[go: up one dir, main page]

JPH0564733B2 - - Google Patents

Info

Publication number
JPH0564733B2
JPH0564733B2 JP59242744A JP24274484A JPH0564733B2 JP H0564733 B2 JPH0564733 B2 JP H0564733B2 JP 59242744 A JP59242744 A JP 59242744A JP 24274484 A JP24274484 A JP 24274484A JP H0564733 B2 JPH0564733 B2 JP H0564733B2
Authority
JP
Japan
Prior art keywords
enzyme
biosensor
electrode
sensitive surface
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59242744A
Other languages
Japanese (ja)
Other versions
JPS61120054A (en
Inventor
Shotaro Oka
Osamu Tawara
Hiroyoshi Mizuguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59242744A priority Critical patent/JPS61120054A/en
Publication of JPS61120054A publication Critical patent/JPS61120054A/en
Publication of JPH0564733B2 publication Critical patent/JPH0564733B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明はバイオセンサ装置に関する。さらに
詳しくは、固定化酵素と化学物質感応性電極とを
組合せてなり、臨床分析や工業プロセス、環境化
学などの分析分野に有用なバイオセンサ装置に関
する。
[Detailed Description of the Invention] (a) Industrial Application Field This invention relates to a biosensor device. More specifically, the present invention relates to a biosensor device that combines an immobilized enzyme and a chemical substance-sensitive electrode and is useful in analytical fields such as clinical analysis, industrial processes, and environmental chemistry.

(ロ) 従来技術 最近、固定化酵素膜等の機能性膜と、電極、サ
ーミスタ、フオトンカウンタ、音波検知機等のト
ランスジユーサとを組合せてなり、酵素反応等に
起因する化学物質の生成や増減、熱の発生、発
光、音波等をトランスジユーサにより電気信号に
変換しこの出力に基づいて試料中の種々の成分を
分析するバイオセンサが種々提案されている。
(b) Prior art Recently, functional membranes such as immobilized enzyme membranes and transducers such as electrodes, thermistors, photon counters, and sonic detectors have been combined to produce chemical substances caused by enzymatic reactions, etc. A variety of biosensors have been proposed, which use a transducer to convert changes in energy, heat generation, luminescence, sound waves, etc. into electrical signals, and analyze various components in a sample based on the output.

これらバイオセンサのうち、酵素反応により生
成したり増減する化学物質を指標とするバイオセ
ンサは通常、イオン選択性電極やイオン選択性電
界効果型トランジスタ(IS FET)の如き化学物
質感応性電極をトランスジユーサとしてなり、こ
の感応面に固定化酵素膜を装着してなる。そして
酵素を固定化する膜状担体としてはセルロースア
セテート、ポリグルタメート、イオン交換樹脂、
多孔性ポリ塩化ビニル等の有機ポリマーが通常用
いられている。
Among these biosensors, biosensors that use chemical substances produced or increased or decreased by enzymatic reactions as indicators usually use chemical-sensitive electrodes such as ion-selective electrodes or ion-selective field-effect transistors (IS FETs) as transducers. It is made by attaching an immobilized enzyme membrane to this sensitive surface. Membrane-like carriers for immobilizing enzymes include cellulose acetate, polyglutamate, ion exchange resin,
Organic polymers such as porous polyvinyl chloride are commonly used.

しかしながら、かようなバイオセンサにおいて
は、膜状担体と感応面との密着性が不充分であ
り、そのため安定した性能が得られず長期間の使
用に適さないという問題点があつた。
However, such a biosensor has a problem in that the adhesion between the membrane carrier and the sensitive surface is insufficient, and therefore stable performance cannot be obtained and it is not suitable for long-term use.

この点に関し、本発明者らは、従来のバイオセ
ンサにおける電極と固定化酵素膜との弱い密着性
は、酸化アルミニウム、酸化ケイ素、窒化ケイ素
等を主体とする無機固体からなる電極感応面と固
定化酵素の担体である有機ポリマーとの非親和性
に起因するものと考察し、これに基づいて鋭意研
究、検討を行なつた。その結果、上記感応面上に
その場で金属水酸化物系ゲル膜を形成させ、これ
を担体として酵素を固定化することにより、感応
面との密着性に優れしかも活性の優れた固定化酵
素膜を設定でき、安定で耐久性に優れかつ感応の
優れたバイオセンサが得られる事実を見出した。
Regarding this point, the present inventors believe that the weak adhesion between the electrode and the immobilized enzyme membrane in conventional biosensors is due to the weak adhesion between the electrode sensitive surface and the immobilized enzyme membrane, which are made of inorganic solids mainly composed of aluminum oxide, silicon oxide, silicon nitride, etc. We considered that this was due to the incompatibility with the organic polymer that is the carrier of the enzyme, and conducted intensive research and examination based on this theory. As a result, by forming a metal hydroxide gel film on the sensitive surface on the spot and immobilizing the enzyme using this as a carrier, the immobilized enzyme has excellent adhesion to the sensitive surface and has excellent activity. We have discovered that a biosensor that is stable, durable, and sensitive can be obtained by forming a membrane.

(ハ) 発明の目的 この発明は、上記バイオセンサを用いて構成し
た一つの好ましいバイオセンサ装置を提供するも
のであり、ことに測定時の温度、PH、妨害成分等
による悪影響を受けないバイオセンサ装置を提供
しようとするものである。
(C) Purpose of the Invention The present invention provides a preferred biosensor device configured using the above-mentioned biosensor, and in particular, a biosensor that is not adversely affected by temperature, pH, interfering components, etc. during measurement. The aim is to provide equipment.

(ニ) 発明の構成 かくしてこの発明によれば所定の酵素を固定化
した金属水酸化物系ゲルからなる固定化酵素膜
を、無機固体感応面を備えた化学物質感応性電極
の感応面上に密着形成してなるバイオセンサ部
と、上記金属水酸化物系ゲルからなる酵素未固定
のゲル膜を上記と同じ無機固体感応面を備えた化
学物質感応性電極の感応面上に密着形成してなる
参照電極部とを備えてなることを特徴とするバイ
オセンサ装置が提供される。
(d) Structure of the Invention According to the present invention, an immobilized enzyme membrane made of a metal hydroxide gel on which a predetermined enzyme is immobilized is placed on the sensitive surface of a chemical substance-sensitive electrode equipped with an inorganic solid sensitive surface. A biosensor portion is formed in close contact with a gel film on which enzymes are not immobilized and is made of the metal hydroxide gel described above and is formed in close contact with the sensitive surface of a chemical substance-sensitive electrode equipped with the same inorganic solid sensitive surface as above. Provided is a biosensor device characterized by comprising a reference electrode section.

この発明の一つの大きな特徴は、化学物質感応
性電極の無機固体感応面に金属水酸化物系ゲルを
担体とする固定化酵素を密着形成したバイオセン
サを用いた点にある。そして他の大きな特徴は、
このバイオセンサを用いて測定に供する際の基準
となる参照電極として、バイオセンサと同じ化学
物質感応性電極の感応面上に酵素未固定の金属水
酸化物系ゲル膜を上記と同様に密着形成したもの
を組合せて用いた点にある。
One major feature of this invention is the use of a biosensor in which an immobilized enzyme using a metal hydroxide gel as a carrier is closely formed on the inorganic solid sensing surface of a chemically sensitive electrode. And other major features are
As a reference electrode for measurements using this biosensor, a metal hydroxide gel film with no enzyme immobilized is formed in close contact with the sensitive surface of the same chemical-sensitive electrode as the biosensor. The point is that it uses a combination of the following.

この発明における「無機固体感応面を備えた化
学物質感応性電極」としては、従来のバイオセン
サに用いられている種々のポテンシヨメトリツク
な固体電極や半導体電極及びその均等物を適用す
ることができ、より具体的にはイオン選択性電
極、イオン選択性電界効果型トランジスタ部(IS
FET)、白金電極等が挙げられる。通常、酵素反
応によるPH変化を検知するPHガラス電極やPH−IS
FETを用いるのが汎用性の点で好ましい。
As the "chemical substance sensitive electrode with an inorganic solid sensitive surface" in this invention, various potentiometric solid electrodes, semiconductor electrodes, and their equivalents used in conventional biosensors can be applied. , more specifically, ion-selective electrodes, ion-selective field-effect transistors (IS
FET), platinum electrodes, etc. Typically, PH glass electrodes or PH-IS that detect PH changes due to enzyme reactions
It is preferable to use FET from the viewpoint of versatility.

この発明のバイオセンサ部は、上記化学物質感
応性電極の感応面(すなわち、例えばガラス電極
や白金電極の場合は端部や全面、ISFETの場合
はそのゲート面)上にその場で金属水酸化物系ゲ
ル膜を形成させ、該ゲル膜に酵素を固定化するこ
とにより得ることができる。一方、この発明にお
ける参照電極部は上記酵素の固定化を行なわない
以外同様にして得ることができる。
The biosensor section of the present invention is characterized by in-situ metal hydroxide on the sensitive surface of the chemical substance-sensitive electrode (i.e., the end or the entire surface in the case of a glass electrode or a platinum electrode, or the gate surface in the case of an ISFET). It can be obtained by forming a physical gel membrane and immobilizing the enzyme on the gel membrane. On the other hand, the reference electrode portion in the present invention can be obtained in the same manner except that the enzyme described above is not immobilized.

この際形成させるゲル膜は薄膜でかつ感応面に
密着していることを要する。かかるゲル膜は、金
属アルコシドや酵素を配位子とする有機金属キレ
ート化合物を溶解した易揮発性の親水性溶媒溶液
(例えば、メタノール、エタノール等の低級アル
コール溶液)に酸を添加し、この液を上記感応面
に塗布し、次いでこれをそのまま又は加熱下放置
して上記化合物の加水分解及び乾燥を進行させて
対応する金属水酸化物に変換することにより形成
させることができる。
The gel film formed at this time is required to be thin and in close contact with the sensitive surface. Such a gel film is produced by adding an acid to a solution of an easily volatile hydrophilic solvent (e.g., a lower alcohol solution such as methanol or ethanol) in which an organometallic chelate compound having a metal alkoxide or an enzyme as a ligand is dissolved. It can be formed by coating the above-mentioned sensitive surface and then leaving it as it is or under heating to advance hydrolysis and drying of the above-mentioned compound to convert it into the corresponding metal hydroxide.

上記ゲル膜の原料となる金属アルコキシドとし
ては、Si(OCH34,Si(OC2H54,Ti(OC3H74
V(OC2H53,Al(OC3H73,Co(OC2H52,Ni
(OC2H5),Fe(OC2H53等が挙げられ、これらの
うち低級アルコキシシランが好ましい。また、酵
素を配位子とする有機金属キレート化合物として
は、アルカンジオン又はその誘導体の金属キレー
ト化合物が適しており、例えば、2,4−ペンタ
ンジオン(アセチルアセトン)、3−フエニル−
2,4−ペンタンジオン(3−フエニルアセチル
アセトン)、2,4−ヘキサンジオン、2,4(又
は3,5)−ヘプタンジオン、2,2,6,6−
テトラメチル−3,5−ヘプタンジオン(ジピパ
ロイルメタン)等の低級アルカンジオン類のカル
シウム、アルミニウム、チタン、亜鉛、鉄又はカ
リウムキレート化合物が挙げられる。これら金属
アルコキシドや有機金属キレート化合物はもちろ
ん混合して用いてもよい。
The metal alkoxides used as raw materials for the gel film include Si(OCH 3 ) 4 , Si(OC 2 H 5 ) 4 , Ti(OC 3 H 7 ) 4 ,
V( OC2H5 ) 3 , Al( OC3H7 ) 3 , Co ( OC2H5 ) 2 , Ni
(OC 2 H 5 ), Fe(OC 2 H 5 ) 3 , etc., and among these, lower alkoxysilane is preferred. Further, as the organometallic chelate compound having an enzyme as a ligand, metal chelate compounds of alkanediones or their derivatives are suitable, such as 2,4-pentanedione (acetylacetone), 3-phenyl-
2,4-pentanedione (3-phenylacetylacetone), 2,4-hexanedione, 2,4 (or 3,5)-heptanedione, 2,2,6,6-
Examples include calcium, aluminum, titanium, zinc, iron or potassium chelate compounds of lower alkanedions such as tetramethyl-3,5-heptanedione (dipiparoylmethane). Of course, these metal alkoxides and organometallic chelate compounds may be used in combination.

また、上記親水性溶媒溶液中に添加する酸とし
ては種々の鉱酸が挙げられるが、フツ化水素酸を
用いるのが好ましく、塩酸でPH1〜3とした後フ
ツ化水素酸を少量添加するのが最も好ましい。フ
ツ化水素酸の添加量は金属に対するモル比として
0.05〜1.0モル程度が適切である。なお、この溶
液中には少量の水が添加されていてもよい。
In addition, various mineral acids can be mentioned as acids to be added to the above-mentioned hydrophilic solvent solution, but it is preferable to use hydrofluoric acid. is most preferred. The amount of hydrofluoric acid added is expressed as a molar ratio to the metal.
Approximately 0.05 to 1.0 mol is appropriate. Note that a small amount of water may be added to this solution.

このようにして感応面上で直接形成される金属
水酸化物系のゲル膜は、感応面に密着した薄膜状
(通常0.1〜0.5μm)のものであり、しかも酵素固
定化に至適な多数の水酸基を有しかつ多孔性のも
のである。
The metal hydroxide-based gel film that is formed directly on the sensitive surface in this way is a thin film (usually 0.1 to 0.5 μm) that adheres closely to the sensitive surface, and has a large number of particles that are ideal for enzyme immobilization. It has hydroxyl groups and is porous.

かかるゲル膜を形成した化学物質感応性電極は
この発明の参照電極として用いられる。一方、こ
の発明のバイオセンサ部はこのゲル膜に酵素を固
定化することにより得られる。
A chemical substance-sensitive electrode on which such a gel film is formed is used as a reference electrode in the present invention. On the other hand, the biosensor portion of the present invention can be obtained by immobilizing an enzyme on this gel membrane.

感応面上に形成された上記ゲル膜への酵素の固
定化自体は、シランカツプリング剤を用いた方法
や臭化シアン活性化法等の公知の方法を適用する
ことができ、その一つの好ましい例として、γ−
アミノプロピルトリエトキシシランの溶液と上記
ゲル膜とを接触させてカツプリング基を導入し、
次いでグルタルアルデヒドの溶液と接触させて、
最後に所望の酵素溶液と接触させてシツフ塩基結
合により酵素を固定化する方法が挙げられる。
For the immobilization of the enzyme on the gel film formed on the sensitive surface, known methods such as a method using a silane coupling agent or a cyanogen bromide activation method can be applied, one of which is preferred. As an example, γ−
A coupling group is introduced by bringing a solution of aminopropyltriethoxysilane into contact with the above gel film,
then contacted with a solution of glutaraldehyde,
Finally, there is a method in which the enzyme is immobilized by Schiff base bonding by contacting with a desired enzyme solution.

固定化する酵素としては、分析を意図する成分
を基質としかつ化学物質感応性電極が応答を示す
酵素反応を行ないうるものが種々適用できる。こ
れらのうち、少なくとも酵素反応によりPH変化を
生じうる酵素を適用するのが好ましく、この際化
学物質感応性電極としてはPHガラス電極又はPH−
IS FETを用いるが好ましい。これらの酵素と目
的成分との具体的な組合せとしては、グルコース
とグルコースオキシダーゼ、尿素窒素とウレアー
ゼ、ガラクトースとガラクトースオキシダーゼ、
中性脂肪とリパーゼ、ペニシリンとペニシリナー
ゼ等が挙げられる。
As the enzyme to be immobilized, various enzymes can be used that are capable of carrying out an enzymatic reaction in which the component to be analyzed is used as a substrate and the chemical substance-sensitive electrode responds. Among these, it is preferable to apply at least an enzyme that can cause a PH change through an enzymatic reaction, and in this case, as a chemical substance-sensitive electrode, a PH glass electrode or a PH-
Preferably, IS FETs are used. Specific combinations of these enzymes and target components include glucose and glucose oxidase, urea nitrogen and urease, galactose and galactose oxidase,
Examples include neutral fat and lipase, penicillin and penicillinase, etc.

この発明のバイオセンサ装置の具体例を第1図
に示した。第1図に示すバイオセンサ装置1は、
バイオセンサ部10と参照電極部11を備えてな
り、測定槽12内の試料中の被検成分濃度に対応
してこれらの間に生じる電位差を増幅器14a,
14bを介して差動増幅器15で検知し、較正さ
れた指示計16に指示するよう構成されてなる。
A specific example of the biosensor device of this invention is shown in FIG. The biosensor device 1 shown in FIG.
It is equipped with a biosensor section 10 and a reference electrode section 11, and an amplifier 14a,
It is configured to be detected by a differential amplifier 15 via a terminal 14b and to be indicated to a calibrated indicator 16.

バイオセンサ部10は、第2図に示されるよう
にMOS電界効果型トランジスタ素子(5;PH−
ISFET)のゲート55上に、金属水酸化物系ゲ
ル膜に酵素を固定化した固定化酵素膜4aを密着
形成してなる。なお、図において51はSiO2
Si3N4等からなりPH感応面となる絶縁膜、52は
半導体層、53はソース領域、54はドレイン領
域、53′はソース配線、54′はドレイン配線を
それぞれ示すものであり、また、13はバイオセ
ンサ部10及び参照電極部11にそれぞれ基準電
圧を与えるためのバイアス電極である。
The biosensor section 10 includes a MOS field effect transistor element (5; PH-
An immobilized enzyme membrane 4a in which an enzyme is immobilized on a metal hydroxide gel membrane is closely formed on the gate 55 of the ISFET. In addition, in the figure, 51 is SiO 2 or
52 is a semiconductor layer, 53 is a source region, 54 is a drain region, 53' is a source wiring, and 54' is a drain wiring. 13 is a bias electrode for applying a reference voltage to the biosensor section 10 and the reference electrode section 11, respectively.

一方、参照電極部11は、固定化酵素膜4aの
代わりに、酵素未固定の金属水酸化物系ゲル膜4
bが密着形成されている以外、バイオセンサ部1
0と同様に構成されてなる。この際のゲル膜4b
は、固定化酵素膜4aの担体となるゲル膜と実質
的に同じ組成からなるものである。
On the other hand, the reference electrode section 11 includes a metal hydroxide gel membrane 4 without enzyme immobilization instead of the immobilized enzyme membrane 4a.
Biosensor part 1 except that b is formed in close contact with
It is configured in the same way as 0. Gel film 4b at this time
has substantially the same composition as the gel membrane serving as a carrier for the immobilized enzyme membrane 4a.

なお、この発明のバイオセンサ装置の測定構成
は上記具体例に限定されることなく、例えばフロ
ーセル型の試料流路に取り付けられたものであつ
てもよく、少なくとも上記のごときバイオセンサ
部と参照電極部とを備え、これらにより試料中の
特定成分を直接的又は間接的にポテンシヨメトリ
ツクに検知しうるよう構成されておればよい。
Note that the measurement configuration of the biosensor device of the present invention is not limited to the above-mentioned specific example, and may be attached to a flow cell type sample channel, for example, and includes at least the biosensor section as described above and a reference electrode. It may be configured such that a specific component in a sample can be detected directly or indirectly potentiometrically.

(ホ) 実施例 ゲート上にSiO2層及びSi3N4層を形成してPH感
応面を設定したPH−ISFET(長さ6.5mm、幅0.6mm、
ゲート面積約0.1mm2)を用いてこの発明のバイオ
センサ部を作製した。
(e) Example PH - ISFET (length 6.5 mm, width 0.6 mm,
The biosensor section of the present invention was fabricated using a gate area of approximately 0.1 mm 2 ).

まず、テトラエトキシシラン5.4mol、エチル
アルコール50ml、水5ml及び塩酸1mlからなる金
属アルコキシド溶液を浸漬法により上記PH−
ISFETに塗布することによりゲート面上に該溶
液を被覆させた。次いで、このPH−ISFETを80
℃下1時間大気中に放置することにより、テトラ
エトキシシランの加水分解及び溶媒等の乾燥を進
行させてゲート面上に膜厚約2000ÅのSi(OH)4
ゲル膜を形成させた。
First, the above PH-
The solution was coated on the gate surface by applying it to the ISFET. Next, this PH-ISFET is
By leaving it in the air for 1 hour at ℃, hydrolysis of tetraethoxysilane and drying of the solvent etc. proceeded to form a Si(OH) 4 gel film with a thickness of about 2000 Å on the gate surface.

ゲル膜が形成されたPH−ISFETを、5wt%のγ
−アミノプロピルトリエトキシシランのPH3.5緩
衝水溶液中に浸漬し85℃下2時間保持してゲル膜
中の水酸基を介してカツプリング剤を結合導入
し、水洗後、2.5wt%のグルタルアルデヒドのPH
7.0緩衝水溶液に浸漬し、20分間脱気した後30℃
下で40分間保持してカツプリング剤の末端にアル
デヒド基を有するシツフベースを導入した。
The PH-ISFET with a gel film formed was treated with 5 wt% γ
- Immerse in a PH3.5 buffered aqueous solution of aminopropyltriethoxysilane and hold at 85℃ for 2 hours to bond and introduce a coupling agent through the hydroxyl groups in the gel film. After washing with water, PH of 2.5wt% glutaraldehyde.
7.0 buffer solution and degassed for 20 minutes at 30°C.
Schiff base having an aldehyde group was introduced at the end of the coupling agent by holding the mixture for 40 minutes.

このように処理されたPH−ISFETを、ウレア
ーゼ100Uの水溶液(PH7.0の0.1Mリン酸塩緩衝液
5mlに溶解)中に浸漬し、5分間脱気した後、30
℃下で3時間保持することにより、上記酵素の固
定化反応を行ない、第2図に示すごときこの発明
のバイオセンサ(尿素検出用)を得た。
The PH-ISFET treated in this way was immersed in an aqueous solution of 100 U of urease (dissolved in 5 ml of 0.1 M phosphate buffer at pH 7.0), degassed for 5 minutes, and then heated for 30 minutes.
The enzyme was immobilized by holding at 0.degree. C. for 3 hours, and a biosensor (for urea detection) of the present invention as shown in FIG. 2 was obtained.

一方、酵素の固定化処理を行なわない以外、上
記と同様にして、Si(OH)4系のゲル膜(約2000
Å)をPH−ISFETのゲート上に密着形成した参
照電極部を得、これらバイオセンサ部及び参照電
極部を用いて第1図に示すごときバイオセンサ装
置を構成した。
On the other hand, a Si(OH) 4 gel membrane (approximately 2,000
A reference electrode part was obtained by closely forming a PH-ISFET on the gate of the PH-ISFET, and a biosensor device as shown in FIG. 1 was constructed using the biosensor part and the reference electrode part.

この半導体バイオセンサ装置は、試料液中の尿
素とバイオセンサ部に固定化されたウレアーゼと
の酵素反応に起因するそこでのPH上昇をPH−
ISFETで検知しうるよう構成されたものであり、
この出力に基づいて試料中の尿素の定性や定量を
行ない得るものである。
This semiconductor biosensor device detects the PH increase caused by the enzymatic reaction between urea in the sample solution and urease immobilized on the biosensor.
It is configured so that it can be detected by ISFET,
Based on this output, the urea in the sample can be qualitatively and quantitatively determined.

上記で得られたバイオセンサを用いて種々の濃
度の尿素水溶液(PH7.0の0.01Mリン酸塩緩衝液
中)についての出力(発生電位)を測定した結果
を第4図に示した。
The biosensor obtained above was used to measure the output (generated potential) of urea aqueous solutions of various concentrations (in 0.01M phosphate buffer, pH 7.0), and the results are shown in FIG.

このように、この発明のバイオセンサ装置によ
れば、尿素濃度10-4g/mlから10-1g/ml近くま
で直線性が良好であり、感度及び精度が良好であ
ることがわかる。
Thus, it can be seen that the biosensor device of the present invention has good linearity from a urea concentration of 10 -4 g/ml to nearly 10 -1 g/ml, and has good sensitivity and accuracy.

一方、試料として、PHのみを変化させた種々の
ブランク液についての出力を測定した結果を第3
図に示した。
On the other hand, as samples, the results of measuring the output of various blank solutions in which only the pH was changed are shown in the third section.
Shown in the figure.

このように、この発明のバイオセンサ装置は、
系全体のPH変動に影響されることのない理想的な
ものであることが確認された。
In this way, the biosensor device of this invention
It was confirmed that this is an ideal system that is not affected by PH fluctuations in the entire system.

(ヘ) 発明の効果 以上述べたごとく、この発明のバイオセンサ装
置は、感度や精度が優れていると共に、参照電極
部として、バイオセンサ部の固定化酵素膜のベー
スに用いた金属水酸化物系のゲル膜を被覆してな
る電極を使用しているため、測定液の条件例えば
温度、PH、妨害成分等の変化による出力変動が実
質的に相殺され、理想的な測定を行ない得るもの
である。
(F) Effects of the Invention As described above, the biosensor device of the present invention has excellent sensitivity and accuracy, and the metal hydroxide used as the base of the immobilized enzyme membrane of the biosensor part serves as the reference electrode part. Since it uses an electrode coated with a gel membrane, output fluctuations due to changes in measurement liquid conditions, such as temperature, pH, interfering components, etc., are substantially canceled out, making it possible to perform ideal measurements. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明のバイオセンサ装置の具体
例を示す構成説明図、第2図は同じく具体例のバ
イオセンサ部におけるゲート形成部分の模式的断
面図、第3図は、この発明のバイオセンサ装置の
一実施例における出力と系のPH変化との関係を示
すグラフ、第4図は、同じく一実施例における応
答性を示すグラフである。 1……バイオセンサ装置、4a……固定化酵素
膜、4b……金属水酸化物系ゲル膜、5……PH−
ISFET、10……バイオセンサ部、11……参
照電極部、55……ゲート。
FIG. 1 is a configuration explanatory diagram showing a specific example of the biosensor device of the present invention, FIG. 2 is a schematic sectional view of a gate forming part in the biosensor section of the same specific example, and FIG. FIG. 4 is a graph showing the relationship between the output and the system PH change in one embodiment of the sensor device, and FIG. 4 is a graph showing the responsiveness in the same embodiment. 1... Biosensor device, 4a... Immobilized enzyme membrane, 4b... Metal hydroxide gel membrane, 5... PH-
ISFET, 10...Biosensor part, 11...Reference electrode part, 55...Gate.

Claims (1)

【特許請求の範囲】 1 所定の酵素を固定化した金属水酸化物系ゲル
からなる固定化酵素膜を、無機固体感応面を備え
た化学物質感応性電極の感応面上に密着形成して
なるバイオセンサ部と、上記金属水酸化物系ゲル
からなる酵素未固定のゲル膜を上記と同じ無機固
体感応面を備えた化学物質感応性電極の感応面上
に密着形成してなる参照電極部とを備えてなるこ
とを特徴とするバイオセンサ装置。 2 金属水酸化物系ゲルが、金属アルコキシド又
は酵素を配位子とする有機金属キレート化合物の
加水分解生成物である特許請求の範囲第1項記載
のバイオセンサ装置。 3 化学物質感応性電極が、イオン選択性電極又
はイオン選択性電界効果型トランジスタである特
許請求の範囲第1項又は第2項記載のバイオセン
サ装置。
[Claims] 1. An immobilized enzyme membrane made of a metal hydroxide gel on which a predetermined enzyme is immobilized is formed in close contact with the sensitive surface of a chemical substance-sensitive electrode equipped with an inorganic solid sensitive surface. a biosensor part, and a reference electrode part formed by closely forming a gel film made of the metal hydroxide gel without enzyme immobilization on the sensitive surface of a chemical substance-sensitive electrode having the same inorganic solid sensitive surface as above. A biosensor device comprising: 2. The biosensor device according to claim 1, wherein the metal hydroxide gel is a hydrolysis product of an organometallic chelate compound having a metal alkoxide or an enzyme as a ligand. 3. The biosensor device according to claim 1 or 2, wherein the chemical substance-sensitive electrode is an ion-selective electrode or an ion-selective field-effect transistor.
JP59242744A 1984-11-16 1984-11-16 Biosensor device Granted JPS61120054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242744A JPS61120054A (en) 1984-11-16 1984-11-16 Biosensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242744A JPS61120054A (en) 1984-11-16 1984-11-16 Biosensor device

Publications (2)

Publication Number Publication Date
JPS61120054A JPS61120054A (en) 1986-06-07
JPH0564733B2 true JPH0564733B2 (en) 1993-09-16

Family

ID=17093609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242744A Granted JPS61120054A (en) 1984-11-16 1984-11-16 Biosensor device

Country Status (1)

Country Link
JP (1) JPS61120054A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220803A (en) * 2010-04-08 2011-11-04 Mitsumi Electric Co Ltd Biosensor including field-effect transistor element

Also Published As

Publication number Publication date
JPS61120054A (en) 1986-06-07

Similar Documents

Publication Publication Date Title
Pijanowska et al. pH-ISFET based urea biosensor
Van der Schoot et al. ISFET based enzyme sensors
Shul'ga et al. Thin-film conductometric biosensors for glucose and urea determination
Karbue et al. A microsensor for urea based on an ion-selective field effect transistor
Vianello et al. Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET
JPH0460549B2 (en)
Lee et al. Microfabricated conductometric urea biosensor based on sol‐gel immobilized urease
Shul'ga et al. Overall characterization of ISFET-based glucose biosensor
JPS62232555A (en) Oxygen sensor
Rahman et al. Development of Penicillin G biosensor based on Penicillinase enzymes immobilized onto bio-chips
EP1561100A1 (en) Transistor-based biosensors having gate electrodes coated with receptor molecules
Ltith et al. Penicillin detection by means of silicon-based field-effect structures
Jaffrezic-Renault et al. ISFET microsensors for the detection of pollutants in liquid media
Bousse et al. Biosensors for detection of enzymes immobilized in microvolume reaction chambers
Korpan et al. A Novel Enzyme Biosensor Specific for Formaldehyde Based on pH‐Sensitive Field Effect Transistors
Vlasov et al. Enzyme semiconductor sensor based on butyrylcholinesterase
De Melo et al. Use of competitive inhibition for driving sensitivity and dynamic range of urea ENFETs
Vlasov et al. Analytical applications of pH-ISFETs
JPH0564732B2 (en)
Battilotti et al. Characterization of biosensors based on membranes containing a conducting polymer
JPH0564733B2 (en)
Colapicchioni et al. Fabrication and characterization of ENFET devices for biomedical applications and environmental monitoring
Kuriyama et al. FET-based biosensors
EP0416419A2 (en) Immobilized alcohol oxidase, method for its preparation and measuring apparatus
JPS61176845A (en) Film deposited by evaporation for immobilization of physiologically active material and field effect transistor urea sensor using said film