[go: up one dir, main page]

JPH0565830A - Control device for two cycle turbo compound engine - Google Patents

Control device for two cycle turbo compound engine

Info

Publication number
JPH0565830A
JPH0565830A JP3254710A JP25471091A JPH0565830A JP H0565830 A JPH0565830 A JP H0565830A JP 3254710 A JP3254710 A JP 3254710A JP 25471091 A JP25471091 A JP 25471091A JP H0565830 A JPH0565830 A JP H0565830A
Authority
JP
Japan
Prior art keywords
engine
rotating electric
turbo
turbo compound
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3254710A
Other languages
Japanese (ja)
Inventor
Hideo Kawamura
河村英男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP3254710A priority Critical patent/JPH0565830A/en
Publication of JPH0565830A publication Critical patent/JPH0565830A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • F02B37/002Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel the exhaust supply to one of the exhaust drives can be interrupted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To constitute a turbo compound system excellent in efficiency by providing two turbo chargers, each of which is equipped with a rotating electric machine, for the exhaust passages of a two cycle adiabatic engine so as to be mutually connected in parallel, and concurrently switching the exhaust passages and controlling the rotating electric machines. CONSTITUTION:Turbo chargers 2 and 3 which are furnished with rotating electric machines 23 and 33 respectively, are mounted onto the group of cylinders representing a half of the whole cylinders of an engine in number. And valves 41 and 43 and the like are arranged for passages in such a way that one turbo charger 3 is out of action. The turbo chargers 2 and 3 and the rotating electric machines 23 and 33 are controlled in action based on signals from an engine revolution sensor 17, a load sensor 72 and a boost pressure sensor 16, so that efficiency as a turbo compound system can be enhanced in a range from partial load operations up to full load operations.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は断熱構造を有する2サイ
クルエンジンの排気エネルギーを電力に回収し、該電力
をエンジンの駆動系に連結した電動機に供給してトルク
の増大を図る2サイクルターボコンパウンドエンジンの
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-cycle turbo compound for recovering the exhaust energy of a two-cycle engine having a heat insulating structure into electric power and supplying the electric power to an electric motor connected to a drive system of the engine to increase torque. The present invention relates to an engine control device.

【0002】[0002]

【従来の技術】エンジンの燃焼室に関連する部分を断熱
構造として高温度を保持させ、高温度の排気ガスをター
ビンに導いて回転駆動させ、タービン軸に連結した発電
機により排気エネルギーを電力に回生させるとともに、
一方エンジンのクランク軸に電動機を連結し、該電動機
に回生した電力を供給してエンジントルクを増大させる
ターボコンパウンドエンジンが従来より種々試みられて
いる。
2. Description of the Related Art A portion related to a combustion chamber of an engine has a heat insulating structure to maintain a high temperature, guides high temperature exhaust gas to a turbine for rotational driving, and uses a generator connected to a turbine shaft to convert exhaust energy into electric power. While regenerating,
On the other hand, various types of turbo compound engines in which an electric motor is connected to a crankshaft of the engine and electric power regenerated by the electric motor is supplied to increase the engine torque have been tried.

【0003】そして、この種のシステムでは、通常、断
熱エンジンの排気マニホールドにターボチャージャを取
付け、該ターボチャージャを駆動後の排出ガスによりエ
ネルギー回収用のタービン発電機などを駆動するよう
に、ターボチャージャとタービン発電機とを排気の流れ
に対して直列に接続している。
In this type of system, a turbocharger is usually attached to the exhaust manifold of an adiabatic engine, and the turbocharger is driven so that exhaust gas after driving the turbocharger drives a turbine generator for energy recovery. And a turbine generator are connected in series to the exhaust flow.

【0004】[0004]

【発明が解決しようとする課題】上述のようなターボコ
ンパウンドシステムでは、タービン発電機により回収さ
れた電力がエンジントルクの増大用に利用できるが、タ
ーボチャージャのタービン入口、出口の圧力差と、回収
用タービンの入口、出口の圧力差の積がエンジンに負荷
されるため、総合されたターボコンパウンドシステムと
しての性能が低下するという問題がある。
In the turbo compound system as described above, the electric power recovered by the turbine generator can be used for increasing the engine torque, but the pressure difference between the turbine inlet and outlet of the turbocharger and the recovery Since the product of the pressure difference between the inlet and outlet of the turbine for use is loaded on the engine, there is a problem that the performance of the integrated turbo compound system deteriorates.

【0005】本発明はこのような問題に鑑みてなされた
ものであり、その目的は断熱構造の2サイクルエンジン
の排気流に対して2台のターボチャージャを並列に接続
し、ターボコンパウンドシステムとしての効率を増大さ
せるとともに、エンジンの部分負荷時における性能を向
上させようとする2サイクルターボコンパウンドエンジ
ンの制御装置を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to connect two turbochargers in parallel to the exhaust flow of a two-cycle engine having a heat insulating structure to form a turbo compound system. It is an object of the present invention to provide a control device for a two-cycle turbo compound engine, which is intended to increase efficiency and improve performance under partial load of the engine.

【0006】[0006]

【課題を解決するための手段】上述の目的を達成するた
めに本発明によれば、燃焼室に関連の部分を断熱構造と
した2サイクルエンジンの排気エネルギーを電力として
回収し、前記エンジンの駆動系に連結した電動機に回収
した電力を供給する2サイクルターボコンパウンドエン
ジンの制御装置において、前記エンジンの排気流路に並
列に接続された2台の回転電機付ターボチャージャと、
片方の回転電機付ターボチャージャへの排気流路を閉鎖
する流路閉鎖手段と、前記の回転電機の作動を電動駆動
/発電作動に切換える回転電機切換手段と、エンジン回
転数およびエンジン負荷に応じ前記の流路閉鎖手段と回
転電機切換手段とを選択制御しエンジンの過給と前記電
動機への通電を制御する制御手段とを備えた2サイクル
ターボコンパウンドエンジンの制御装置が提供される。
In order to achieve the above-mentioned object, according to the present invention, exhaust energy of a two-cycle engine having a heat insulating structure in a portion related to a combustion chamber is recovered as electric power to drive the engine. In a control device of a two-cycle turbo compound engine for supplying electric power recovered to an electric motor connected to a system, two turbochargers with rotating electric machines connected in parallel to an exhaust passage of the engine,
A flow path closing means for closing an exhaust flow path to one turbocharger with a rotating electric machine, a rotating electric machine switching means for switching the operation of the rotating electric machine to an electric drive / power generation operation, and the above according to an engine speed and an engine load. There is provided a control device for a two-cycle turbo compound engine, which comprises control means for selectively controlling the flow path closing means and the rotary electric machine switching means to control supercharging of the engine and energization of the electric motor.

【0007】[0007]

【実施例】つぎに本発明の実施例について図面を用いて
詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0008】図1は本発明にかかる2サイクルターボコ
ンパウンドエンジンの一実施例を示す構成ブロック図で
ある。
FIG. 1 is a configuration block diagram showing an embodiment of a two-cycle turbo compound engine according to the present invention.

【0009】同図において、1はエンジンで、その燃焼
室に関連する部分を断熱し、冷却を行わない2サイクル
断熱エンジンで、シリンダA〜Dを備えた4気筒エンジ
ンである。
In the figure, reference numeral 1 denotes an engine, which is a two-cycle adiabatic engine that insulates a portion related to its combustion chamber and does not perform cooling, and is a four-cylinder engine having cylinders A to D.

【0010】2はターボチャージャで、シリンダA,B
からの排気管11に接続されて駆動されるタービン21
と該タービントルクによって圧気作動を行うコンプレッ
サ22とを備え、その圧気は吸気管13とクーラ14と
を介してエンジン1の各吸気ポートに圧送されるもので
ある。また、3もターボチャージャであり、シリンダ
C,Dからの排気管12とは弁42を有する流路を介し
て接続され、タービン31およびコンプレッサ32とを
備えており、コンプレッサ32の圧気出口34は前述の
コンプレッサ22の空気入口24に接続管35により導
かれて、直列2段の圧気作動が行われるが、接続管35
の途中には空気入口36と弁43が配置されており、流
路切換器52により操作される弁43が接続管35を遮
断すると空気入口36からの流路が開かれてコンプレッ
サ22に空気が導かれるように構成されている。なお、
前述の排気管11と排気管12とは図示のように、それ
ぞれの端部が弁41を有する流路により接続され、流路
切換器51の操作により弁41を開弁すると排気管11
と12とは連通するが前述の弁42が閉弁し、エンジン
1の4気筒のすべてのシリンダからの排気がタービン2
1に導かれてターボチャージャ2のみを駆動することに
なり、また、流路切換器51により弁41を閉弁すると
弁42が開弁となり、ターボチャージャ2と3とは、そ
れぞれ2気筒分の排気エネルギーにより駆動されるよう
に構成されている。
Reference numeral 2 is a turbocharger, which is a cylinder A, B.
21 driven by being connected to the exhaust pipe 11 from
And a compressor 22 for performing pressure operation by the turbine torque, and the pressure air is pressure-fed to each intake port of the engine 1 via the intake pipe 13 and the cooler 14. Further, 3 is also a turbocharger, which is connected to the exhaust pipe 12 from the cylinders C and D via a flow path having a valve 42, is equipped with a turbine 31 and a compressor 32, and has a compressed air outlet 34 of the compressor 32. The above-mentioned air inlet 24 of the compressor 22 is guided by the connecting pipe 35 to perform a two-stage pneumatic operation in series.
An air inlet 36 and a valve 43 are arranged in the middle of the flow path. When the valve 43 operated by the flow path switching unit 52 shuts off the connecting pipe 35, the flow path from the air inlet 36 is opened and air is supplied to the compressor 22. It is configured to be guided. In addition,
As described above, the exhaust pipe 11 and the exhaust pipe 12 are connected to each other by a flow path having a valve 41 at their ends, and when the valve 41 is opened by the operation of the flow path selector 51, the exhaust pipe 11 is opened.
And 12 communicate with each other, but the above-mentioned valve 42 is closed, and exhaust gas from all four cylinders of the engine 1 is transferred to the turbine 2
1 will drive only the turbocharger 2, and when the valve 41 is closed by the flow path switching device 51, the valve 42 will be opened, and the turbochargers 2 and 3 will be for two cylinders, respectively. It is configured to be driven by exhaust energy.

【0011】なお、これらの流路切換器51,52は流
体圧により切換操作が行われるもので、50は圧力タン
ク、53は流路切換器51用の作動弁、54は流路切換
器52用の作動弁であり、それぞれ後述するコントロー
ラからの指令により制御が行われる。
The flow path selectors 51 and 52 are operated by a fluid pressure, 50 is a pressure tank, 53 is an operation valve for the flow path selector 51, and 54 is a flow path selector 52. Actuating valve for use, and is controlled by a command from a controller described later.

【0012】23および33はそれぞれ電動−発電機と
なる回転電機(TCG)であり、タービン21および3
1のそれぞれの回転軸に取付けられたもので、排気エネ
ルギーにより駆動されるタービントルクが大きい場合は
発電作動して、発電力をコントローラ7を介してピニオ
ン61を備えた電動機6に供給し、クランク軸の大歯車
15を駆動してエンジントルクを付勢するもので、ま
た、所望するブースト圧が得られない場合には、バッテ
リ71を電源とする電力が供給されて電動機として力行
し、それぞれのコンプレッサの圧気作動を助勢するよう
に構成されている。
Reference numerals 23 and 33 denote rotary electric machines (TCGs) serving as motor-generators, respectively, and turbines 21 and 3
When the turbine torque driven by the exhaust energy is large, the generator 1 is attached to each rotating shaft of No. 1 to generate electric power, and the generated power is supplied to the electric motor 6 having the pinion 61 via the controller 7, It drives the large gear 15 of the shaft to energize the engine torque, and when the desired boost pressure cannot be obtained, electric power is supplied from the battery 71 as a power source to drive the motor as a motor. It is configured to assist the pneumatic operation of the compressor.

【0013】コントローラ7はマイクロコンピュータか
らなり、中央制御装置、各種メモリ、入/出力ポートな
どを備え、ブースト圧センサ16、エンジン回転センサ
17や負荷センサ72などからの信号が入力されると、
所定の演算や制御手順に基づき、前述の作動弁52,5
4や回転電機23,33などに適切な指令を発して制御
を行うように構成されている。
The controller 7 is composed of a microcomputer, has a central control unit, various memories, input / output ports, etc., and receives signals from the boost pressure sensor 16, the engine rotation sensor 17, the load sensor 72, etc.
Based on a predetermined calculation and control procedure, the above-mentioned actuating valves 52, 5
4 and the rotary electric machines 23, 33, etc. are configured to issue appropriate commands to perform control.

【0014】図2は本実施例の作動の一例を示す処理フ
ロー図であり、つぎに同図を用いて本実施例の作動を説
明する。
FIG. 2 is a process flow chart showing an example of the operation of this embodiment. Next, the operation of this embodiment will be described with reference to this figure.

【0015】ステップ1にてエンジン回転センサ17か
らの信号を、ステップ2にて負荷センサ72からの信号
を読込む。そしてステップ3では読込んだ回転数Nと所
定回転数Naとの比較を行い、N<Naの場合はステッ
プ4にて読込んだ負荷Lと所定負荷のLaとを比較し、
L<Laの場合は作動弁53に指令して流路切換器51
を作動させ弁41を開、弁42を閉、さらに流路切換器
52を作動させ弁43を閉鎖する。このため、エンジン
1の4シリンダからの排気はタービン21のみに導か
れ、コンプレッサ22の圧気作動により空気入口36か
らの空気が圧縮されてクーラ14や吸気管13を介して
各シリンダの吸気ポートより圧送されて運転が行われ、
ついでステップ6ではブースト圧センサ16からの信号
によるブースト圧PB が所定値PB aと比較されて、P
B が大きい場合はTCG23の発電力の増加が行われ電
動機6に送電される。(第1領域)
The signal from the engine rotation sensor 17 is read in step 1 and the signal from the load sensor 72 is read in step 2. Then, in step 3, the read rotation speed N is compared with the predetermined rotation speed Na, and if N <Na, the load L read in step 4 is compared with the predetermined load La,
In the case of L <La, the operation valve 53 is instructed and the flow path switch 51
Is operated to open the valve 41, close the valve 42, and operate the flow path switch 52 to close the valve 43. Therefore, the exhaust gas from the four cylinders of the engine 1 is guided only to the turbine 21, and the air from the air inlet 36 is compressed by the pressure operation of the compressor 22, and the air from the intake port of each cylinder is passed through the cooler 14 and the intake pipe 13. It is pumped and operated,
Then is compared to a predetermined value P B a boost pressure P B by the signal from the boost pressure sensor 16 in step 6, P
When B is large, the power generation of the TCG 23 is increased and transmitted to the electric motor 6. (First area)

【0016】上述のステップ4にて読込んだLの方が大
きい場合にはステップ8に進み、ここでは所定負荷のL
bと比較される。そしてL<Lbの場合はステップ9に
て流路切換器51,52により弁41の閉弁、弁42お
よび弁43の開弁が行われるとともに、TCG23,3
3を発電作動させる。ついで、ステップ10ではブース
ト圧をチェックしPB が所定値PB aより大きいときは
ステップ11にて発電力を増大させるが、PB aに未達
のときはステップ12にて発電力を減少させる制御を行
う。(第2領域)
If the L read in the above step 4 is larger, the process proceeds to step 8, where L of a predetermined load is set.
b. When L <Lb, in step 9, the valve 41 is closed and the valves 42 and 43 are opened by the flow path selectors 51 and 52, and the TCGs 23 and 3 are connected.
3 is activated. Then, although checks a boost pressure at step 10 is P B when greater than the predetermined value P B a increase power generation at step 11, reducing the power generation at step 12 when the unreached to P B a Control. (Second area)

【0017】前述のステップ8で負荷Lの方が大きい場
合はステップ13に進み、ここでは前述のLbより大き
い値のLcと負荷Lとを比較する。そしてL<Lcのと
きはステップ14に移って弁41を開、弁42、弁43
とを閉制御し、ターボチャージャ3を作動させずにター
ボチャージャ2のみにて過給気をエンジン1に圧送し、
ステップ15ではTCG23をバッテリ7の電力により
電動駆動し、コンプレッサ22を助勢する。(第3領
域)
If the load L is larger in step 8 described above, the process proceeds to step 13 where the load L is compared with Lc having a value larger than Lb. When L <Lc, the process proceeds to step 14 to open the valve 41, the valve 42 and the valve 43.
And are controlled to be closed, the turbocharger 2 is not operated, and the supercharged air is pumped to the engine 1 only by the turbocharger 2.
In step 15, the TCG 23 is electrically driven by the electric power of the battery 7 to assist the compressor 22. (3rd area)

【0018】ついで、ステップ16ではこのときのブー
スト圧PB を所定値PB cと比較し、PB が大きいとき
はバッテリ71からの電力を減じてTCG23の出力を
減少させるが、PB がPB cに未達のときは供給電力の
演算を行ってTCG23への供給電力を増加させて、ブ
ースト圧PB を増大させる。
Next, at step 16, the boost pressure P B at this time is compared with a predetermined value P B c, and when P B is large, the power from the battery 71 is reduced to decrease the output of the TCG 23, but P B is When P B c has not been reached, the supply power is calculated to increase the supply power to the TCG 23 and increase the boost pressure P B.

【0019】なお、ステップ13にての負荷LとLcの
比較で負荷Lが大きい場合はステップ20に進み、弁4
1、弁43を開、弁42を閉に制御し、ターボチャージ
ャ2はエンジンの排気エネルギーによる駆動とTCG2
3の電動駆動、ターボチャージャ3はTCG33の電動
駆動によって、二段の過給作動による圧気をエンジン1
に供給する。(第4領域)そしてステップ21ではブー
スト圧PB を所定値P B cと比較し、PB が大きいとき
はTC32への供給電力を減ずるが、PB がPB cに未
達のときはTCG33への電力の増加を演算し、ステッ
プ22で該電力を供給してTCG33のトルク増加によ
り、エンジン1へのブースト圧を増強させることにな
る。
The load L and Lc in step 13
If the load L is large in comparison, the process proceeds to step 20 and the valve 4
1.Turbo charge by controlling valve 43 to open and valve 42 to close.
2 is driven by engine exhaust energy and TCG2
3 electric drive, turbocharger 3 is TCG 33 electric drive
Driven to generate compressed air from the two-stage supercharging operation to the engine 1
Supply to. (4th area) And in step 21
Strike pressure PB Is a predetermined value P B P compared to cB When is large
Reduces the power supplied to TC32, but PB Is PB not yet in c
When it reaches the limit, the increase of the power to the TCG 33 is calculated, and the step
22 to supply the electric power to increase the torque of the TCG 33.
The boost pressure to the engine 1 should be increased.
It

【0020】一方、前述のステップ3でエンジンが高回
転でNが所定値Naより大きい場合はステップ25に移
り、負荷Lと所定負荷値のLdと比較する。そしてL<
Ldの場合はステップ26に進み、弁41を開、弁4
2,43を閉に制御してターボチャージャ2を駆動させ
てTCG23を発電作動させる。ついでステップ27で
はブースト圧PB と所定値PB dとを比較し、PB >P
B dのときはステップ28にてTCG23の発電力を増
大させる。
On the other hand, when the engine is rotating at high speed and N is larger than the predetermined value Na in step 3 described above, the routine proceeds to step 25, where the load L is compared with the predetermined load value Ld. And L <
If Ld, proceed to step 26, open valve 41,
2, 43 are closed to drive the turbocharger 2 to operate the TCG 23 for power generation. Next, at step 27, the boost pressure P B is compared with a predetermined value P B d, and P B > P
When it is B d, the power generation of the TCG 23 is increased in step 28.

【0021】なお、ステップ25で負荷LがLdより大
きい場合はステップ29に進んで弁42と弁43とを
開、弁41を閉に制御して、ターボチャージャ2および
3をともに駆動し、TCG23,33をともに発電作動
させる。ついでステップ30ではブースト圧PB と所定
値PB eとの比較を行い、PB >PB eのときはTCG
23,33の発電力を増加させ、電動機6に送電してエ
ンジントルクを増大させることになる。
When the load L is larger than Ld in step 25, the routine proceeds to step 29, in which the valve 42 and the valve 43 are opened and the valve 41 is closed to drive both the turbochargers 2 and 3 and the TCG 23. , 33 to generate electricity. Next, at step 30 compares the boost pressure P B and the predetermined value P B e, when the P B> P B e TCG
The generated power of 23 and 33 is increased and transmitted to the electric motor 6 to increase the engine torque.

【0022】なお、図3は本実施例における制御マップ
であり、図4は本実施例の作動を領域別に示した図表図
である。
3 is a control map in this embodiment, and FIG. 4 is a diagram showing the operation of this embodiment by region.

【0023】以上、本発明を上述の実施例によって説明
したが、本発明の主旨の範囲内で種々の変形が可能であ
り、これらの変形を本発明の範囲から排除するものでは
ない。
Although the present invention has been described with reference to the above embodiments, various modifications are possible within the scope of the gist of the present invention, and these modifications are not excluded from the scope of the present invention.

【0024】[0024]

【発明の効果】上述の実施例のように本発明によれば、
断熱構造の2サイクルエンジンからの排気を2台の回転
電機付ターボチャージャに並列に供給したり、または1
台のみに供給できるように構成したので、2台のターボ
チャージャの駆動の際には、タービンが並列のためター
ビン入口、出口の圧力差が積としてエンジンに負荷され
ることがなく、ターボコンパウンドシステムとしての性
能低下が防止できる効果が得られる。
According to the present invention as in the above embodiments,
Exhaust gas from a heat-insulated two-cycle engine can be supplied in parallel to two turbochargers with rotating electric machines, or
Since it is configured so that it can be supplied only to the turbocharger system, when the two turbochargers are driven, since the turbines are in parallel, the pressure difference between the turbine inlet and outlet is not added to the engine as a product, and the turbo compound system As a result, it is possible to obtain the effect of preventing performance degradation.

【0025】また本発明によれば、断熱エンジンからの
排気は冷却されずに多量の熱エネルギーを有するため、
上述のように構成された本実施例においてはエンジンの
全負荷付近では並列の2台のターボチャージャが十分に
駆動でき、また部分負荷時ではターボチャージャの2台
または1台の切換や、回転電機の発電/電動の切換制御
により、エンジン回転数や負荷に応じた適切な領域別の
制御が行えるという利点がある。
Further, according to the present invention, since the exhaust gas from the adiabatic engine has a large amount of heat energy without being cooled,
In the present embodiment configured as described above, two turbochargers in parallel can be sufficiently driven near the full load of the engine, and switching of two or one turbocharger at the time of partial load and rotating electric machine The power generation / electricity switching control has the advantage of being able to perform appropriate region-specific control according to the engine speed and load.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成ブロック図であ
る。
FIG. 1 is a configuration block diagram showing an embodiment of the present invention.

【図2】本実施例の作動の一例を示す処理フロー図であ
る。
FIG. 2 is a process flow chart showing an example of the operation of the present embodiment.

【図3】本実施例における制御マップ図である。FIG. 3 is a control map diagram in the present embodiment.

【図4】本実施例の作動を領域別に示した図表図であ
る。
FIG. 4 is a chart showing the operation of this embodiment by region.

【符号の説明】[Explanation of symbols]

1…エンジン 2…ターボチャージャ 3…ターボチャージャ 6…電動機 7…コントローラ 11…排気管 12…排気管 16…ブースト圧センサ 17…エンジン回転センサ 23…回転電機 33…回転電機 72…負荷センサ 1 ... Engine 2 ... Turbocharger 3 ... Turbocharger 6 ... Electric motor 7 ... Controller 11 ... Exhaust pipe 12 ... Exhaust pipe 16 ... Boost pressure sensor 17 ... Engine rotation sensor 23 ... Rotating electric machine 33 ... Rotating electric machine 72 ... Load sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃焼室に関連の部分を断熱構造とした2サ
イクルエンジンの排気エネルギーを電力として回収し、
前記エンジンの駆動系に連結した電動機に回収した電力
を供給する2サイクルターボコンパウンドエンジンの制
御装置において、前記エンジンの排気流路に並列に接続
された2台の回転電機付ターボチャージャと、片方の回
転電機付ターボチャージャへの排気流路を閉鎖する流路
閉鎖手段と、前記の回転電機の作動を電動駆動/発電作
動に切換える回転電機切換手段と、エンジン回転数およ
びエンジン負荷に応じ前記の流路閉鎖手段と回転電機切
換手段とを選択制御しエンジンの過給と前記電動機への
通電を制御する制御手段とを備えたことを特徴とする2
サイクルターボコンパウンドエンジンの制御装置。
1. The exhaust energy of a two-cycle engine having a heat insulating structure in a portion related to a combustion chamber is recovered as electric power,
In a control device for a two-cycle turbo compound engine, which supplies recovered electric power to an electric motor connected to a drive system of the engine, two turbochargers with rotating electric machines connected in parallel to an exhaust passage of the engine, and one of A flow path closing means for closing an exhaust flow path to the turbocharger with a rotating electric machine, a rotating electric machine switching means for switching the operation of the rotating electric machine to an electric drive / power generation operation, and the flow according to the engine speed and the engine load. A control means for selectively controlling the passage closing means and the rotary electric machine switching means to control supercharging of the engine and energization of the electric motor is provided.
Cycle turbo compound engine controller.
JP3254710A 1991-09-04 1991-09-04 Control device for two cycle turbo compound engine Pending JPH0565830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3254710A JPH0565830A (en) 1991-09-04 1991-09-04 Control device for two cycle turbo compound engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3254710A JPH0565830A (en) 1991-09-04 1991-09-04 Control device for two cycle turbo compound engine

Publications (1)

Publication Number Publication Date
JPH0565830A true JPH0565830A (en) 1993-03-19

Family

ID=17268775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3254710A Pending JPH0565830A (en) 1991-09-04 1991-09-04 Control device for two cycle turbo compound engine

Country Status (1)

Country Link
JP (1) JPH0565830A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1640597A1 (en) * 2004-09-22 2006-03-29 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Supercharged internal combustion engine and method for operating such an internal combustion engine
WO2009074845A1 (en) * 2007-12-11 2009-06-18 Renault Trucks Operating method for an internal combustion engine in compression braking mode, internal combustion engine capable of operating in braking mode and automotive vehicle equipped with such an engine
US9453435B2 (en) * 2014-10-07 2016-09-27 GM Global Technology Operations LLC Control of internal combustion engine with two-stage turbocharging
US11022028B2 (en) * 2019-05-07 2021-06-01 Caterpillar Inc. Engine system and method including first and second turbochargers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1640597A1 (en) * 2004-09-22 2006-03-29 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Supercharged internal combustion engine and method for operating such an internal combustion engine
WO2009074845A1 (en) * 2007-12-11 2009-06-18 Renault Trucks Operating method for an internal combustion engine in compression braking mode, internal combustion engine capable of operating in braking mode and automotive vehicle equipped with such an engine
US9453435B2 (en) * 2014-10-07 2016-09-27 GM Global Technology Operations LLC Control of internal combustion engine with two-stage turbocharging
US11022028B2 (en) * 2019-05-07 2021-06-01 Caterpillar Inc. Engine system and method including first and second turbochargers
US11536191B2 (en) 2019-05-07 2022-12-27 Caterpillar Inc. Engine and fuel cell system including first and second turbochargers

Similar Documents

Publication Publication Date Title
JP2640757B2 (en) Control device for turbocharger
JP2526100B2 (en) Supercharger control device
US9096116B2 (en) Drive with an internal combustion engine and an expansion machine with gas return
JPH055419A (en) Controller for turbo-charger with rotary electric machine
WO2015083493A1 (en) Turbo compound system control device
KR19990036017A (en) Motor Assist Variable Geometry Turbocharger System
KR20180068005A (en) Engine system
KR20210070826A (en) Hybrid vehicle
JP2884725B2 (en) Control device for twin turbocharger
CN113202643B (en) System with energy recovery device and control method
CN114183238A (en) Control system matched with supercharger and motor
CN113202639A (en) Power system of electric supercharging Miller cycle engine
US5199262A (en) Compound four stroke internal combustion engine with crossover overcharging
JPH0565830A (en) Control device for two cycle turbo compound engine
JPH06229253A (en) Exhaust energy recovery device
JPH08240156A (en) Exhaust gas recirculation device for engine with supercharger
JPH0650061B2 (en) Supercharger control device
JP2790753B2 (en) Engine exhaust energy recovery device
JPS61250344A (en) Turbosupercharged engine
JPH0565832A (en) Control device for changeover engine between two-cycle and four-cycle
JP2992709B2 (en) Control device for insulated two-stroke engine
JPH02140421A (en) Adiabatic engine with turbocharger
JPH0412131A (en) Turbocharger with electric rotary machine
WO2021233431A1 (en) Turbocharging device and method therefor, and supercharging system
JPH04116229A (en) Supercharger of engine