[go: up one dir, main page]

JPH0564879B2 - - Google Patents

Info

Publication number
JPH0564879B2
JPH0564879B2 JP13546585A JP13546585A JPH0564879B2 JP H0564879 B2 JPH0564879 B2 JP H0564879B2 JP 13546585 A JP13546585 A JP 13546585A JP 13546585 A JP13546585 A JP 13546585A JP H0564879 B2 JPH0564879 B2 JP H0564879B2
Authority
JP
Japan
Prior art keywords
core plate
resin
film
pressure
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13546585A
Other languages
Japanese (ja)
Other versions
JPS61294894A (en
Inventor
Kenji Oora
Kunitoshi Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP13546585A priority Critical patent/JPS61294894A/en
Publication of JPS61294894A publication Critical patent/JPS61294894A/en
Publication of JPH0564879B2 publication Critical patent/JPH0564879B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、金属ベース印刷配線板の素材として
好適な積層板を得る方法に関するものである。 (従来技術) 金属ベース印刷配線板は、金属芯板と、その表
面に絶縁層を介して設けられた導電回路層よりな
るもので、放熱性や磁気シールド性に優れてお
り、ハイブリツドIC基板等の各種用途に供され
ている。 従来、この金属ベース印刷配線板の素材となる
積層板は、第3図の断面図で示すように、あらか
じめ多数の貫通孔11を設けた金属芯板1に、エ
ポキシ樹脂含浸ガラス繊維マツト(ガラスエポキ
シ)3′を熱プレスして芯板1の表面を被覆する
と同時に、ガラスエポキシ中のエポキシ樹脂を孔
11中に流入させて孔11の表面をも被覆して作
られるのが普通であつた。 (発明が解決しようとする問題点) ところがガラスエポキシを芯板に被覆した積層
板においては、孔11の表面に気泡12が残りや
すく、孔11にスルーホールを開けたときに絶縁
不良が生じるという重大な欠点になつていた。ま
たガラスエポキシは高周波特性が十分でなく、用
途によつてはさらに高い性能のものが望まれてい
た。 本発明者等は、上記問題点を解決するため、金
属芯板を耐熱性の高い熱可塑性樹脂により孔表面
をも含めて被覆する方法を検討の結果、気泡の点
で改善が見られたものの、さらに高度の品質を要
求される場合には未だ完全とは言えなかつた。 (問題点を解決するための手段) 本発明は、耐熱性熱可塑性樹脂フイルムと、貫
通孔を設けた金属芯板とを、減圧雰囲気下で加熱
プレスすることにより、気泡残存の極めて少ない
積層板を得ることに成功したものである。 以下本発明を図面を参照して詳細に説明する。 第1図は、本発明方法をより得られる積層板の
一例を示す断面図、第2図は別の例を示す断面図
であつて、第1図のものは金属芯板1を耐熱性熱
可塑性樹脂のフイルム2で被覆絶縁し、その表面
に導電回路を設けるようにしたもの、第2図のも
のは、さらにガラスエポキシ等のプリプレグ層3
を積層してこの層3上に導電回路を設けるように
したものである。 本発明で使用する金属芯板は、予め多数の貫通
孔11が設けられたもので、通常0.1〜1.6mm程度
の厚さである。材質としては、鉄、アルミ、銅、
亜鉛等がある。 この芯板1は、サンドブラスト、液体ホーニン
グ、エツチング等の粗面化処理を施して、表面粗
さ(JIS B 0601で規定する中心線平均粗さ)が
1μ以上12μm以下、特に1.2μm以上となるように
微細に粗面化したものが好ましい。これは加熱プ
レス時に層間の空気が逃げやすいことと粗面によ
るアンカー効果が相俟つて接着力を高めるためと
考えられる。 また同時に、アルマイト処理、アロジン処理、
樹脂コーテイング等の処理を行なつて接着力の向
上を図るのが好ましい。 耐熱性熱可塑性樹脂フイルム2としては、半田
耐熱性がある熱可塑性樹脂、たとえばポリサルフ
オン、ポリエーテルエーテルケトン、ポリフエニ
レンサルフアイド等のフイルムを用い得るが、特
に熱変形温度(ASTM D648、18.6Kg/cm2)が
200℃以上の樹脂、例えばポリエーテルイミド
(200℃)、ポリエーテルサルフオン(203℃)、ポ
リアミドイミド(274℃)等のフイルムが好まし
い。 フイルム2の厚さは、積層中の厚さ減少を見込
んで0.25〜0.5mm程度が好適である。 芯板1とフイルム2とを積層するには、両者を
重ね合せ、減圧下で加熱プレスをおこなう。減圧
度(常圧と残存圧の差)は、600mmHg以上、好ま
しくは650mmHg以上とする。これよりも減圧度が
低いと気泡が完全には抜けない。 加熱プレスを常圧下で行うと、孔部や層間に気
泡が残存し、この気泡は高温高圧を加えても容易
に排除されないばかりか、苛酷な加熱圧着条件に
よりフイルム2が流れ出したり熱劣化する等の欠
点が生じる。ところが減圧度600mmHg程度の減圧
条件下で加熱プレスすると、ガラスエポキシのよ
うな液状成分を含むものとは違い、フイルム2が
固体状にあるうちに層間および孔中の空気の大部
分が容易に抜け、しかも樹脂に常に圧力が加わつ
ているから、目立つた気泡はほとんど認められな
くなる。またプレス時の加熱による金属芯板表面
の酸化を抑えることにより高い接着力が得られる
という効果も大きい。 ここで加熱温度は、フイルム2を構成する樹脂
の流動開始温度以上、熱分解温度未満の範囲とす
る必要があるのでフイルム2の材質で当然異なつ
てくるが、一般的には、200℃未満では芯板1と
フイルム2との接着力が弱く、450℃を越えると
フイルム2が流れて厚さが著しく減少し好ましく
ないので、200〜450℃の範囲とする必要がある。
好ましい温度は、例えばポリエーテルイミドの場
合には350〜380℃、ポリエーテルサルフオンの場
合には320〜350℃、ポリサルフオンでは280〜340
℃、ポリアミドイミドでは300〜400℃、ポリエー
テルエーテルケトンでは350〜380℃の範囲であ
る。 これらの範囲であれば、適正なプレス圧力を選
ぶことにより、プレス中にフイルム2が著しく流
れ出すこともなく、かつフイルム2が溶融してそ
の一部が孔11中に流入充填され、孔11の表面
を十分に被覆するので、良好な結果が得られる。 またプレス圧力は50〜200Kg/cm2の範囲がよく、
これが50Kg/cm2未満では、減圧下でも層間および
孔部の気泡が十分抜けず、接着力も弱く、300
Kg/cm2を越えるとフイルム2の厚さが不必要に減
少し、所定厚さの積層体が得られない。実用的に
は100Kg/cm2程度の圧力で十分な接着強度が得ら
れる。 加熱プレスが完了すると、冷却を開始する。こ
の冷却中にも加圧を行うのがよいが、減圧を維持
することは必ずしも必要ない。 第2図は特に好ましい構成の積層板を示すもの
であるが、このような積層板を得る場合には、フ
イルム層2の上にガラスエポキシ等の未硬化プリ
プレグおよび必要に応じ銅箔等の導電金属箔を重
ね、120〜200℃程度の温度で5〜150Kg/cm2の圧
力を加えてプレスすればよい。この場合には、減
圧雰囲気中で行なう必要はない。温度が120℃よ
りも低いと接着力が弱く、200℃を越えるとプリ
プレグ中の樹脂の熱分解が生じやすく好ましくな
い。時間は、プリプレグ中の樹脂が十分硬化する
ように10分以上行なう。 プリプレグ3は、ガラス繊維等のマツトにエポ
キシ樹脂、フエノール樹脂、ポリエステル樹脂、
アリル樹脂等の熱硬化性樹脂を含浸させたもの
で、厚さ0.1〜0.2mm程度のものを数枚重ねて用い
るのがよい。 このように積層板の表面にプリプレグ層3を設
けると、「ひけ」が生じやすい熱可塑性フイルム
の性質を補つて表面平滑性が向上し、また絶縁層
の耐熱寸法安定性、耐溶剤性等が向上する。 実施例 1 直径0.5〜5mmの貫通孔を多数設けた下記2種
の金属芯板を準備した。 (a) 厚さ1.6mmのアルミ板(表面粗さ1.2μ、アロ
ジン処理あり) (b) 厚さ1.6mmのアルミ板(表面粗さ0.2μ、アロ
ジン処理あり) これらの芯板の両面に厚さ0.3mmのポリエーテ
ルイミドフイルムを重ね、雰囲気圧力を変えて、
プレス圧力100Kg/cm2で90分間加熱プレスし、次
いで加圧したまま冷却した。次いでその樹脂層の
両面に、厚さ0.1mmのガラスエポキシを2枚ずつ
重ね、温度170℃、圧力50Kg/cm2で10分間プレス
(常圧雰囲気下)して積層板を得た。 そして孔内部の樹脂を切削して開口部を設け、
その表面の顕微鏡観察して気泡の有無を検査し、
直径2μm以上の気泡がないものを○、あるもの
を×とした。また芯板とフイルムの接着力をJIS
C6481により測定した。その結果を第1表に示
す。
(Industrial Application Field) The present invention relates to a method for obtaining a laminate suitable as a material for metal-based printed wiring boards. (Prior art) Metal-based printed wiring boards consist of a metal core board and a conductive circuit layer provided on its surface with an insulating layer interposed between them.It has excellent heat dissipation and magnetic shielding properties, and is suitable for use in hybrid IC boards, etc. It is used for various purposes. Conventionally, as shown in the cross-sectional view of FIG. 3, the laminated board that is the raw material for this metal-based printed wiring board is made of epoxy resin-impregnated glass fiber mat (glass It was common to heat-press epoxy 3' to cover the surface of the core plate 1, and at the same time, flow the epoxy resin in the glass epoxy into the holes 11 to cover the surfaces of the holes 11. . (Problems to be Solved by the Invention) However, in a laminated board in which the core plate is coated with glass epoxy, air bubbles 12 tend to remain on the surface of the holes 11, resulting in poor insulation when a through hole is made in the hole 11. It had become a serious drawback. Furthermore, glass epoxy does not have sufficient high frequency characteristics, and depending on the application, even higher performance has been desired. In order to solve the above problems, the present inventors investigated a method of covering the metal core plate, including the hole surface, with a highly heat-resistant thermoplastic resin. However, in cases where even higher quality is required, it is still far from perfect. (Means for Solving the Problems) The present invention produces a laminate with extremely few remaining bubbles by hot pressing a heat-resistant thermoplastic resin film and a metal core plate provided with through holes in a reduced pressure atmosphere. It was successfully obtained. The present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view showing an example of a laminate obtained by the method of the present invention, and FIG. 2 is a sectional view showing another example. The one shown in Figure 2, which is coated and insulated with a plastic resin film 2 and has a conductive circuit on its surface, is further coated with a prepreg layer 3 made of glass epoxy or the like.
A conductive circuit is provided on this layer 3. The metal core plate used in the present invention is provided with a large number of through holes 11 in advance, and usually has a thickness of about 0.1 to 1.6 mm. Materials include iron, aluminum, copper,
There are zinc, etc. This core plate 1 has been subjected to surface roughening treatments such as sandblasting, liquid honing, and etching to improve the surface roughness (center line average roughness specified by JIS B 0601).
Preferably, the surface is finely roughened to a diameter of 1 μm or more and 12 μm or less, particularly 1.2 μm or more. This is thought to be due to the fact that air between the layers easily escapes during hot pressing, and the anchoring effect of the rough surface combines to increase the adhesive strength. At the same time, alumite treatment, alodine treatment,
It is preferable to perform a treatment such as resin coating to improve the adhesive strength. As the heat-resistant thermoplastic resin film 2, a thermoplastic resin that is resistant to soldering heat, such as a film made of polysulfone, polyetheretherketone, polyphenylene sulfide, etc., can be used. / cm2 ) is
A film made of a resin having a temperature of 200° C. or higher, such as polyetherimide (200° C.), polyether sulfon (203° C.), or polyamideimide (274° C.) is preferred. The thickness of the film 2 is preferably about 0.25 to 0.5 mm, taking into account the reduction in thickness during lamination. In order to laminate the core plate 1 and the film 2, they are placed on top of each other and heated and pressed under reduced pressure. The degree of pressure reduction (difference between normal pressure and residual pressure) is 600 mmHg or more, preferably 650 mmHg or more. If the degree of pressure reduction is lower than this, the air bubbles will not be completely removed. When heat pressing is performed under normal pressure, air bubbles remain in the pores and between the layers, and not only are these air bubbles not easily removed even when high temperature and pressure are applied, but the film 2 may flow out or undergo thermal deterioration due to the harsh heat and pressure bonding conditions. disadvantages arise. However, when hot pressing is carried out under reduced pressure conditions of approximately 600 mmHg, most of the air between the layers and in the pores is easily released while the film 2 is in a solid state, unlike films that contain liquid components such as glass epoxy. Moreover, since pressure is constantly applied to the resin, noticeable air bubbles are almost invisible. It also has the great effect of providing high adhesive strength by suppressing oxidation of the surface of the metal core plate due to heating during pressing. Here, the heating temperature needs to be in the range above the flow start temperature of the resin constituting the film 2 and below the thermal decomposition temperature, so it naturally varies depending on the material of the film 2, but in general, it is less than 200°C. The adhesive force between the core plate 1 and the film 2 is weak, and if the temperature exceeds 450°C, the film 2 will flow and the thickness will decrease significantly, which is not preferable, so the temperature should be in the range of 200 to 450°C.
Preferred temperatures are, for example, 350-380°C for polyetherimide, 320-350°C for polyethersulfone, and 280-340°C for polysulfone.
℃, for polyamideimide it is in the range of 300 to 400℃, and for polyetheretherketone it is in the range of 350 to 380℃. Within these ranges, by selecting an appropriate pressing pressure, the film 2 will not flow out significantly during pressing, and the film 2 will melt and a part of it will flow into the hole 11 and fill it. Good results are obtained since the surface is well covered. In addition, the press pressure should preferably be in the range of 50 to 200Kg/ cm2 .
If this is less than 50 kg/cm 2 , air bubbles between the layers and in the pores will not be removed sufficiently even under reduced pressure, and the adhesive strength will be weak.
If it exceeds Kg/cm 2 , the thickness of the film 2 will be reduced unnecessarily, making it impossible to obtain a laminate with a predetermined thickness. Practically speaking, sufficient adhesive strength can be obtained with a pressure of about 100 kg/cm 2 . Once the heating press is completed, cooling begins. It is preferable to pressurize during this cooling, but it is not necessarily necessary to maintain reduced pressure. Figure 2 shows a laminate with a particularly preferred configuration. When obtaining such a laminate, an uncured prepreg such as glass epoxy and, if necessary, a conductive material such as copper foil may be added on the film layer 2. The metal foils may be stacked and pressed at a temperature of about 120 to 200°C and a pressure of 5 to 150 kg/cm 2 . In this case, it is not necessary to carry out the process in a reduced pressure atmosphere. If the temperature is lower than 120°C, the adhesive strength will be weak, and if it exceeds 200°C, thermal decomposition of the resin in the prepreg will easily occur, which is not preferable. The time is 10 minutes or more so that the resin in the prepreg is sufficiently cured. Prepreg 3 is made of epoxy resin, phenolic resin, polyester resin, etc. on mat such as glass fiber.
It is impregnated with a thermosetting resin such as allyl resin, and is preferably used by stacking several sheets with a thickness of about 0.1 to 0.2 mm. Providing the prepreg layer 3 on the surface of the laminate in this way improves the surface smoothness by compensating for the tendency of thermoplastic films to cause "sink marks", and also improves the heat-resistant dimensional stability, solvent resistance, etc. of the insulating layer. improves. Example 1 The following two types of metal core plates were prepared, each having a large number of through holes with a diameter of 0.5 to 5 mm. (a) 1.6mm thick aluminum plate (surface roughness 1.2μ, alodine treatment) (b) 1.6mm thick aluminum plate (surface roughness 0.2μ, alodine treatment) Thickness is applied to both sides of these core plates. Layering polyetherimide films with a diameter of 0.3 mm and changing the atmospheric pressure,
It was heated and pressed for 90 minutes at a press pressure of 100 kg/cm 2 , and then cooled while being pressurized. Next, two glass epoxy sheets each having a thickness of 0.1 mm were stacked on both sides of the resin layer, and pressed at a temperature of 170° C. and a pressure of 50 Kg/cm 2 for 10 minutes (in a normal pressure atmosphere) to obtain a laminate. Then, cut the resin inside the hole to create an opening.
The surface is observed under a microscope to check for the presence of air bubbles.
Those without bubbles with a diameter of 2 μm or more were marked as ○, and those with bubbles were marked as ×. In addition, the adhesion strength between the core plate and film is determined by JIS
Measured by C6481. The results are shown in Table 1.

【表】 以上の結果からあきらかなように、減圧しない
No.4および減圧度が不足しているNo.3では十分気
泡が抜けないが、減圧下で加熱圧着した本発明方
法によるもの(No.1〜2および5)では孔表面に
気泡が残らない。また、高い接着力を得るには、
芯板としては表面粗面板が好ましいことがわか
る。 実施例 2 表面を硫酸アルマイト処理したアルミ芯板(a)
(表面粗さ1.3μm)の両面に、厚さ0.3mmのポリエ
ーテルサルフオンフイルムを重ね、600mmHgの雰
囲気下で、温度330℃、プレス圧力100Kg/cm2で75
分間加熱プレスした。 次いでその樹脂層の両面に、実施例1と同様に
してガラスエポキシを積層し、第2図に示す構成
の積層板を得た。積層板は、気泡がなく、各層の
接着力も十分あり、かつ表面平滑であつた。 (発明の効果) 本発明によれば、芯板の表面はもとより、従来
気泡の残存が著しかつた孔部においても気泡がな
い積層板が得られる。
[Table] As is clear from the above results, do not depressurize
No. 4 and No. 3 with insufficient degree of vacuum do not allow sufficient air bubbles to escape, but no air bubbles remain on the pore surface with those made by the method of the present invention (Nos. 1 to 2 and 5), which are heat-pressed under reduced pressure. . In addition, to obtain high adhesive strength,
It can be seen that a surface-roughened plate is preferable as the core plate. Example 2 Aluminum core plate (a) whose surface was treated with sulfuric acid alumite
(Surface roughness 1.3 μm) Layer 0.3 mm thick polyether sulfon film on both sides and press 75 at 330℃ and press pressure 100Kg/cm 2 in 600mmHg atmosphere.
Heat pressed for a minute. Next, glass epoxy was laminated on both sides of the resin layer in the same manner as in Example 1 to obtain a laminate having the structure shown in FIG. 2. The laminate had no air bubbles, sufficient adhesion between the layers, and a smooth surface. (Effects of the Invention) According to the present invention, a laminate can be obtained that is free of air bubbles not only on the surface of the core plate but also in the pores where bubbles have conventionally remained significantly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜2図は、本発明方法により得られる積層
板の例を示す断面図、第3図は、従来の積層板を
示す断面図。 1……金属芯板、11……貫通孔、2……耐熱
性熱可塑性樹脂層、3……プリプレグ。
1 and 2 are sectional views showing an example of a laminate obtained by the method of the present invention, and FIG. 3 is a sectional view showing a conventional laminate. DESCRIPTION OF SYMBOLS 1...Metal core plate, 11...Through hole, 2...Heat-resistant thermoplastic resin layer, 3...Prepreg.

Claims (1)

【特許請求の範囲】 1 耐熱性熱可塑性樹脂フイルムと、貫通孔を有
する金属芯板とを、減圧度600mmHg以上の減圧雰
囲気下において、温度200〜450℃、圧力50〜300
Kg/cm2の範囲内の条件で加熱プレスし、前記樹脂
により前記芯板の表面を被覆するとともに前記貫
通孔を充填することを特徴とする金属ベース積層
板の製法。 2 金属芯板として、表面粗さが1μm以上の微
細粗面板を用いることを特徴とする特許請求の範
囲第1項記載の方法。
[Claims] 1. A heat-resistant thermoplastic resin film and a metal core plate having through holes are heated at a temperature of 200 to 450°C and a pressure of 50 to 300°C in a reduced pressure atmosphere with a degree of reduced pressure of 600 mmHg or more.
1. A method for producing a metal base laminate, comprising heating and pressing under conditions within a range of Kg/cm 2 to cover the surface of the core plate with the resin and filling the through holes. 2. The method according to claim 1, wherein a finely roughened plate having a surface roughness of 1 μm or more is used as the metal core plate.
JP13546585A 1985-06-21 1985-06-21 Making of metal based laminate board Granted JPS61294894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13546585A JPS61294894A (en) 1985-06-21 1985-06-21 Making of metal based laminate board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13546585A JPS61294894A (en) 1985-06-21 1985-06-21 Making of metal based laminate board

Publications (2)

Publication Number Publication Date
JPS61294894A JPS61294894A (en) 1986-12-25
JPH0564879B2 true JPH0564879B2 (en) 1993-09-16

Family

ID=15152346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13546585A Granted JPS61294894A (en) 1985-06-21 1985-06-21 Making of metal based laminate board

Country Status (1)

Country Link
JP (1) JPS61294894A (en)

Also Published As

Publication number Publication date
JPS61294894A (en) 1986-12-25

Similar Documents

Publication Publication Date Title
US4769270A (en) Substrate for a printed circuit board
JPH0564879B2 (en)
JP2501331B2 (en) Laminate
JPS6192849A (en) Manufacture of laminated board for metallic base printed wiring board
GB2216435A (en) Prepreg sheet
JPH0584214B2 (en)
JP2576194B2 (en) Manufacturing method of metal composite laminate
JPH05291711A (en) Board for high-frequency circuit use
JP2000013024A (en) Manufacture of multilayer board and plate for multilayer board manufacture
JPS6338298A (en) Multilayer printed interconnection board
JP2001085838A (en) Method for manufacturing multilayer laminated plate
JPS62181127A (en) Preparation of metal-clad laminated sheet
JPH0815235B2 (en) Multilayer printed wiring board
JPH0771839B2 (en) Laminated board manufacturing method
JP2503630B2 (en) Method for manufacturing multilayer printed circuit board
JPS61292993A (en) Manufacture of metal based laminate board
JPH04291782A (en) Electric metal clad laminate
JPS6319246A (en) Multilayer copper-lined laminated board
JPH05129779A (en) Metal-clad laminate for multilayer printed wiring board
JPH05183275A (en) Manufacture of metal core multilayer printed wiring board
JPH0466180B2 (en)
JPH04260391A (en) Manufacture of multilayered wiring board
JPH079613A (en) Double-sided copper clad laminated sheet of b-stage and production of metal substrate printed wiring board using the same
JPS60214953A (en) Metallic base printed wiring substrate
JPH04223113A (en) Manufacture of laminated sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees