JPH0562429B2 - - Google Patents
Info
- Publication number
- JPH0562429B2 JPH0562429B2 JP60053915A JP5391585A JPH0562429B2 JP H0562429 B2 JPH0562429 B2 JP H0562429B2 JP 60053915 A JP60053915 A JP 60053915A JP 5391585 A JP5391585 A JP 5391585A JP H0562429 B2 JPH0562429 B2 JP H0562429B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- capacity
- alloy
- electrode
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
産業上の利用分野
本発明は、電気化学的に水素を吸蔵、放出する
水素吸蔵合金又はその水素化物を負極に用いた密
閉形アルカリ蓄電池に関する。
従来の技術
二次電池には種々のものがあるが、中でも鉛蓄
電池、ニツケル−カドミウム蓄電池が最も広く知
られている。しかしこれらの蓄電池は負極中に固
形状の活物質を含むために、重量または容量の単
位当りのエネルギー貯蔵容量が比較的少ない。こ
のエネルギー貯蔵容量を向上させるため、水素吸
蔵合金を負極とし、正極には例えばニツケル酸化
物を用いた蓄電池が提案されている(米国特許第
3874928号明細書)。
この電池系はニツケル−カドミウム蓄電池より
も高容量が可能で、低公害の蓄電池として期待さ
れている。
発明が解決しようとする問題点
上記従来技術のうち、LaNi5合金を負極として
用いた電池はサイクル寿命が短いという問題があ
る。その上、合金の構成金属であるLaが高価で
あるため、電極自体のコストも必然的に高くな
る。また、このLaNi5合金を改良した電極組成も
(例えば、特開昭51−13934号で)提案されてい
る。即ち、Laの一部を希土類金属で置換した
LnNi5,LnCo5系とし、低コスト化を図つている
が、密閉化した電池では容量特に高温容量が小さ
く、しかも高温サイクル寿命も短くなるなどの問
題点があり、実用的な電池とはいえない。
本発明は以上のような問題を解消するもので、
比較的安価な材料を用いて負極を構成し、放電容
量が大きく、しかも45℃程度の高温時における充
放電サイクル寿命が長く、過充電時の発生ガスに
よる内圧上昇が少ない密閉形アルカリ蓄電池を提
供することを目的とする。
問題点を解決するための手段
本発明は、種々検討の結果、一般式Mm1-xAx
Niα-yCoy−zMz(但し、Mmはミツシユメタル、
Aは水素化物生成熱が負の元素であるNb,Ta,
V,Rb及びBaからなる群より選んだ少なくとも
1種であり、MはMn,Mo,Cr,Sn,Si,Tl,
Sb,Bi,Al,Zn,Cu,Fe,In及びGaからなる
群より選んだ少なくとも1種であり、0<x<
0.4,4.5<α<5.5,0<y<3,0≦z<1)で
表わされる水素吸蔵合金またはその水素化物から
なる負極と、正極と、セパレータ及びこれらに保
持されたアルカリ電解液とから密閉形アルカリ蓄
電池を構成したことを特徴とするものである。
作 用
水素吸蔵合金自体の水素化物生成熱(水素溶解
熱)と水素平衡解離圧力との間には深い関係があ
り、その生成熱(−ΔHKcal/molH2)の絶対値
が大きくなると、水素平衡解離圧力は下がり、単
体金属のように下がり過ぎると合金と水素とが非
常に安定した水素化物を形成し、優れた電極性能
が得られない。そこで、最適な金属間化合物を作
るために、水素化物生成熱が正の金属単体(吸熱
溶解型金属)と負の金属単体(発熱溶解型金属)
とを組合せて合金化することにより、性能の優れ
た水素吸蔵合金を得ることができる。
例えば、正の金属としては、Cr,Mo,Fe,
Mn,Pd,Pt,Ni,Ag,Cuなどがあり、負の金
属としては、V,Ta,Nb,Zr,Tl,La,Ce,
Sr,Ba,Rbなどがある。
ここで、特に安価な材料であるLa,Ce,Ndな
どの混合物(ミツシユメタル)に注目し、周知の
手法で電池を構成すると、高温容量が小さく、サ
イクル寿命も短いものとなる。これは希土類元素
自体が化学的に不安定な面を持つているためであ
る。そこで、これら元素と同じ水素化物生成熱が
負の性質を持つ元素を溶解すると両者はよく置換
し合つて、安定した化合物を作ると同時に、水素
化物生成熱が正の金属ともよく溶解し合う。この
様に相互の金属が均質に溶解し合い、しかも希土
類単独よりは耐食性を強め、水素平衡解離圧力を
下げる働きと水素を吸蔵、放出する能力も向上す
る。従つて、これを負極として電池に用いると特
に高温容量、サイクル寿命の伸長が可能となる。
実施例
市販のLa(純度99%以上)、Mm(ミツシユメタ
ル:La含有量30重量%、Ce含有量50重量%、Nd
含有量15重量%、Prその他の含有量5重量%)
などのランタノイド族金属及びCa(純度95%以
上)からなる群より選んだ少なくとも一種の金属
と、純度99%以上のZr,Hf,Th,Nb,Ta,
V,Rb及びBaからなる群より選んだ少なくとも
一種の金属とNi,CoさらにMn,Mo,Cr,Sn,
Si,Tl,Sb,Bi,Al,Zn,Cu,Fe,In及びGa
からなる群から選んだ少なくとも一種を選択し、
各試料を一定の組成比に秤量し、高周波溶解炉中
で加熱溶解させた。そして、試料の均質化を図る
目的で高温熱処理を行なつて合金試料とした。ま
た、必要に応じて水素化した合金粉末をも用い
た。
比較のためにLaNi5,LaCo5,MmNi5,
MmCo5,LaNi4.8Al0.2,MmNi4.8Al0.2合金など
も用意した。
これらの合金を粗粉砕後、ボールミルなどで
38μm以下の微粉末とした後、濃度1重量%のポ
リビニールアルコール樹脂溶液と混合した。この
ペースト状合金をパンチングメタルに塗布し、乾
燥後、リードを取付け電極とした。実施例で用い
た電極の合金組成を表に示す。各合金又はその水
素化物約15gを用いて負極とし、公知の焼結型ニ
ツケル極を正極として単2型の密閉形ニツケル−
水素蓄電池(公称容量1.8Ah)を構成した。な
お、電池は正極律則になるように、正極容量より
も負極容量を大きくした。これらの電池を0.2Cで
7時間充電し、0.2Cで放電する充放電を繰り返
し、サイクル寿命と電池からの漏液を調べた。な
お試験温度はすべて45℃とした。その結果を次表
に示す。電極No.1〜19は比較例を、電極No.20〜43
は本発明例を示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a sealed alkaline storage battery using a hydrogen storage alloy that electrochemically absorbs and releases hydrogen or a hydride thereof as a negative electrode. BACKGROUND OF THE INVENTION There are various types of secondary batteries, among which lead-acid batteries and nickel-cadmium batteries are the most widely known. However, since these batteries contain a solid active material in the negative electrode, their energy storage capacity per unit of weight or capacity is relatively low. In order to improve this energy storage capacity, storage batteries have been proposed that use a hydrogen storage alloy as the negative electrode and, for example, nickel oxide as the positive electrode (U.S. Patent No.
3874928 specification). This battery system has a higher capacity than nickel-cadmium storage batteries, and is expected to be a low-pollution storage battery. Problems to be Solved by the Invention Among the above-mentioned conventional technologies, batteries using LaNi 5 alloy as a negative electrode have a problem of short cycle life. Furthermore, since La, which is a constituent metal of the alloy, is expensive, the cost of the electrode itself is inevitably high. Further, an electrode composition improved from this LaNi 5 alloy has also been proposed (for example, in Japanese Patent Application Laid-Open No. 13934/1983). That is, a part of La was replaced with a rare earth metal.
LnNi 5 and LnCo 5 series are used to reduce costs, but sealed batteries have problems such as low capacity, especially high-temperature capacity, and shortened high-temperature cycle life, making them difficult to use as practical batteries. do not have. The present invention solves the above problems.
Provides a sealed alkaline storage battery whose negative electrode is constructed using relatively inexpensive materials, has a large discharge capacity, has a long charge/discharge cycle life at high temperatures of around 45°C, and has little increase in internal pressure due to gas generated during overcharging. The purpose is to Means for Solving the Problems As a result of various studies, the present invention has been developed based on the general formula Mm 1-x A x
Niα -y Coy−zMz (However, Mm is Mitsushi Metal,
A is Nb, Ta, which is an element with negative heat of hydride formation.
At least one member selected from the group consisting of V, Rb and Ba, and M is Mn, Mo, Cr, Sn, Si, Tl,
At least one selected from the group consisting of Sb, Bi, Al, Zn, Cu, Fe, In and Ga, and 0<x<
0.4, 4.5 < α < 5.5, 0 < y < 3, 0 < z < 1), a negative electrode made of a hydrogen storage alloy or its hydride, a positive electrode, a separator, and an alkaline electrolyte held therein. It is characterized by being configured as a sealed alkaline storage battery. Effect There is a deep relationship between the heat of hydride formation (heat of hydrogen dissolution) of the hydrogen storage alloy itself and the hydrogen equilibrium dissociation pressure. The dissociation pressure decreases, and if it decreases too much as in the case of single metals, the alloy and hydrogen will form a very stable hydride, making it impossible to obtain excellent electrode performance. Therefore, in order to create the optimal intermetallic compound, we have developed a single metal with positive heat of hydride formation (endothermic melting type metal) and a negative metal with negative heat of hydride formation (exothermic melting type metal).
By alloying in combination with these, a hydrogen storage alloy with excellent performance can be obtained. For example, positive metals include Cr, Mo, Fe,
There are Mn, Pd, Pt, Ni, Ag, Cu, etc., and negative metals include V, Ta, Nb, Zr, Tl, La, Ce,
There are Sr, Ba, Rb, etc. Here, if we focus on a mixture of La, Ce, Nd, etc. (Mitsushi Metal), which is a particularly inexpensive material, and construct a battery using a well-known method, the high-temperature capacity will be small and the cycle life will be short. This is because rare earth elements themselves are chemically unstable. Therefore, when the same heat of hydride formation as these elements dissolves an element with negative properties, the two often replace each other, creating a stable compound, and at the same time, it also dissolves well with metals whose heat of hydride formation is positive. In this way, the metals dissolve into each other homogeneously, and moreover, the corrosion resistance is stronger than that of rare earth alone, and the ability to lower the hydrogen equilibrium dissociation pressure and absorb and release hydrogen is also improved. Therefore, when this is used as a negative electrode in a battery, it is possible to particularly increase high-temperature capacity and cycle life. Examples Commercially available La (purity 99% or more), Mm (Mitsushi Metal: La content 30% by weight, Ce content 50% by weight, Nd
(Content: 15% by weight, Pr and other contents: 5% by weight)
At least one metal selected from the group consisting of lanthanoid group metals such as Ca (purity of 95% or more), and Zr, Hf, Th, Nb, Ta, etc. of purity of 99% or more.
At least one metal selected from the group consisting of V, Rb, and Ba, Ni, Co, and Mn, Mo, Cr, Sn,
Si, Tl, Sb, Bi, Al, Zn, Cu, Fe, In and Ga
Select at least one selected from the group consisting of;
Each sample was weighed to a certain composition ratio and heated and melted in a high frequency melting furnace. Then, in order to homogenize the sample, high-temperature heat treatment was performed to obtain an alloy sample. In addition, hydrogenated alloy powder was also used if necessary. For comparison, LaNi 5 , LaCo 5 , MmNi 5 ,
MmCo 5 , LaNi 4.8 Al 0.2 , MmNi 4.8 Al 0.2 alloys, etc. were also prepared. After coarsely grinding these alloys, use a ball mill etc.
After making it into a fine powder of 38 μm or less, it was mixed with a polyvinyl alcohol resin solution having a concentration of 1% by weight. This paste-like alloy was applied to punching metal, and after drying, the leads were attached to serve as electrodes. The alloy composition of the electrodes used in the examples is shown in the table. Approximately 15 g of each alloy or its hydride was used as a negative electrode, and a known sintered nickel electrode was used as a positive electrode.
A hydrogen storage battery (nominal capacity 1.8Ah) was constructed. In addition, the negative electrode capacity of the battery was made larger than the positive electrode capacity so that the positive electrode rule was met. These batteries were charged at 0.2C for 7 hours and discharged at 0.2C repeatedly to examine cycle life and leakage from the batteries. The test temperature was 45°C in all cases. The results are shown in the table below. Electrodes No. 1 to 19 are comparative examples, and electrodes No. 20 to 43 are
shows an example of the present invention.
【表】【table】
【表】【table】
【表】
表中※は合金水素化物とした時の試料
表から明らかな様にLaNi5,LaCo5,MmNi5,
MmCo5の電極1,2,3,4を用いた電池は、
充放電サイクル初期の容量が小さい。電極1を用
いた電池はサイクルの増加と共に容量は大きくな
るが、20〜30サイクルに達すると放電容量は大き
く低下し、初期容量の1/3程度となると同時に過
充電状態では激しく酸素ガスが発生し、電池内圧
も10Kg/cm2以上にまで上昇する。また電極3を用
いた電池は容量が1.8Ahの定格まで発生しえない
まま20サイクルで性能低下した。これは合金の水
素平衡解離圧力が45℃で20Kg/cm2以上と大きいた
めに充電が困難であると考えられる。また電極
2,3は水素貯蔵能力が電極1と比較して1/2以
下と小さく、従つて放電容量も小さい。その改良
型としてNiの一部にAlを置換した電極5,6は
50〜60サイクルまで寿命が向上したが、電池内圧
の上昇により漏液現象があつて容量低下してい
る。Mmの一部をLaで置換した電極7も効果が
乏しい。そこで、Niの一部を他の金属例えばCo
で置換すると平衡圧力を下げる効果があるので試
みた結果、電極8,9に示すように60〜70サイク
ルまで向上したが、大きく改善されていない。
つぎに、ランタノイド族金属の混合物Lnの一
部にAとしてZr,Hf,Ta,Nb,V,Thなどを
添加したLnl−xAxNiα−yCoy系合金と、Coに
一部他の金属を添加した合金を用いた電極10〜
17を用意したが、最高80サイクルまでしかサイ
クル寿命は向上しなかつた。この中で電極10,
11はαの値が5.5よりも大きく、水素平衡解離
圧力が大きく、電池内圧力の上昇による性能低下
が考えられる。電極13,16,17はyの値が
3以上あり、水素貯蔵容量の減少による容量が小
さく、負極律則になつて、しかも過充電時に電池
内のガス圧力が上昇し、電解液の漏出をおこして
容量が低下したと考えられる。電極14,15は
xの値が0.4以上であり、この値が0.4以上になる
と水素貯蔵容量が著しく減少すると共に、過充電
時のガス吸収が困難になつて、電池内のガス圧力
が上昇し、電解液が漏出して容量低下している。
この様に、LnにAが添加されていてもαの値が
4.5以下、5.5以上の時、又はyの値が3以上の
時、しかも、xの値が0.4以上の時には、水素貯
蔵容量の減少、水素平衡解離圧力の高さ、過充電
時のガス吸収による電池内ガス圧力の上昇などの
諸条件のバランスがとれず最適な電池系を設計す
る時に困難さをともなう。
これらの電極と比較して電極18〜37を備え
た電池は、初期特性には一部低い電池もあるが、
160サイクル経過してもすべて公称容量1.8Ahを
確保している。また電池内圧力は測定していない
が、電池からの電解液の漏出は殆んど認められな
かつた。
LnのAへの置換量が0<x<0.4の範囲ではLn
のガス吸収に重要な触媒機能と水素貯蔵容量を確
保しつつ、過充電時の耐酸化性に強いZr,Hf,
Th,Nb,Ta,V,Rb,Baのいずれかを添加
し、サイクル寿命の伸長を図ることができた。中
でも置換量は0.01<x≦0.2の範囲が特に優れて
いる。Aを0.4よりも大きくしてLnに添加すると
Lnの機能消失と容量低下につながる。また全く
Aを入れないとその効果が現われない。従つてA
が0.01〜0.4の範囲で置換されると効果が大きく
現われる。
Ni量に関係するαの値の増加は、水素平衡解
離圧力の増加と、平坦性が悪くなつて水素貯蔵容
量の減少がおきるので、4.5<α<5.5の範囲が最
適である。従つて、置換量yはNi残存量と大き
く関係し、Niの量が少ないと電極表面での水素
吸蔵、放出反応速度が減少し、円滑な電極反応を
示さず、放電電圧が低くなる。この事から0<y
<3の範囲が優れている。特に、0.2<y≦2の
範囲が、電池性能を最も良く発揮する。
表中の※印の電極は、合金の水素化物を用いた
実施例であり、サイクル寿命も優れていることが
わかる。
一方、zの値を0とした電極32,33,34
もLnのA置換の効果とNi,Coの最適範囲条件に
よつて、サイクル寿命が長いことも判明した。
この様な電極を用いた電池は、過充電時正極か
ら発生する酸素ガスが負極の表面で負極中に含有
する水素と、電気化学的に反応して水にかえす過
程を繰り返すために電池内圧力の上昇が少ない。
しかも負極の表面では優先的に水素と酸素のみが
作用するしくみになつている。そして酸素に対し
て腐食されない耐久性のある合金負極としている
ために特に高温時のサイクル寿命の長い電池を製
造することができる。
なお、実施例の中でLn中のランタン(La)が
電池特性に大きな影響を与えているが、Laの量
が多過ぎると、耐食性の低下による電池性能とコ
ストアツプにつながる。一方、Laの量が少な過
ぎると耐食性には優れるが、電池内圧力の上昇と
いう問題を有する。従つて、コストパーフオーマ
ンスの観点からLnの中に含有されるLaは30〜70
重量%が最適である。また、実施例中の平衡解離
圧力は温度45℃において0.1〜5気圧の範囲が高
温容量、高温サイクル寿命の点で優れている。こ
の圧力が高いと充電効率、電池内圧上昇の問題が
あり、逆に低い場合は放電電圧が低くなるという
問題があるため、上記範囲が最適といえる。
発明の効果
以上のように、本発明によれば、高温容量が比
較的大きく、しかも高温時の充放電サイクル寿命
に優れ、過充電による電池内ガス圧力の上昇が抑
制された密閉形アルカリ蓄電池が得られる。[Table] *In the table, samples are made into alloy hydrides.As is clear from the table, LaNi 5 , LaCo 5 , MmNi 5 ,
A battery using MmCo 5 electrodes 1, 2, 3, and 4 is
The capacity at the beginning of the charge/discharge cycle is small. The capacity of a battery using electrode 1 increases as the number of cycles increases, but after 20 to 30 cycles, the discharge capacity decreases significantly, reaching about 1/3 of the initial capacity, and at the same time, oxygen gas is intensely generated in an overcharged state. However, the internal pressure of the battery also rises to over 10 kg/cm 2 . Furthermore, the battery using electrode 3 had a degraded performance after 20 cycles without being able to reach the rated capacity of 1.8Ah. This is thought to be because the hydrogen equilibrium dissociation pressure of the alloy is as high as 20 kg/cm 2 or more at 45°C, making charging difficult. Further, the hydrogen storage capacity of electrodes 2 and 3 is less than half that of electrode 1, and therefore the discharge capacity is also small. As an improved version, electrodes 5 and 6 in which part of Ni is replaced with Al are
Although the battery life has improved to 50 to 60 cycles, the battery capacity has decreased due to leakage due to the increase in battery internal pressure. Electrode 7 in which part of Mm is replaced with La also has poor effects. Therefore, some of the Ni was replaced with other metals such as Co.
As a result of trying to replace it with , since it has the effect of lowering the equilibrium pressure, the improvement was improved to 60 to 70 cycles as shown in electrodes 8 and 9, but there was no significant improvement. Next, a Lnl-xAxNiα-yCoy alloy in which Zr, Hf, Ta, Nb, V, Th, etc. are added as A to a part of the lanthanide group metal mixture Ln, and an alloy in which some other metals are added to Co. Electrode 10 using
17 was prepared, but the cycle life could only be improved up to a maximum of 80 cycles. Among these, the electrode 10,
In No. 11, the value of α is larger than 5.5, the hydrogen equilibrium dissociation pressure is large, and it is considered that the performance deteriorates due to an increase in the internal pressure of the battery. The electrodes 13, 16, and 17 have a y value of 3 or more, have a small capacity due to a decrease in hydrogen storage capacity, and are subject to the negative electrode rule. Moreover, the gas pressure inside the battery increases during overcharging, preventing electrolyte leakage. This is thought to have caused the capacity to drop. The electrodes 14 and 15 have an x value of 0.4 or more, and when this value becomes 0.4 or more, the hydrogen storage capacity decreases significantly, and gas absorption during overcharging becomes difficult, causing the gas pressure inside the battery to increase. , electrolyte leaks and capacity decreases.
In this way, even if A is added to Ln, the value of α is
When it is less than 4.5, more than 5.5, or when the value of y is more than 3, and when the value of x is more than 0.4, it is due to a decrease in hydrogen storage capacity, high hydrogen equilibrium dissociation pressure, and gas absorption during overcharging. It is difficult to design an optimal battery system because various conditions such as an increase in gas pressure inside the battery cannot be balanced. Compared to these electrodes, some batteries equipped with electrodes 18 to 37 have lower initial characteristics, but
Even after 160 cycles, all have a nominal capacity of 1.8Ah. Furthermore, although the internal pressure of the battery was not measured, almost no electrolyte leakage from the battery was observed. If the amount of substitution of Ln with A is in the range 0<x<0.4, Ln
While ensuring the catalytic function and hydrogen storage capacity important for gas absorption, Zr, Hf, and
By adding any of Th, Nb, Ta, V, Rb, and Ba, it was possible to extend the cycle life. Among these, the range of substitution amount of 0.01<x≦0.2 is particularly excellent. When A is made larger than 0.4 and added to Ln,
This leads to loss of Ln function and capacity reduction. Also, if you do not include A at all, the effect will not appear. Therefore A
The effect becomes large when is replaced in the range of 0.01 to 0.4. An increase in the value of α related to the amount of Ni increases the hydrogen equilibrium dissociation pressure and deteriorates the flatness, resulting in a decrease in the hydrogen storage capacity, so the range of 4.5<α<5.5 is optimal. Therefore, the amount of substitution y is largely related to the remaining amount of Ni, and if the amount of Ni is small, the hydrogen absorption and release reaction rate on the electrode surface decreases, the electrode reaction does not occur smoothly, and the discharge voltage becomes low. From this, 0<y
A range of <3 is excellent. In particular, the range of 0.2<y≦2 exhibits the best battery performance. It can be seen that the electrodes marked with * in the table are examples using alloy hydrides, and have excellent cycle life. On the other hand, electrodes 32, 33, 34 with a z value of 0
It was also found that the cycle life was long due to the effect of A substitution for Ln and the optimal range conditions for Ni and Co. In batteries using such electrodes, the internal pressure of the battery increases because the oxygen gas generated from the positive electrode during overcharging electrochemically reacts with the hydrogen contained in the negative electrode on the surface of the negative electrode and is converted into water. increase is small.
Moreover, the structure is such that only hydrogen and oxygen act preferentially on the surface of the negative electrode. Furthermore, since the alloy negative electrode is durable and is not corroded by oxygen, it is possible to manufacture a battery with a long cycle life especially at high temperatures. In addition, in the examples, lanthanum (La) in Ln has a great influence on battery characteristics, but if the amount of La is too large, the battery performance and cost will increase due to a decrease in corrosion resistance. On the other hand, if the amount of La is too small, corrosion resistance is excellent, but there is a problem of increased pressure inside the battery. Therefore, from the viewpoint of cost performance, the amount of La contained in Ln is 30 to 70.
% by weight is optimal. Further, the equilibrium dissociation pressure in the examples is in the range of 0.1 to 5 atm at a temperature of 45°C, which is excellent in terms of high temperature capacity and high temperature cycle life. If this pressure is high, there will be a problem of charging efficiency and battery internal pressure will increase, and if it is low, there will be a problem of low discharge voltage, so the above range can be said to be optimal. Effects of the Invention As described above, the present invention provides a sealed alkaline storage battery that has a relatively large high-temperature capacity, has an excellent charge-discharge cycle life at high temperatures, and suppresses increases in internal gas pressure due to overcharging. can get.
Claims (1)
持されたアルカリ電解液とを有する密閉形アルカ
リ蓄電池であつて、前記負極が一般式Mm1-xAx
Ni〓-gCoy-zMz(但し、Mmは少なくともLa,Ce,
Ndを含む金属の混合物及びCaからなる群より選
んだ3種以上の金属であり、AはZr,Hf,Nb,
Ta,V,Rb,Ba,Ti及びThからなる群より選
んだ少なくとも一種であり、MはMn,Mo,Cr,
Sn,Si,Tl,Sb,Bi,Al,Zn,Cu及びFeから
なる群から選んだ少なくとも1種であり、0<X
<0.4,4.5<α<5.5,0<y<3)で表わされ、
Mm中に含有されたLa量が40〜70重量%であり、
水素吸蔵解離圧力が、45℃の温度において0.1〜
5気圧の範囲にある水素吸蔵合金又はその水素化
物からなる密閉形アルカリ蓄電池。1 A sealed alkaline storage battery having a positive electrode, a negative electrode, a separator, and an alkaline electrolyte held therein, wherein the negative electrode has the general formula Mm 1-x A x
Ni〓 -g Co yz M z (However, Mm is at least La, Ce,
A is a mixture of metals containing Nd and three or more metals selected from the group consisting of Ca, and A is Zr, Hf, Nb,
At least one selected from the group consisting of Ta, V, Rb, Ba, Ti and Th, and M is Mn, Mo, Cr,
At least one selected from the group consisting of Sn, Si, Tl, Sb, Bi, Al, Zn, Cu and Fe, and 0<X
<0.4, 4.5<α<5.5, 0<y<3),
The amount of La contained in Mm is 40 to 70% by weight,
Hydrogen storage dissociation pressure is 0.1~ at 45℃ temperature
A sealed alkaline storage battery made of a hydrogen storage alloy or its hydride in the range of 5 atm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60053915A JPS61214361A (en) | 1985-03-18 | 1985-03-18 | Sealed alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60053915A JPS61214361A (en) | 1985-03-18 | 1985-03-18 | Sealed alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61214361A JPS61214361A (en) | 1986-09-24 |
JPH0562429B2 true JPH0562429B2 (en) | 1993-09-08 |
Family
ID=12956004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60053915A Granted JPS61214361A (en) | 1985-03-18 | 1985-03-18 | Sealed alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61214361A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62271348A (en) * | 1986-05-19 | 1987-11-25 | Sanyo Electric Co Ltd | Hydrogen occlusion electrode |
JPH0810597B2 (en) * | 1988-11-30 | 1996-01-31 | 工業技術院長 | Hydrogen storage electrode |
JPH03294444A (en) * | 1990-04-11 | 1991-12-25 | Agency Of Ind Science & Technol | Hydrogen occluding electrode |
KR950009220B1 (en) * | 1993-09-13 | 1995-08-18 | 한국과학기술원 | Zirconium-Based Hydrogen Storage Alloys for Secondary Battery Electrodes |
KR100264343B1 (en) | 1997-07-16 | 2000-08-16 | 윤덕용 | A high-capability and high-performance hrdrogen storage alloy for secondary battery electrode which contains zirconium |
KR100317556B1 (en) * | 1999-11-05 | 2001-12-24 | 윤덕용 | The hypo-stoichiometric Zr-Ni based hydrogen storage alloy for anode material of Ni/MH secondary battery |
CN111560542A (en) * | 2020-05-11 | 2020-08-21 | 东北大学 | Calcium-containing aluminum alloy anode material for alkaline aluminum-air battery and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US448781A (en) * | 1891-03-24 | Turning-off device for phonographs |
-
1985
- 1985-03-18 JP JP60053915A patent/JPS61214361A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61214361A (en) | 1986-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0293660B1 (en) | Hydrogen storage electrodes | |
JPH0515774B2 (en) | ||
JPH0586029B2 (en) | ||
EP0451575B1 (en) | Hydrogen absorbing electrode for use in nickel-metal hydride secondary batteries | |
JPH0562429B2 (en) | ||
JPS60250557A (en) | Enclosed type alkaline storage battery | |
JP2666249B2 (en) | Hydrogen storage alloy for alkaline storage batteries | |
JPH07286225A (en) | Hydrogen storage alloy and nickel-hydrogen storage battery using the same | |
JPH0562428B2 (en) | ||
JPH0953136A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JP3200822B2 (en) | Nickel-metal hydride storage battery | |
US5552246A (en) | Materials for hydrogen storage, hydride electrodes and hydride batteries | |
JPS6220245A (en) | Enclosed type alkaline storage battery | |
JPH0675398B2 (en) | Sealed alkaline storage battery | |
JP2566912B2 (en) | Nickel oxide / hydrogen battery | |
JP3404758B2 (en) | Nickel-metal hydride storage battery and method of manufacturing the same | |
JPS6280961A (en) | Alkaline storage battery | |
JPH0690924B2 (en) | Storage battery electrode | |
JPH06145849A (en) | Hydrogen storage alloy electrode | |
JPS62119864A (en) | Enclosed-type alkaline storage battery | |
JP3729913B2 (en) | Hydrogen storage alloy electrode | |
JPH0690922B2 (en) | Sealed alkaline storage battery | |
JP3482478B2 (en) | Nickel-metal hydride storage battery | |
JPH04176833A (en) | Hydrogen storage alloy electrode | |
JPH0466632A (en) | Hydrogen storage ni-zr series alloy |