[go: up one dir, main page]

JPH0565568B2 - - Google Patents

Info

Publication number
JPH0565568B2
JPH0565568B2 JP59001090A JP109084A JPH0565568B2 JP H0565568 B2 JPH0565568 B2 JP H0565568B2 JP 59001090 A JP59001090 A JP 59001090A JP 109084 A JP109084 A JP 109084A JP H0565568 B2 JPH0565568 B2 JP H0565568B2
Authority
JP
Japan
Prior art keywords
forging
strength
powder
preform
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59001090A
Other languages
Japanese (ja)
Other versions
JPS60145349A (en
Inventor
Jusuke Kotani
Kyoaki Akechi
Atsushi Kuroishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP109084A priority Critical patent/JPS60145349A/en
Priority to DE8484114320T priority patent/DE3481322D1/en
Priority to EP84114320A priority patent/EP0144898B1/en
Priority to BR8406132A priority patent/BR8406132A/en
Publication of JPS60145349A publication Critical patent/JPS60145349A/en
Priority to US06/879,704 priority patent/US4702885A/en
Priority to US06/940,168 priority patent/US4818308A/en
Publication of JPH0565568B2 publication Critical patent/JPH0565568B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 技術分野 本発明は、軽量かつ高強度で、従来の耐熱アル
ミニウム合金、耐摩耗性アルミニウム合金以上の
高耐熱性、高耐摩耗性でかつ低熱膨張率を兼ねそ
なえた粉末冶金法によるアルミニウム合金とその
製造法に関する。 (ロ) 技術の背景 粉末冶金法によつてAl合金機械部品を製造す
ることは既に工業化されており、それには通常の
金型成形と焼結、サイジングから成る方法の他、
焼結後更にサイジングを施す一種の焼結鋳造法も
含まれている。従来のこの粉末冶金法によるAl
合金機械部品は、しかし乍ら、機械的性質、例え
ば引張強度、耐摩耗性、耐熱強度等の点において
溶製材の切削、鍛造、鋳造による部品を越えるこ
とが出来なかつた。一方Al合金は急冷法によつ
て過飽和に合金元素を添加することが可能であ
り、その結果急冷による結晶粒の微細化、偏析の
ない均一組織等の効果と相乗して、従来の溶製材
とは比較にならない高性能なものが得られること
が近年明らかとなつている。しかし、この急冷合
金は押出し法等の方法によつてしか得ることがで
きないことが部品化の上で問題であつた。何故な
ら、Al合金は一般に粉末表面に安定な酸化物
Al2O3を形成しているため固相焼結することが極
めて困難であり部品の製造が出来なかつた。又
Cu、Mg、Si等のAlと共晶を形成する合金元素を
添加して液相を発生させ、Al2O3膜を破つて焼結
する方法が考案されているが、この方法は急冷合
金粉末の場合には、析出物と粗大化や偏析を発生
するため利用できない。このように急冷合金粉末
による高性能機械部品の製造は制約条件が多く実
質的には困難な場合が多かつた。 特に熱間押出法では、たしかに急冷合金粉末の
固化は達成され、例えば特開昭60−125345号公報
等に記載の通り、高温での強度は保証されるが、
この場合は例えば第3図に示すような長尺一定断
面形状品には有効である。しかし第4図に示すよ
うな異形又は三次元的に複雑な形状品を作る場合
には、さらに鍛造再成形又は切り出し加工の追加
が不可欠であり、多くの素材ロス・追加加工の手
間がかかるという問題があつた。 又上述の通り強度も材質を選べば高温域まで保
証されるものの、押出体の押出方向とその直角方
向では強度に差異が生じるという点でも問題があ
つた。 (ハ) 発明の開示 本発明は、上記した従来の方法による問題点を
解決し、三次元的に複雑な形状品の直接形状加工
を容易にすることを目的とするものであり、耐熱
性、耐摩耗性、熱膨張率などに優れた特性を示す
アルミニウム合金部品を粉末熱間鍛造法により、
経済的に製造する方法を提供するものである。本
発明に用いるアルミニウム合金粉末は基本的には
Al−Si−Fe系合金であるがこの合金の強度をさ
らに高めることを目的とし、Al−Si−Fe系合金
にCu、Mg元素を添加する。Cuの添加は強度向
上をはかるものであるが、12重量%以上のCuの
添加は強度の著しい向上を示さないため、また密
度が上がるため不要である。Mgも同様に強度の
向上に帰与するが、多量の添加は加工性の劣下に
つながるため、3.0%以下とする。耐摩耗性の向
上を計るためにはSi元素を添加するが、添加量が
10%を下ると耐摩耗性が十分でない。又20%を越
える場合、耐摩耗性は改善されるが、強度の低下
を導く。Fe元素は、耐熱性を向上するために添
加する。添加量は2〜10重量%が適当であり、こ
の範囲より低いと改善性が悪く、多いと加工性が
悪いという欠点が生じる。このようなFeとSSiの
適当な割合で添加は耐熱性、耐摩耗性の著しい改
善とともに常温における強度、熱膨張等も改善さ
れる。以上示したAl合金はSi、Feの添加量が多
いため凝固中に初晶析出物が粗大化し強度の低下
をきたすため、従来の鍛造法によつては製造でき
ない。従つて合金は端末冶金法により製造する必
要がある。その際SiとFeの初晶粒子の粗大化を
防ぐため合金粉末はアトマイズ粉の場合40メツシ
ユ以下のものであるか、または初晶析出物粒径が
10μm以下である粉末を用いる。これらの粉末を
成形、加熱、鍛造の工程により製品とするのであ
るが、まず鍛造に耐え得るプリフオームと鍛造に
適した正確なプリフオーム形状が必要である。鍛
造時にクラツクを生じない強度を有するプリフオ
ームを得るには、充分密度を高め焼結することが
不可欠である。密度を上げるには、成形圧力を高
めることで一般に良好な結果が得られるが高硬度
粒子の成形には金型成形法より静水圧成形法の方
が効果的である。この高密度成形により粉末粒子
の酸化被膜は破られ、粒子の接触面積は著しく増
加し、加熱中に固相拡散により焼結が進行するこ
とにより、良好な鍛造用焼結体が得られる。 鍛造工程で残留空孔は潰され、酸化被膜のない
清浄表面において圧着による焼結が進行する。 また鍛造工程は冷間ではなく熱間鍛造でなけれ
ばならないのは充分な焼結させるためと、鍛造に
おける変形抵抗を小さく、複雑形状に変形させる
ためである。成形の際の密度は95%以下だと空孔
が内部と連結して、通気性を持つため酸化が進行
しやすいこのため真密度比は95%以上必要であ
る。 加熱温度に関しては250℃以下では変形抵抗も
大きく、又Alの自己拡散による焼結もあまり進
まないので適さない。一方550℃以上では急冷凝
固粉末の微細組織や非平衡相が変化し急冷合金の
特徴を失つてしまうため適さない。 実施例 実施例 1 ガスアトマイズによつて得られた100メツシユ
以下の粒度の、4%Cu、1%Mg、12%Si、5%
Fe、残部Al組成の合金粉末を冷間静水圧プレス
により、6t/cm2の圧力で成形した。この時の成形
体密度は2.73g/cm2であり真密度比は95.5%であ
つた。 また、同様にガスアトマイズによつて得られた
100メツシユ以下の粒度の12%Si、5%Fe残部が
Al組成の合金粉末を冷間静水圧プレスにより
6t/cm2の圧力で成形した。この成形体の密度は
2.67g/cm3であり、真密度比は96.0%であつた。
得られた高密度成形体を大気中で470℃に加熱し
金型鍛造を行つた。鍛造によつて高さを約1/2に
おさえ込み直径方向を金型に沿わせた。鍛造体の
密度は99.8%以上であり、割れも生じなかつた。
この鍛造体にT6熱処理を施した後に削り出した
試験片の調査を行つた。 第1図の強度測定の結果であり、本発明品の
Al−Cu−Mg−Si−Fe材1とAl−Si−Fe材2と
高温強度であり、引張強さは200℃付近までは1
の方が高いが、高温では2が高い。またどちらも
従来よりピストン材料として使われているAC8A
−T6材3よりも高い強度を示している。 次に大越式摩耗試験による、耐摩耗性を1表に
示す。本発明品は比較品AC8A−T6材より耐摩
耗性が優れている。 第2表には熱膨張係数の測定結果を示す。 本発明品は比較品であるAC8A−T6材に比べ
著しく熱膨張係数が小さく、耐熱材料として有理
である。
(a) Technical field The present invention provides aluminum manufactured by powder metallurgy that is lightweight and has high strength, has higher heat resistance and wear resistance than conventional heat-resistant aluminum alloys and wear-resistant aluminum alloys, and has a low coefficient of thermal expansion. Concerning alloys and their manufacturing methods. (b) Background of the technology The manufacturing of Al alloy mechanical parts by powder metallurgy has already been industrialized, and in addition to the usual method consisting of mold forming, sintering, and sizing,
Also included is a type of sinter casting process that involves further sizing after sintering. Al by this conventional powder metallurgy method
However, alloy machine parts have not been able to surpass parts made by cutting, forging, or casting from melted materials in terms of mechanical properties, such as tensile strength, wear resistance, and heat resistance. On the other hand, Al alloys can be supersaturated with alloying elements by rapid cooling, and as a result, combined with the effects of rapid cooling to refine crystal grains and create a uniform structure without segregation, they can be compared to conventional melted materials. In recent years, it has become clear that incomparable high performance can be obtained. However, this rapidly solidified alloy can only be obtained by methods such as extrusion, which poses a problem in producing parts. This is because Al alloys generally have stable oxides on the powder surface.
Since it forms Al 2 O 3 , it is extremely difficult to perform solid phase sintering, making it impossible to manufacture parts. or
A method has been devised in which alloying elements that form a eutectic with Al, such as Cu, Mg, and Si, are added to generate a liquid phase and the Al 2 O 3 film is broken and sintered. In the case of powder, it cannot be used because it causes coarsening and segregation with precipitates. As described above, the production of high-performance mechanical parts using rapidly solidified alloy powder is often practically difficult due to many restrictive conditions. In particular, in the hot extrusion method, solidification of the rapidly solidified alloy powder is certainly achieved, and strength at high temperatures is guaranteed, as described in, for example, JP-A-60-125345.
This case is effective, for example, for long products with a constant cross-sectional shape as shown in FIG. However, when making products with irregular shapes or three-dimensionally complex shapes as shown in Figure 4, additional forging and reshaping or cutting operations are essential, resulting in a large amount of material loss and additional processing effort. There was a problem. Further, as mentioned above, although strength can be guaranteed up to a high temperature range if the material is selected, there is also a problem in that there is a difference in strength between the extrusion direction of the extruded body and the direction perpendicular to the extrusion direction. (C) Disclosure of the Invention The present invention aims to solve the problems caused by the conventional methods described above, and to facilitate direct shaping of products with three-dimensionally complex shapes. Aluminum alloy parts that exhibit excellent properties such as wear resistance and coefficient of thermal expansion are produced using powder hot forging method.
It provides an economical manufacturing method. The aluminum alloy powder used in the present invention is basically
Although it is an Al-Si-Fe alloy, Cu and Mg elements are added to the Al-Si-Fe alloy for the purpose of further increasing the strength of this alloy. The addition of Cu is intended to improve strength, but addition of 12% by weight or more of Cu does not significantly improve strength and increases density, so it is unnecessary. Mg also contributes to the improvement of strength, but since adding a large amount leads to deterioration of workability, it is limited to 3.0% or less. Si element is added to improve wear resistance, but the amount of addition is
If it is less than 10%, the wear resistance is not sufficient. If it exceeds 20%, the wear resistance will be improved, but the strength will be reduced. Fe element is added to improve heat resistance. The appropriate amount of addition is from 2 to 10% by weight; if it is less than this range, the improvement is poor, and if it is more than this, the problem is that the processability is poor. Addition of such Fe and SSi in an appropriate ratio significantly improves heat resistance and wear resistance, as well as improves strength, thermal expansion, etc. at room temperature. The Al alloys shown above cannot be manufactured by conventional forging methods because the large amounts of Si and Fe added cause primary crystal precipitates to become coarse during solidification, resulting in a decrease in strength. Therefore, the alloy must be manufactured by terminal metallurgy. At this time, in order to prevent the primary crystal particles of Si and Fe from becoming coarse, the alloy powder must be 40 mesh or less in the case of atomized powder, or the particle size of the primary crystal precipitates must be
Use powder with a diameter of 10 μm or less. These powders are made into products through the processes of molding, heating, and forging, but first a preform that can withstand forging and an accurate preform shape suitable for forging are required. In order to obtain a preform strong enough to prevent cracking during forging, it is essential to sufficiently increase the density and sinter the preform. In order to increase the density, good results are generally obtained by increasing the molding pressure, but isostatic pressing is more effective than mold molding for molding highly hard particles. This high-density compaction breaks the oxide film of the powder particles, significantly increases the contact area of the particles, and progresses sintering by solid phase diffusion during heating, resulting in a good sintered body for forging. The remaining pores are crushed during the forging process, and sintering proceeds by pressure bonding on a clean surface without an oxide film. In addition, the forging process must be hot rather than cold forging in order to achieve sufficient sintering, and to reduce the deformation resistance during forging and deform into a complex shape. If the density during molding is less than 95%, the pores will connect with the inside and create air permeability, which will cause oxidation to progress more easily.Therefore, the true density ratio must be at least 95%. Regarding the heating temperature, temperatures below 250°C are not suitable because the deformation resistance is large and sintering due to self-diffusion of Al does not proceed very well. On the other hand, temperatures above 550°C are not suitable because the fine structure and non-equilibrium phase of the rapidly solidified powder change and the characteristics of a rapidly solidified alloy are lost. Examples Example 1 4% Cu, 1% Mg, 12% Si, 5% with a particle size of 100 mesh or less obtained by gas atomization
An alloy powder having a composition of Fe and balance Al was molded by cold isostatic pressing at a pressure of 6 t/cm 2 . The density of the molded product at this time was 2.73 g/cm 2 and the true density ratio was 95.5%. In addition, similarly obtained by gas atomization,
12% Si with a particle size of 100 mesh or less, the remainder being 5% Fe
Alloy powder with Al composition is produced by cold isostatic pressing.
It was molded at a pressure of 6t/ cm2 . The density of this compact is
It was 2.67 g/cm 3 and the true density ratio was 96.0%.
The obtained high-density compact was heated to 470°C in the air and die-forged. Through forging, the height was reduced to about 1/2 and the diameter was aligned with the mold. The density of the forged body was 99.8% or more, and no cracks occurred.
After applying T6 heat treatment to this forged body, a test piece cut out was examined. Figure 1 shows the results of the strength measurement of the product of the present invention.
Al-Cu-Mg-Si-Fe material 1 and Al-Si-Fe material 2 have high temperature strength, and the tensile strength is 1 up to around 200℃.
is higher, but 2 is higher at high temperatures. Both are AC8A, which has traditionally been used as a piston material.
-It shows higher strength than T6 material 3. Next, Table 1 shows the wear resistance determined by the Okoshi type abrasion test. The product of the present invention has better wear resistance than the comparative AC8A-T6 material. Table 2 shows the measurement results of the coefficient of thermal expansion. The product of the present invention has a significantly smaller coefficient of thermal expansion than the comparative AC8A-T6 material, making it reasonable as a heat-resistant material.

【表】【table】

【表】 以上実施例に示したように、鍛造に鍛えられる
だけの高い密度比のプリフオームを予め作り、そ
の後熱間鍛造加工を行うことにより、三次元的に
複雑な形状を有する軽量で高耐熱、耐摩耗性のア
ルミニウム合金製機械部品の経済的供給が可能に
なる。このため高性能自動車エンジン部品(ピス
トン、コンロツド、ライナー等)や家電用部品、
航空機部品等の広い応用分野が期待される。 実施例 2 第3表に示す2種の粉末を200℃に加熱し、
4ton/cm2の圧力で金型成形を行つた。この時の成
形体密度は第3表に示す値であつた。 この成形体をN2雰囲気中で470℃に加熱し、金
型鍛造を行つた。 鍛造方法は前実施例と同一である。 得られ鍛造体の密度はNo.4、No.5ともに99.8%
以上であり、割れも生じなかつた。 この鍛造体にT6熱処理を施した後、試験片に
加工し、引張強さの評価を行つた。結果は第1図
に示すとおりでNo.4、No.5ともに室温での強度は
No.1に比べ2〜3Kg/mm2低いが200℃以上ではほ
ぼNo.1と同等の強度を示した。
[Table] As shown in the examples above, a preform with a high density ratio that can be forged is made in advance, and then hot forging is performed to create a lightweight and highly heat-resistant preform with a three-dimensionally complex shape. , it becomes possible to economically supply machine parts made of wear-resistant aluminum alloys. For this reason, high-performance automobile engine parts (pistons, conrods, liners, etc.) and home appliance parts,
It is expected to have wide application fields such as aircraft parts. Example 2 Two types of powder shown in Table 3 were heated to 200°C,
Mold molding was performed at a pressure of 4 ton/cm 2 . The density of the compact at this time was the value shown in Table 3. This compact was heated to 470°C in an N 2 atmosphere and die forged. The forging method is the same as in the previous example. The density of the obtained forged bodies is 99.8% for both No. 4 and No. 5.
This was the result, and no cracking occurred. After subjecting this forged body to T6 heat treatment, it was processed into a test piece and its tensile strength was evaluated. The results are shown in Figure 1, and the strength at room temperature for both No. 4 and No. 5 is
Although it was 2 to 3 kg/mm 2 lower than No. 1, it showed almost the same strength as No. 1 at temperatures above 200°C.

【表】 実施例 3 実施例1で用いた粉末(ガスアトマイズによつ
て得られた100メツシユ以下の粒度の4%Cu、1
%Mg、12%Si、5%Fe、残部Al組成の合金粉
末)を鍛造と押出の両方法で固化し、特性の比較
を行つた。 鍛造は実施例1と同条件であつた。 押出は、粉末を静水圧成形後、450℃に加熱し
押出し10:1で行つた。 得られた鍛造材および押出材をT6処理(480℃
で2時間溶体化加熱後、水焼入、180℃で8時間
時効処理)した。鍛造加圧方向および押出方向に
平行な方向(L方向)と垂直な方向(T方向)の
試片を各々作製し、各温度にて引張試験を行つ
た。結果を第2図に示す。 鍛造材は、L方向とT方向で方向による差、即
ち異方性が押出材に比べると小さい。また鋳造材
は、L方向よりもT方向の方が引張強さが高く、
押出材と逆になつている。 以上のことから、粉末を原料とする鍛造材は押
出材にくらべて異方性が小さく特性的により均一
であるという特長をもつている。従つて、三次元
的な複雑形状の場合には、製造品はより好ましい
と言える。
[Table] Example 3 Powder used in Example 1 (4% Cu with a particle size of 100 mesh or less obtained by gas atomization, 1
%Mg, 12%Si, 5%Fe, balance Al) was solidified by both forging and extrusion, and the properties were compared. Forging was carried out under the same conditions as in Example 1. Extrusion was performed by isostatically pressing the powder, heating it to 450°C, and extruding at a ratio of 10:1. The obtained forged materials and extruded materials were subjected to T6 treatment (480℃
After solution heating for 2 hours, water quenching and aging treatment at 180°C for 8 hours) were performed. Samples were prepared in a direction parallel to the forging pressurization direction and the extrusion direction (L direction) and in a direction perpendicular to the forging direction (T direction), and a tensile test was conducted at each temperature. The results are shown in Figure 2. A forged material has a smaller difference in direction between the L direction and the T direction, that is, anisotropy, compared to an extruded material. In addition, the cast material has higher tensile strength in the T direction than in the L direction,
It is the opposite of extruded material. From the above, forged materials made from powder have the advantage of having smaller anisotropy and more uniform properties than extruded materials. Therefore, in the case of three-dimensional complex shapes, manufactured products are more preferable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明品と従来の比較品の高温での引
張強さの変化を示す図である。第2図は本発明熱
間鍛造材と熱間押出による比較材の高温での引張
強さの変化を示す図である。第3図は熱間押出品
の一事例を示す。第4図は熱間鍛造品の一事例を
示す。 (図中の番号説明)、1……Al−Cu−Mg−Si
−Fe材(本発明品)、2……Al−Si−Fe材(本発
明品)、3……AC8A−T6材(比較品)、4……
Al−12Si−5Fe−4Cu−1Mg材、5……Al−20Si
−1Fe−3Cu−0.5Mg材。
FIG. 1 is a diagram showing changes in tensile strength at high temperatures of the product of the present invention and a conventional comparative product. FIG. 2 is a diagram showing changes in tensile strength at high temperatures of a hot forged material of the present invention and a comparative material produced by hot extrusion. Figure 3 shows an example of a hot extrusion product. Figure 4 shows an example of a hot forged product. (Explanation of numbers in the figure), 1...Al-Cu-Mg-Si
-Fe material (product of the present invention), 2...Al-Si-Fe material (product of the present invention), 3...AC8A-T6 material (comparative product), 4...
Al−12Si−5Fe−4Cu−1Mg material, 5……Al−20Si
−1Fe−3Cu−0.5Mg material.

Claims (1)

【特許請求の範囲】[Claims] 1 実質的なアルミニウムに、合金元素として10
〜20重量%のSiと2〜12重量%のFeを含む合金
粉末か、または合金元素として10〜20重量%の
Si、2〜12重量%のFe、1〜12重量%のCu、0.1
〜3重量%のMgを含むアルミニウム合金粉末で
あり、かつ粒度が40メツシユ以下であるアトマイ
ズ粉末か、または初晶析出物の粒径が10μm以下
である合金粉末を、冷間静水圧プレス成型または
金型成型によつて真密度比95%以上に圧縮成型し
てプリフオームを作製した後、該プリフオームを
250℃〜550℃に加熱し、金型内で鋳造することを
特徴とする高耐熱、耐摩耗性アルミニウム合金の
製造方法。
1 Substantial aluminum with 10 as an alloying element
Alloy powder containing ~20 wt% Si and 2-12 wt% Fe, or 10-20 wt% as alloying elements
Si, 2-12 wt% Fe, 1-12 wt% Cu, 0.1
An atomized aluminum alloy powder containing ~3% by weight of Mg with a particle size of 40 mesh or less, or an alloy powder with a primary crystal precipitate particle size of 10 μm or less, is formed by cold isostatic pressing or After producing a preform by compression molding to a true density ratio of 95% or more by molding, the preform is
A method for producing a highly heat-resistant and wear-resistant aluminum alloy, which is characterized by heating to 250°C to 550°C and casting in a mold.
JP109084A 1983-12-02 1984-01-07 Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof Granted JPS60145349A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP109084A JPS60145349A (en) 1984-01-07 1984-01-07 Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof
DE8484114320T DE3481322D1 (en) 1983-12-02 1984-11-27 ALUMINUM ALLOYS AND METHOD FOR THEIR PRODUCTION.
EP84114320A EP0144898B1 (en) 1983-12-02 1984-11-27 Aluminum alloy and method for producing same
BR8406132A BR8406132A (en) 1983-12-02 1984-11-30 ALUMINUM ALLOY AND PROCESS FOR YOUR PRODUCTION
US06/879,704 US4702885A (en) 1983-12-02 1986-06-27 Aluminum alloy and method for producing the same
US06/940,168 US4818308A (en) 1983-12-02 1986-12-10 Aluminum alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP109084A JPS60145349A (en) 1984-01-07 1984-01-07 Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60145349A JPS60145349A (en) 1985-07-31
JPH0565568B2 true JPH0565568B2 (en) 1993-09-20

Family

ID=11491799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP109084A Granted JPS60145349A (en) 1983-12-02 1984-01-07 Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60145349A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3007902U (en) * 1994-08-17 1995-02-28 小宮山印刷工業株式会社 Roll paper for receipt
JP3009551U (en) * 1994-09-28 1995-04-04 株式会社アークス Roll paper for receipt

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186443A (en) * 1985-02-12 1986-08-20 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai High strength, heat and wear resistant al alloy
JPH075936B2 (en) * 1986-03-11 1995-01-25 住友電気工業株式会社 Method for manufacturing aluminum alloy composite structure
JPH03120301A (en) * 1989-10-03 1991-05-22 Toyota Motor Corp Powder metallurgy of aluminum alloys
JP7011943B2 (en) * 2018-01-19 2022-02-10 昭和電工株式会社 Aluminum alloy substrate for magnetic recording medium and its manufacturing method, substrate for magnetic recording medium, magnetic recording medium and hard disk drive

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS6050137A (en) * 1983-08-30 1985-03-19 Riken Corp Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPS60125345A (en) * 1983-12-09 1985-07-04 Sumitomo Electric Ind Ltd Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPS60131945A (en) * 1983-12-19 1985-07-13 Honda Motor Co Ltd High-strength aluminum alloy having superior heat resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3007902U (en) * 1994-08-17 1995-02-28 小宮山印刷工業株式会社 Roll paper for receipt
JP3009551U (en) * 1994-09-28 1995-04-04 株式会社アークス Roll paper for receipt

Also Published As

Publication number Publication date
JPS60145349A (en) 1985-07-31

Similar Documents

Publication Publication Date Title
US4702885A (en) Aluminum alloy and method for producing the same
US3037857A (en) Aluminum-base alloy
US2966731A (en) Aluminum base alloy powder product
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
EP0171798B1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
US5833772A (en) Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon
EP0668806B1 (en) Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon alloy
JPH0565568B2 (en)
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JPS60208443A (en) Aluminum alloy material
JPH0617550B2 (en) Method for producing aluminum alloy materials with improved fatigue strength, especially bar stock
US2796660A (en) Method for the production of light metal articles
JPS6247449A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
JPS59157202A (en) Manufacture of al alloy machine parts
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JP2730284B2 (en) Manufacturing method of Al-Si alloy sintered forged parts
US2966733A (en) Aluminum base alloy powder product
JPS62250145A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPH01149935A (en) Green compact of heat-resistant aluminum alloy powder and its production
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
US20040105775A1 (en) Method of manufacturing dispersion strengthened copper and/or hyper-nucleated metal matrix composite resistance welding electrodes
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JPH0533013A (en) Production of highly accurate aluminum alloy sliding parts
JPH06145921A (en) Production of high heat resisting strength aluminum alloy