circuit 2 by changing the bonding position between the outer wall at the opening end of 0 and the inner wall of the frame 21, and the variation in the distance between the cooling block 20 and the integrated circuit 2 can be made. Can be absorbed.
【0032】さらに、集積回路2と配線基板1との接続
に用いている半田よりも溶融点の低い半田をシール材2
2として使用することによって、集積回路2と配線基板
1との接続に用いている半田を溶融させることなく、集
積回路2上の冷却ブロック20を脱着することができ
る。Further, a solder having a melting point lower than that of the solder used for connecting the integrated circuit 2 and the wiring board 1 is used as the sealing material 2.
By using it as 2, the cooling block 20 on the integrated circuit 2 can be attached and detached without melting the solder used for connecting the integrated circuit 2 and the wiring board 1.
【0033】よって、本発明の第4の実施例でも本発明
の第1の実施例と同様に、冷媒流入口7から流入した液
体冷媒8がノズル5によって集積回路2に直接噴射さ
れ、集積回路2が伝熱板などの介在なしに液体冷媒8に
よって直接冷却されることになる。Therefore, also in the fourth embodiment of the present invention, as in the first embodiment of the present invention, the liquid refrigerant 8 flowing from the refrigerant inlet port 7 is directly injected by the nozzle 5 to the integrated circuit 2 and the integrated circuit 2 is directly cooled by the liquid refrigerant 8 without the interposition of a heat transfer plate or the like.
【0034】図5は本発明の第5の実施例を示す縦断面
図である。図において、本発明の第5の実施例は下面が
開口した筒形の冷却ブロック23の開口端と集積回路2
上に密着して設けた枠24の上面との間にパッキン25
を設けるようにした以外は、図1に示す本発明の第1の
実施例と同様の構成となっており、同一構成部品には同
一符号を付してある。また、それら同一構成部品の動作
も本発明の第1の実施例と同様である。FIG. 5 is a vertical sectional view showing a fifth embodiment of the present invention. In the figure, the fifth embodiment of the present invention shows an integrated circuit 2 and an open end of a cylindrical cooling block 23 having an open lower surface.
A packing 25 is provided between the upper surface of the frame 24 and the upper surface of the frame 24.
1 has the same structure as that of the first embodiment of the present invention shown in FIG. 1, except that the same components are designated by the same reference numerals. The operation of those same components is also the same as that of the first embodiment of the present invention.
【0035】パッキン25はゴムなどの軟らかい材料で
作られており、冷却ブロック23を上から集積回路2の
方向に加圧することで冷却ブロック23の開口端と枠2
4の上面との間に密着する。これによって、集積回路2
と冷却ブロック23と枠24とからなる空間内の液体冷
媒8が外部に漏れることはない。尚、冷却ブロック23
を集積回路2の方向に加圧する方法としては、冷却ブロ
ック23の上面に重量物を配置するなどの方法が考えら
れる。The packing 25 is made of a soft material such as rubber. By pressing the cooling block 23 from above toward the integrated circuit 2, the open end of the cooling block 23 and the frame 2 are pressed.
It comes into close contact with the upper surface of 4. As a result, the integrated circuit 2
The liquid refrigerant 8 in the space formed by the cooling block 23 and the frame 24 does not leak outside. The cooling block 23
As a method of applying pressure to the integrated circuit 2, a method of placing a heavy object on the upper surface of the cooling block 23 can be considered.
【0036】また、冷却ブロック23の開口端および枠
24の上面に夫々パッキン25が収まる溝を設けること
によって、パッキン25が冷却ブロック23の開口端と
枠24の上面との間からずれるのを防ぎ、パッキン25
の冷却ブロック23および枠24への密着性をよくする
ことができる。尚、パッキン25は予め冷却ブロック2
3の開口端または枠24の上面に接着剤などで固着して
おいてもよい。Further, by providing grooves at the open end of the cooling block 23 and the upper surface of the frame 24, respectively, in which the packing 25 is accommodated, it is possible to prevent the packing 25 from being displaced from between the open end of the cooling block 23 and the upper surface of the frame 24. , Packing 25
It is possible to improve the adhesion to the cooling block 23 and the frame 24. In addition, the packing 25 is the cooling block 2 in advance.
It may be fixed to the open end of 3 or the upper surface of the frame 24 with an adhesive or the like.
【0037】さらに、本発明の第5の実施例では冷却ブ
ロック23と枠24とを固着させていないので、集積回
路2からの冷却ブロック23の脱着を容易に行うことが
できる。Furthermore, since the cooling block 23 and the frame 24 are not fixed to each other in the fifth embodiment of the present invention, the cooling block 23 can be easily attached to and detached from the integrated circuit 2.
【0038】よって、本発明の第5の実施例でも本発明
の第1の実施例と同様に、冷媒流入口7から流入した液
体冷媒8がノズル5によって集積回路2に直接噴射さ
れ、集積回路2が伝熱板などの介在なしに液体冷媒8に
よって直接冷却されることになる。Therefore, also in the fifth embodiment of the present invention, as in the first embodiment of the present invention, the liquid refrigerant 8 flowing from the refrigerant inlet port 7 is directly injected into the integrated circuit 2 by the nozzle 5, and the integrated circuit 2 is discharged. 2 is directly cooled by the liquid refrigerant 8 without the interposition of a heat transfer plate or the like.
【0039】図6は本発明の第6の実施例を示す縦断面
図である。図において、本発明の第6の実施例は各々L
形に加工された冷却ブロック26の開口端および集積回
路2上に密着して設けた枠27の上面とを互いに重ね合
わせ、冷却ブロック26および枠27各々の重ね合わせ
部分の内壁にシールリング28を設けるようにした以外
は、図1に示す本発明の第1の実施例と同様の構成とな
っており、同一構成部品には同一符号を付してある。ま
た、それら同一構成部品の動作も本発明の第1の実施例
と同様である。FIG. 6 is a vertical sectional view showing a sixth embodiment of the present invention. In the figure, the sixth embodiment of the present invention is
The open end of the cooling block 26 processed into a shape and the upper surface of the frame 27 closely attached to the integrated circuit 2 are overlapped with each other, and the seal ring 28 is provided on the inner wall of each overlapping portion of the cooling block 26 and the frame 27. The configuration is the same as that of the first embodiment of the present invention shown in FIG. 1 except that it is provided, and the same reference numerals are given to the same components. The operation of those same components is also the same as that of the first embodiment of the present invention.
【0040】シールリング28はゴムなどの軟らかい材
料で作られており、液体冷媒8が冷媒流入口7から流入
されることによって冷却ブロック26の内圧が上昇する
と、その内圧の上昇によって冷却ブロック26および枠
27各々の重ね合わせ部分の内壁に押し付けられる。The seal ring 28 is made of a soft material such as rubber, and when the internal pressure of the cooling block 26 rises due to the liquid refrigerant 8 flowing in from the refrigerant inlet 7, the internal pressure rises and the cooling block 26 and It is pressed against the inner wall of the overlapping portion of each frame 27.
【0041】これによって、シールリング28が冷却ブ
ロック26および枠27の重ね合わせ部分の隙間を塞ぐ
ので、集積回路2と冷却ブロック26と枠27とからな
る空間内の液体冷媒8が外部に漏れることはない。尚、
シールリング28は予め冷却ブロック27または枠24
の内壁に接着剤などで固着しておいてもよい。As a result, the seal ring 28 closes the gap between the overlapping portions of the cooling block 26 and the frame 27, so that the liquid refrigerant 8 in the space consisting of the integrated circuit 2, the cooling block 26 and the frame 27 leaks to the outside. There is no. still,
The seal ring 28 is previously provided with the cooling block 27 or the frame 24.
It may be fixed to the inner wall of the adhesive with an adhesive or the like.
【0042】本発明の第6の実施例では冷却ブロック2
6と枠27とを固着させていないので、集積回路2から
の冷却ブロック26の脱着を容易に行うことができる。In the sixth embodiment of the present invention, the cooling block 2
Since the 6 and the frame 27 are not fixed to each other, the cooling block 26 can be easily attached to and detached from the integrated circuit 2.
【0043】よって、本発明の第6の実施例でも本発明
の第1の実施例と同様に、冷媒流入口7から流入した液
体冷媒8がノズル5によって集積回路2に直接噴射さ
れ、集積回路2が伝熱板などの介在なしに液体冷媒8に
よって直接冷却されることになる。Therefore, also in the sixth embodiment of the present invention, as in the first embodiment of the present invention, the liquid refrigerant 8 flowing in from the refrigerant inlet port 7 is directly injected into the integrated circuit 2 by the nozzle 5, and the integrated circuit 2 is discharged. 2 is directly cooled by the liquid refrigerant 8 without the interposition of a heat transfer plate or the like.
【0044】図7は本発明の第7の実施例を示す縦断面
図である。図において、本発明の第7の実施例は冷却ブ
ロック29の開口端と集積回路2上に密着して設けた枠
30の上面とをジョイント31で接続するようにした以
外は、図1に示す本発明の第1の実施例と同様の構成と
なっており、同一構成部品には同一符号を付してある。
また、それら同一構成部品の動作も本発明の第1の実施
例と同様である。FIG. 7 is a vertical sectional view showing a seventh embodiment of the present invention. In the drawing, the seventh embodiment of the present invention is shown in FIG. 1 except that a joint 31 connects the open end of the cooling block 29 and the upper surface of the frame 30 closely provided on the integrated circuit 2. The configuration is the same as that of the first embodiment of the present invention, and the same reference numerals are given to the same components.
The operation of those same components is also the same as that of the first embodiment of the present invention.
【0045】ジョイント31はH形の継ぎ手31a,3
1bと、継ぎ手31a,31bの間にはさまれるシール
リング31cとから構成されている。シールリング31
cはゴムなどの柔軟性のある材料で作られており、シー
ル材などによって継ぎ手31a,31bに夫々固着され
ている。このジョイント31と冷却ブロック29の開口
端との間、およびジョイント31と枠30の上面との間
もシール材などによって固着されている。The joint 31 is an H-shaped joint 31a, 3
1b and a seal ring 31c sandwiched between the joints 31a and 31b. Seal ring 31
c is made of a flexible material such as rubber, and is fixed to the joints 31a and 31b by a sealing material or the like. The joint 31 and the open end of the cooling block 29, and the joint 31 and the upper surface of the frame 30 are also fixed by a sealing material or the like.
【0046】このジョイント31のシールリング31c
には柔軟性があるため、冷却ブロック29と集積回路2
との位置ずれや高さの変化を吸収することができる。ま
た、シールリング31cは予め冷却ブロック29の開口
端または枠30の上面に取付けておくことが可能であ
り、この場合には、継ぎ手31a,31bの一方を削除
することも可能である。The seal ring 31c of this joint 31
Is flexible, the cooling block 29 and the integrated circuit 2
It is possible to absorb the positional deviation and the height change. Further, the seal ring 31c can be attached to the open end of the cooling block 29 or the upper surface of the frame 30 in advance, and in this case, one of the joints 31a and 31b can be removed.
【0047】よって、本発明の第7の実施例でも本発明
の第1の実施例と同様に、冷媒流入口7から流入した液
体冷媒8がノズル5によって集積回路2に直接噴射さ
れ、集積回路2が伝熱板などの介在なしに液体冷媒8に
よって直接冷却されることになる。Therefore, also in the seventh embodiment of the present invention, as in the first embodiment of the present invention, the liquid refrigerant 8 flowing from the refrigerant inlet port 7 is directly injected into the integrated circuit 2 by the nozzle 5, and the integrated circuit 2 is discharged. 2 is directly cooled by the liquid refrigerant 8 without the interposition of a heat transfer plate or the like.
【0048】実験によれば、液体冷媒8として水を使用
して、ノズル5,13-1〜13-5からの液体冷媒8の噴
出速度を0.5 〜3.0 m/sで変化させたところ、1〜3
w/cm2 ℃の熱伝導率が得られた。また、冷却ブロッ
ク4,9,11,20,23,26,29の開口端をシ
ール材3および枠21,24,27,30を介して集積
回路2,2-1〜2-5に固着し、液体冷媒8を熱発生源の
集積回路2,2-1〜2-5に直接衝突させることによっ
て、熱の伝導経路に熱伝導率の小さい空気はもとより熱
伝導性コンパウンドや金属なども介在しないため、集積
回路2,2-1〜2-5のPNジャンクションから液体冷媒
8までの熱抵抗値を0.5 〜1℃/wあるいはそれ以下に
抑えることが可能である。According to the experiment, when water is used as the liquid refrigerant 8 and the ejection speed of the liquid refrigerant 8 from the nozzles 5, 13-1 to 13-5 is changed at 0.5 to 3.0 m / s, 1 ~ 3
A thermal conductivity of w / cm 2 ° C was obtained. Further, the open ends of the cooling blocks 4, 9, 11, 20, 23, 26, 29 are fixed to the integrated circuits 2, 2-1 to 2-5 through the sealing material 3 and the frames 21, 24, 27, 30. By directly colliding the liquid refrigerant 8 with the integrated circuits 2, 2-1 to 2-5 of the heat generation source, not only the air having a small heat conductivity but also the heat conductive compound and the metal do not intervene in the heat conduction path. Therefore, the thermal resistance value from the PN junction of the integrated circuits 2, 2-1 to 2-5 to the liquid refrigerant 8 can be suppressed to 0.5 to 1 ° C./w or less.
【0049】このように、冷却ブロック4,9の底面側
に設けた開口部に配線基板1上に搭載された集積回路2
をシール材3で固着し、冷却ブロック4,9に設けたノ
ズル5から集積回路2に伝熱板などの介在なしに液体冷
媒8を直接噴射するようにすることによって、集積回路
2のPNジャンクションから液体冷媒8までの熱抵抗を
非常に小さくすることができる。As described above, the integrated circuit 2 mounted on the wiring board 1 in the openings provided on the bottom side of the cooling blocks 4 and 9.
PN junction of the integrated circuit 2 by directly injecting the liquid refrigerant 8 from the nozzles 5 provided in the cooling blocks 4 and 9 to the integrated circuit 2 without interposing a heat transfer plate or the like. The heat resistance from the liquid refrigerant to the liquid refrigerant 8 can be made very small.
【0050】また、複数の集積回路2-1〜2-5を搭載す
る配線基板1に基板枠10を固着し、冷却ブロック11
の開口部に複数の集積回路2-1〜2-5をシール材3で固
着するとともに冷却ブロック11を基板枠10に取付
け、冷却ブロック11に設けたノズル13-1〜13-5か
ら集積回路2-1〜2-5に液体冷媒8を直接噴射するよう
流路を形成したヘッダ14を冷却ブロック11の上に取
付けることによって、熱抵抗が小さい冷却構造を提供す
ることができる。Further, the board frame 10 is fixed to the wiring board 1 on which a plurality of integrated circuits 2-1 to 2-5 are mounted, and the cooling block 11 is provided.
A plurality of integrated circuits 2-1 to 2-5 are fixed to the opening of the substrate with a sealant 3 and the cooling block 11 is attached to the substrate frame 10. By mounting the header 14 in which the flow path is formed so as to directly inject the liquid refrigerant 8 on the 2-1 to 2-5, it is possible to provide a cooling structure having a small thermal resistance by mounting the header 14 on the cooling block 11.
【0051】さらに、冷却ブロック20,23,26,
29の底面側に設けた開口部を配線基板1に搭載された
集積回路2上に密着して設けた枠21,24,27,3
0にシール材22やパッキン25、あるいはシールリン
グ28やジョイント31で固着し、冷却ブロック20,
23,26,29に設けたノズル5から集積回路2に伝
熱板などの介在なしに液体冷媒8を直接噴射するように
することによって、集積回路2のPNジャンクションか
ら液体冷媒8までの熱抵抗を非常に小さくすることがで
きる。Further, the cooling blocks 20, 23, 26,
Frames 21, 24, 27, 3 in which openings provided on the bottom surface side of 29 are closely attached to the integrated circuit 2 mounted on the wiring board 1.
To the cooling block 20, the sealing material 22 and the packing 25, or the sealing ring 28 and the joint 31.
By directly injecting the liquid refrigerant 8 from the nozzles 5 provided in 23, 26, and 29 to the integrated circuit 2 without interposing a heat transfer plate or the like, the thermal resistance from the PN junction of the integrated circuit 2 to the liquid refrigerant 8 is increased. Can be very small.
【0052】さらにまた、冷却ブロック4,9,11,
20,23,26,29の開口部を夫々の集積回路2,
2-1〜2-5にシール材3,22やパッキン25、あるい
はシールリング28やジョイント31で固着することに
よって、液体冷媒8が配線基板1上など流路外部に漏出
することはない。したがって、液体冷媒8に水などの非
絶縁性の液体冷媒を用いることも可能となる。Furthermore, the cooling blocks 4, 9, 11,
The openings of 20, 23, 26 and 29 are respectively connected to the integrated circuit 2,
The liquid coolant 8 does not leak to the outside of the flow path such as on the wiring board 1 by being fixed to the 2-1 to 2-5 with the sealing materials 3 and 22, the packing 25, or the seal ring 28 and the joint 31. Therefore, a non-insulating liquid coolant such as water can be used as the liquid coolant 8.
【0053】尚、本発明の第1および第2の実施例と第
4〜第7の実施例とにおいては冷却ブロック4,9,2
0,23,26,29を中空の筒状としているが、中空
の直方体状でもよい。また、本発明の第3の実施例では
冷却ブロック11上に、冷媒導入路16と冷媒排出路1
7とざぐり溝19-1〜19-4とを有するヘッダ14を取
付け、冷却ブロック11の蓄積部12-1〜12-5を互い
に接続する冷媒流路を形成しているが、蓄積部12-1〜
12-5各々に液体冷媒8を循環させるための冷媒流路を
独立に形成してもよく、これらに限定されない。In the first and second embodiments and the fourth to seventh embodiments of the present invention, the cooling blocks 4, 9, 2 are used.
Although 0, 23, 26, and 29 have a hollow cylindrical shape, they may have a hollow rectangular parallelepiped shape. Further, in the third embodiment of the present invention, the cooling medium introducing passage 16 and the cooling medium discharging passage 1 are provided on the cooling block 11.
7 and the header 14 having the counterbores 19-1 to 19-4 are attached to form the refrigerant flow path connecting the accumulators 12-1 to 12-5 of the cooling block 11 to each other. 1 ~
A coolant flow path for circulating the liquid coolant 8 may be independently formed in each of 12-5, but is not limited thereto.
【0054】[0054]
【発明の効果】以上説明したように本発明の集積回路の
冷却機構によれば、液体冷媒を蓄積する蓄積部材の底面
側の開口部にシール材で集積回路を固着し、蓄積部材に
設けたノズルから集積回路に液体冷媒を直接噴射するよ
うにすることによって、集積回路から液体冷媒までの熱
抵抗を小さくすることができるという効果がある。As described above, according to the cooling mechanism for an integrated circuit of the present invention, the integrated circuit is fixed to the opening of the accumulation member for accumulating the liquid refrigerant by the sealing material and provided on the accumulation member. By directly injecting the liquid refrigerant from the nozzle to the integrated circuit, it is possible to reduce the thermal resistance from the integrated circuit to the liquid refrigerant.
【0055】また、本発明の他の集積回路の冷却機構に
よれば、液体冷媒を蓄積する蓄積部材の底面側の開口部
と、集積回路の蓄積部材設置側に密着して設けられた枠
部材とをシール材で固着し、蓄積部材に設けたノズルか
ら集積回路に液体冷媒を直接噴射するようにすることに
よって、集積回路から液体冷媒までの熱抵抗を小さくす
ることができるという効果がある。Further, according to another integrated circuit cooling mechanism of the present invention, the frame member provided in close contact with the opening on the bottom surface side of the storage member for storing the liquid refrigerant and the storage member installation side of the integrated circuit. By fixing and with the sealing material and directly injecting the liquid refrigerant into the integrated circuit from the nozzle provided in the storage member, the thermal resistance from the integrated circuit to the liquid refrigerant can be reduced.
【0056】さらに、本発明の別の集積回路の冷却機構
によれば、液体冷媒を蓄積する蓄積部材の底面側の開口
部と、集積回路の蓄積部材設置側に密着して設けられた
枠部材との間に蓄積部材と枠部材とからなる空間を密封
状態に維持する部材を設け、蓄積部材に設けたノズルか
ら集積回路に液体冷媒を直接噴射するようにすることに
よって、集積回路から液体冷媒までの熱抵抗を小さくす
ることができるという効果がある。Further, according to another integrated circuit cooling mechanism of the present invention, a frame member provided in close contact with the bottom surface side opening of the storage member for storing the liquid refrigerant and the storage member installation side of the integrated circuit. A member for maintaining a sealed state of the space composed of the storage member and the frame member is provided between the storage member and the frame member, and the liquid refrigerant is directly injected from the integrated circuit by the nozzle provided in the storage member to directly inject the liquid refrigerant The effect is that the heat resistance up to can be reduced.
【0057】さらにまた、本発明のさらに別の集積回路
の冷却機構によれば、液体冷媒を蓄積する蓄積部材の底
面側の開口部と集積回路の蓄積部材設置側に密着して設
けられた枠部材との間に蓄積部材と枠部材とからなる空
間を密封状態に維持しかつ柔軟性を有するジョイント部
材を設け、蓄積部材に設けたノズルから集積回路に液体
冷媒を直接噴射するようにすることによって、集積回路
から液体冷媒までの熱抵抗を小さくすることができると
いう効果がある。Further, according to still another integrated circuit cooling mechanism of the present invention, a frame provided in close contact with the opening on the bottom surface side of the storage member for storing the liquid refrigerant and the storage member installation side of the integrated circuit. A space between the storage member and the frame member is kept sealed and a flexible joint member is provided, and the liquid refrigerant is directly injected from the nozzle provided in the storage member to the integrated circuit. This has the effect of reducing the thermal resistance from the integrated circuit to the liquid refrigerant.
【図1】本発明の第1の実施例を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing a first embodiment of the present invention.
【図2】本発明の第2の実施例を示す縦断面図である。FIG. 2 is a vertical sectional view showing a second embodiment of the present invention.
【図3】本発明の第3の実施例を示す縦断面図である。FIG. 3 is a vertical sectional view showing a third embodiment of the present invention.
【図4】本発明の第4の実施例を示す縦断面図である。FIG. 4 is a vertical sectional view showing a fourth embodiment of the present invention.
【図5】本発明の第5の実施例を示す縦断面図である。FIG. 5 is a vertical sectional view showing a fifth embodiment of the present invention.
【図6】本発明の第6の実施例を示す縦断面図である。FIG. 6 is a vertical sectional view showing a sixth embodiment of the present invention.
【図7】本発明の第7の実施例を示す縦断面図である。FIG. 7 is a vertical sectional view showing a seventh embodiment of the present invention.
【図8】従来例を示す縦断面図である。FIG. 8 is a vertical cross-sectional view showing a conventional example.
【図9】従来例を示す縦断面図である。FIG. 9 is a vertical sectional view showing a conventional example.
2,2-1〜2-5 集積回路 3,22 シール材 4,9,11,20, 23,26,29 冷却ブロック 5,13-1〜13-5 ノズル 6,6-1〜6-5 冷媒排出口 7,7-1〜7-5 冷媒流入口 8 冷媒 9a 筒 9b 蓋 12-1〜12-5 蓄積部 14 ヘッダ 15 液体冷媒入口 16 冷媒導入路 17 冷媒排出路 18 液体冷媒出口 19-1〜19-4 ざぐり溝 21,24,27,30 枠 25 パッキン 28,31c シールリング 31 ジョイント 31a,31b 継ぎ手 2, 2-1 to 2-5 Integrated circuit 3,22 Sealing material 4, 9, 11, 20, 23, 26, 29 Cooling block 5, 13-1 to 13-5 Nozzle 6, 6-1 to 6-5 Refrigerant outlet 7, 7-1 to 7-5 Refrigerant inlet 8 Refrigerant 9a Tube 9b Lid 12-1 to 12-5 Accumulator 14 Header 15 Liquid refrigerant inlet 16 Refrigerant introduction path 17 Refrigerant discharge path 18 Liquid refrigerant outlet 19- 1-19-4 Counterbore groove 21, 24, 27, 30 Frame 25 Packing 28, 31c Seal ring 31 Joint 31a, 31b Joint
Claims (4)
するための液体冷媒を蓄積する蓄積部材と、前記蓄積部
材の前記開口部と前記集積回路とを固着するシール材
と、前記蓄積部材に設けられ、前記底面側に固着された
前記集積回路に前記液体冷媒を直接噴射するノズルとを
含むことを特徴とする集積回路の冷却機構。1. A storage member having an opening on the bottom surface side for storing a liquid coolant for cooling an integrated circuit; a sealing material for fixing the opening of the storage member to the integrated circuit; A cooling mechanism for an integrated circuit, comprising: a nozzle provided on a storage member and directly injecting the liquid refrigerant to the integrated circuit fixed to the bottom surface side.
するための液体冷媒を蓄積する蓄積部材と、前記集積回
路の前記蓄積部材設置側に密着して設けられた枠部材
と、前記蓄積部材の前記開口部の内壁および外壁のうち
一方と前記枠部材の外壁および内壁のうち一方とを密着
状態で固着するシール材と、前記蓄積部材に設けられ、
前記底面側に固着された前記集積回路に前記液体冷媒を
直接噴射するノズルとを含むことを特徴とする集積回路
の冷却機構。2. A storage member having an opening on the bottom surface side for storing a liquid refrigerant for cooling the integrated circuit, and a frame member closely attached to the storage member installation side of the integrated circuit, A sealing material for fixing one of the inner wall and the outer wall of the opening of the storage member and one of the outer wall and the inner wall of the frame member in a close contact state, and provided in the storage member,
A cooling mechanism for an integrated circuit, comprising: a nozzle for directly injecting the liquid refrigerant to the integrated circuit fixed to the bottom surface side.
するための液体冷媒を蓄積する蓄積部材と、前記集積回
路の前記蓄積部材設置側に密着して設けられた枠部材
と、前記蓄積部材の前記開口部と前記枠部材との間に設
けられ、前記蓄積部材と前記枠部材とからなる空間を密
封状態に維持する部材と、前記蓄積部材に設けられ、前
記底面側に固着された前記集積回路に前記液体冷媒を直
接噴射するノズルとを含むことを特徴とする集積回路の
冷却機構。3. A storage member having an opening on the bottom surface side for storing a liquid refrigerant for cooling the integrated circuit, and a frame member closely attached to the storage member installation side of the integrated circuit, A member that is provided between the opening of the storage member and the frame member and that maintains a space formed by the storage member and the frame member in a sealed state, and that is provided on the storage member and fixed to the bottom surface side. And a nozzle for directly injecting the liquid refrigerant into the integrated circuit.
するための液体冷媒を蓄積する蓄積部材と、前記集積回
路の前記蓄積部材設置側に密着して設けられた枠部材
と、前記蓄積部材の前記開口部と前記枠部材との間に設
けられ、前記蓄積部材と前記枠部材とからなる空間を密
封状態に維持しかつ柔軟性を有するジョイント部材と、
前記蓄積部材に設けられ、前記底面側に固着された前記
集積回路に前記液体冷媒を直接噴射するノズルとを含む
ことを特徴とする集積回路の冷却機構。4. A storage member, which has an opening on the bottom surface side and stores a liquid refrigerant for cooling the integrated circuit, and a frame member closely attached to the storage member installation side of the integrated circuit, A joint member which is provided between the opening of the storage member and the frame member, maintains the space formed by the storage member and the frame member in a sealed state, and has flexibility.
A cooling mechanism for an integrated circuit, comprising: a nozzle provided on the storage member and directly injecting the liquid refrigerant to the integrated circuit fixed to the bottom surface side.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4054449A JP2901408B2 (en) | 1991-05-30 | 1992-02-05 | Integrated circuit cooling mechanism |
CA002088821A CA2088821C (en) | 1992-02-05 | 1993-02-04 | Cooling structure for integrated circuit |
US08/014,257 US5436501A (en) | 1992-02-05 | 1993-02-05 | Cooling structure for integrated circuit |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15563491 | 1991-05-30 | ||
JP3-155634 | 1991-05-30 | ||
JP4054449A JP2901408B2 (en) | 1991-05-30 | 1992-02-05 | Integrated circuit cooling mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0567712A true JPH0567712A (en) | 1993-03-19 |
JP2901408B2 JP2901408B2 (en) | 1999-06-07 |
Family
ID=26395216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4054449A Expired - Fee Related JP2901408B2 (en) | 1991-05-30 | 1992-02-05 | Integrated circuit cooling mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2901408B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777384A (en) * | 1996-10-11 | 1998-07-07 | Motorola, Inc. | Tunable semiconductor device |
WO2005091362A1 (en) * | 2004-03-19 | 2005-09-29 | Sony Computer Entertainment Inc. | Method, device and system for controlling heating of circuits |
JP2007220771A (en) * | 2006-02-15 | 2007-08-30 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method thereof |
US8472195B2 (en) | 2010-07-15 | 2013-06-25 | Fujitsu Limited | Electronic device |
JP2019533903A (en) * | 2016-10-17 | 2019-11-21 | ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag | Heat dissipation device and method of manufacturing the same |
JP2020529725A (en) * | 2017-08-08 | 2020-10-08 | ダイナックス セミコンダクター インコーポレイテッドDynax Semiconductor,Inc. | Heat dissipation structure of semiconductor device and semiconductor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02237200A (en) * | 1989-03-10 | 1990-09-19 | Nec Corp | Cooling structure of integrated circuit |
-
1992
- 1992-02-05 JP JP4054449A patent/JP2901408B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02237200A (en) * | 1989-03-10 | 1990-09-19 | Nec Corp | Cooling structure of integrated circuit |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777384A (en) * | 1996-10-11 | 1998-07-07 | Motorola, Inc. | Tunable semiconductor device |
WO2005091362A1 (en) * | 2004-03-19 | 2005-09-29 | Sony Computer Entertainment Inc. | Method, device and system for controlling heating of circuits |
JP2005303245A (en) * | 2004-03-19 | 2005-10-27 | Sony Computer Entertainment Inc | Method for controlling heat of circuit, apparatus, and system |
US7891864B2 (en) | 2004-03-19 | 2011-02-22 | Sony Computer Entertainment Inc. | Method, device and system for controlling heating circuits |
JP2007220771A (en) * | 2006-02-15 | 2007-08-30 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method thereof |
JP4617266B2 (en) * | 2006-02-15 | 2011-01-19 | 三菱電機株式会社 | Semiconductor device and manufacturing method thereof |
US8472195B2 (en) | 2010-07-15 | 2013-06-25 | Fujitsu Limited | Electronic device |
JP2019533903A (en) * | 2016-10-17 | 2019-11-21 | ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag | Heat dissipation device and method of manufacturing the same |
JP2020529725A (en) * | 2017-08-08 | 2020-10-08 | ダイナックス セミコンダクター インコーポレイテッドDynax Semiconductor,Inc. | Heat dissipation structure of semiconductor device and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2901408B2 (en) | 1999-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5285351A (en) | Cooling structure for integrated circuits | |
CA2088821C (en) | Cooling structure for integrated circuit | |
EP3916777B1 (en) | Impinging jet manifold for chip cooling near edge jets | |
JP2500757B2 (en) | Integrated circuit cooling structure | |
US7992627B2 (en) | Microjet module assembly | |
US5719444A (en) | Packaging and cooling system for power semi-conductor | |
JP5414349B2 (en) | Electronic equipment | |
EP0341950B1 (en) | Flat cooling structure of integrated circuit | |
US7133286B2 (en) | Method and apparatus for sealing a liquid cooled electronic device | |
US11626345B2 (en) | Liquid cooled module with device heat spreader | |
JPH0567712A (en) | Cooling mechanism of integrated circuit | |
US6034317A (en) | Thermoelectric module | |
US7454920B2 (en) | Method and apparatus for moisture control within a phased array | |
CN219842983U (en) | Power semiconductor module assembly and vehicle | |
JPH05315489A (en) | Liquid cooling system for electronic devices | |
JPH0595064A (en) | Semiconductor cooling device | |
JP2712872B2 (en) | Integrated circuit cooling mechanism | |
JPH07101782B2 (en) | Cooling power supply mechanism for integrated circuits | |
JPH0770652B2 (en) | Integrated circuit cooling mechanism | |
JP2793204B2 (en) | Integrated circuit cooling structure | |
JP4433819B2 (en) | Semiconductor device | |
JPH05166981A (en) | Cooling structure of integrated circuit | |
JPH06224577A (en) | Mechanism for cooling and feeding integrated | |
JPH05275586A (en) | Integrated circuit cooling structure | |
JPH04152660A (en) | Integrated circuit cooling mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19980519 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080319 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090319 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090319 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100319 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |