JPH0562193A - Recording method of optical information - Google Patents
Recording method of optical informationInfo
- Publication number
- JPH0562193A JPH0562193A JP3219551A JP21955191A JPH0562193A JP H0562193 A JPH0562193 A JP H0562193A JP 3219551 A JP3219551 A JP 3219551A JP 21955191 A JP21955191 A JP 21955191A JP H0562193 A JPH0562193 A JP H0562193A
- Authority
- JP
- Japan
- Prior art keywords
- recording
- film
- pulse
- optical information
- pulse train
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Record Carriers And Manufacture Thereof (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、レーザー光線等を用い
て高密度に光学的な情報を記録再生する光ディスク上へ
の光学情報の記録方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recording optical information on an optical disc which records and reproduces optical information with high density using a laser beam or the like.
【0002】[0002]
【従来の技術】レーザー光線を利用して高密度な情報の
再生あるいは記録を行う技術は公知であり、主に光ディ
スクとして実用化されている。光ディスクの一つの応用
例として音楽情報を記録したコンパクト・ディスク(以
下CDと記す)がある。これは光ディスク上にあらかじ
め信号が記録された再生専用型であり、ユーザーは音楽
情報を再生することはできるが、信号を記録・消去する
ことはできない。そこで近年、書換え型光ディスクによ
り記録・消去が可能なCDを実現する研究開発が盛んに
なされている。2. Description of the Related Art A technique for reproducing or recording high-density information using a laser beam is well known and has been put to practical use mainly as an optical disc. As one application example of the optical disc, there is a compact disc (hereinafter referred to as CD) in which music information is recorded. This is a read-only type in which a signal is recorded in advance on an optical disc, and a user can reproduce music information, but cannot record / erase a signal. Therefore, in recent years, research and development for realizing a recordable / erasable CD by a rewritable optical disc have been actively conducted.
【0003】書換え型光ディスクは光磁気ディスクと相
変化ディスクに大別できる。このうち相変化ディスクは
レーザー光の照射条件を変化させることにより記録膜を
アモルファスと結晶間で可逆的に状態変化させて信号を
記録し、アモルファスと結晶の反射率の違いを光学的に
検出して再生するものである。したがって光磁気ディス
クに比べ、CDと同様にレーザー光の反射率変化により
信号が再生でき、レーザーパワーの変調で1ビームオー
バーライトが容易に実現できるといった大きなメリット
がある。Rewritable optical disks can be roughly classified into magneto-optical disks and phase change disks. Among them, the phase change disk changes the laser beam irradiation condition to reversibly change the state of the recording film between amorphous and crystalline to record a signal and optically detect the difference in reflectance between amorphous and crystalline. Is to be regenerated. Therefore, compared with a magneto-optical disk, a signal can be reproduced by a change in the reflectance of laser light as in the case of a CD, and one beam overwriting can be easily realized by modulation of laser power.
【0004】相変化ディスクによる書換え型CDの具体
的提案としては、記録膜材料として図13の斜線の組成
範囲のGeSbTe合金を用い、構造として図14のように記
録膜を誘電体膜でサンドイッチした光ディスクがある
(光メモリシンポジウム1988、論文集、P41-P4
2)。As a concrete proposal of a rewritable CD using a phase change disk, a GeSbTe alloy having a composition range indicated by diagonal lines in FIG. 13 was used as a recording film material, and the recording film was sandwiched with a dielectric film as shown in FIG. There is an optical disc (Optical Memory Symposium 1988, Proceedings, P41-P4
2).
【0005】[0005]
【発明が解決しようとする課題】従来例で提案された記
録膜組成および光ディスク構造で実際にCD信号の記録
を従来の1ビームオーバーライトで行ったところ、再生
波形の歪が非常に大きく実用的でないことが分かった。
これは記録マーク形状が前後対称でなく先端部で細く終
端部で太くなって涙滴状に歪むためである。原因は図1
5(a)のようなレーザー光の変調波形で記録した場
合、記録膜の到達温度が蓄熱現象で図15(b)のよう
に先端で低く終端に近づくにつれて高くなることにあ
り、結果として、図15(c)のような涙滴状の記録マ
ークとなる。蓄熱現象はレーザースポットと光ディスク
の相対速度、すなわち線速度が遅いほど大きくなるた
め、CDのように1.2〜1.4m/secと非常に遅い場合には
記録マークの形状歪も大きくなる。この記録マークの歪
みは再生波形歪みにつながり、ジッター増大の原因とな
る。特にCD規格のEFM信号はパルス幅変調された信
号(PWM信号)であって、記録マークの長さと記録マ
ークの間隔が情報を示すものであり、記録マークの歪は
エラー発生の大きな原因となる。When a CD signal was actually recorded by the conventional one-beam overwrite with the recording film composition and the optical disc structure proposed in the conventional example, the distortion of the reproduced waveform was very large and practical. I found out not.
This is because the shape of the recording mark is not symmetrical in the front-rear direction but is thin at the tip end and thick at the end end and is distorted into a teardrop shape. The cause is Figure 1
When recording is performed with a laser light modulation waveform as shown in FIG. 5A, the temperature reached by the recording film is a heat accumulation phenomenon, and as shown in FIG. It becomes a teardrop-shaped recording mark as shown in FIG. Since the heat storage phenomenon increases as the relative velocity between the laser spot and the optical disc, that is, the linear velocity becomes slower, the shape distortion of the recording mark also becomes larger when the velocity is very slow at 1.2 to 1.4 m / sec like a CD. This distortion of the recording mark leads to distortion of the reproduced waveform, which causes an increase in jitter. Particularly, the EFM signal of the CD standard is a pulse width modulated signal (PWM signal), and the length of the recording mark and the interval between the recording marks indicate information, and the distortion of the recording mark is a major cause of error occurrence. ..
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に詳細な検討、研究を重ねた結果、発明者らは光ディス
クの記録膜組成、構造を特定し、さらに記録方法を特定
することによって、書換え型光ディスクにおいても形状
歪が小さい記録マークを形成できてCD並の再生信号が
得られ、かつ記録消去の繰り返し特性も優れていること
を見いだした。As a result of extensive studies and studies for solving the above problems, the inventors have identified the recording film composition and structure of an optical disc, and further specified the recording method. It has been found that even in a rewritable optical disc, a recording mark having a small shape distortion can be formed, a reproduction signal similar to that of a CD can be obtained, and the repetitive characteristics of recording and erasing are excellent.
【0007】すなわち、基板上に誘電体膜、記録膜、誘
電体膜、反射膜の順に積層し、前記記録膜は、組成がGe
xSbyTez( 45≦z≦53 at%, 0.5≦y/(x+y)≦0.72, x+y+z=
100at%) で表され、かつ膜厚は10nm以上35nm 以下であ
り、反射膜側の前記誘電体膜の膜厚は5nm以上40nm以下
であり、かつ前記反射膜は少なくともAu,Al,Ti,Ni,Crの
単体あるいは合金からなり、かつ膜厚は35nm以上である
ことを特徴とする光ディスク上に、パルス幅変調された
デジタル信号を一つのレーザースポットを用いてオーバ
ーライトする光学情報の記録方法において、前記デジタ
ル信号に含まれるそれぞれのパルスを複数のパルスから
なるパルス列に変換するステップと、レーザーパワーを
前記パルス列により消去レベルと記録レベルの間で変調
して、それぞれの前記パルス列でそれぞれ一つの記録マ
ークを光ディスク上に形成して前記デジタル信号を記録
するステップからなり、前記パルス列は先頭パルスと後
続パルス列からなり、前記先頭パルスの幅は記録マーク
の長さに係わりなく常に一定でかつ後続パルス列中の各
パルスの幅より大きく、前記後続パルス列中の各パルス
の幅と間隔はそれぞれ等しく、かつ長さがn番目の記録
マークを形成する場合の前記後続パルス中のパルス数は
n−1個であることを特徴とする光学情報の記録方法を
採用する。That is, a dielectric film, a recording film, a dielectric film, and a reflective film are laminated in this order on a substrate, and the recording film has a composition of Ge.
x Sb y Te z (45 ≤ z ≤ 53 at%, 0.5 ≤ y / (x + y) ≤ 0.72, x + y + z =
100 at%), and the film thickness is 10 nm or more and 35 nm or less, the thickness of the dielectric film on the reflective film side is 5 nm or more and 40 nm or less, and the reflective film is at least Au, Al, Ti, Ni In a method of recording optical information, a pulse width modulated digital signal is overwritten using a single laser spot on an optical disc that is composed of a single substance of Cr, Cr or an alloy and has a film thickness of 35 nm or more. Converting each pulse included in the digital signal into a pulse train composed of a plurality of pulses; modulating laser power between an erasing level and a recording level by the pulse train, and recording one pulse in each pulse train. Forming a mark on the optical disc and recording the digital signal, wherein the pulse train comprises a leading pulse and a trailing pulse train, Is always constant regardless of the length of the recording mark and is larger than the width of each pulse in the subsequent pulse train, the width and interval of each pulse in the subsequent pulse train are equal, and the n-th recording mark is long. In this case, the number of pulses in the subsequent pulse for forming the optical disc is n-1.
【0008】[0008]
【作用】本発明の光学情報の記録方法は蓄熱現象を大幅
に低減すると同時に、良好な消去速度、記録感度、繰返
し特性を実現することができるものである。The optical information recording method of the present invention can significantly reduce the heat storage phenomenon and at the same time realize good erasing speed, recording sensitivity and repetitive characteristics.
【0009】本発明に用いる光ディスクは、膜厚の薄い
記録膜が金属の反射膜に非常に近接して設けられている
ため放熱効果が大きく、記録膜は昇温した後速やかに冷
却される。したがって蓄熱現象が低減され記録マークの
終端部が必要以上に昇温するのが抑えられる。In the optical disk used in the present invention, the thin recording film is provided very close to the metal reflection film, so that the heat dissipation effect is great, and the recording film is quickly cooled after being heated. Therefore, the heat storage phenomenon is reduced and the temperature of the end portion of the recording mark is prevented from rising more than necessary.
【0010】さらに光ディスクへのレーザーの照射は、
パルス幅の広い先頭パルスで照射して記録膜を十分に昇
温した後、パルス幅の狭い後続パルスで断続的に照射す
るため、記録マークの終端部での蓄熱現象を低減するこ
とができる。Further, the laser irradiation to the optical disk is
Since the head pulse having a wide pulse width is irradiated to sufficiently raise the temperature of the recording film and the subsequent pulse having a narrow pulse width is irradiated intermittently, the heat accumulation phenomenon at the end portion of the recording mark can be reduced.
【0011】[0011]
【実施例】以下本発明を図面を参照しながら詳細に説明
する。The present invention will be described in detail below with reference to the drawings.
【0012】上述のように低線速度においてPWM記録
を実現するには記録時における蓄熱現象を抑えて記録マ
ークの形状歪を低減する必要がある。発明者らは記録マ
ークの形状歪を低減するために光ディスク構造および記
録膜組成の検討と、記録方法の検討を行った。その結
果、限定された記録膜組成および構造を持つ光ディスク
上に、限定された記録レーザー波形で信号を記録するこ
とにより、記録マークの形状歪を小さくできることを見
いだした。As described above, in order to realize PWM recording at a low linear velocity, it is necessary to suppress the heat accumulation phenomenon during recording and reduce the shape distortion of the recording mark. The inventors studied the optical disc structure and the recording film composition and the recording method in order to reduce the shape distortion of the recording mark. As a result, it has been found that by recording a signal with a limited recording laser waveform on an optical disc having a limited recording film composition and structure, the shape distortion of the recording mark can be reduced.
【0013】この光ディスクとレーザー光の照射方法は
同時に採用することにより形状歪は飛躍的に小さくな
り、CD規格のEFM(8−14変調)信号を記録・再
生する場合に非常に有効な手段であることが分かった。By adopting this optical disk and laser beam irradiation method at the same time, the shape distortion is drastically reduced, and it is a very effective means when recording / reproducing an EFM (8-14 modulation) signal of the CD standard. I knew it was.
【0014】図1に本発明の光ディスクの構造を示す。
基板1上に誘電体膜2、記録膜3、誘電体膜4、反射膜
5の順に積層してある。基板1としては金属、ガラス、
樹脂等が使用可能であるが、一般的にレーザー光線は基
板側から入射されるため、透明なガラス、石英、ポリカ
ーボネート、ポリメチルメタアクリレート等を用いる。
本発明による光ディスクの特徴は、記録膜組成を図2の
A,B,C,Dの各点で囲まれた領域に特定し、記録膜
厚は10nm以上35nm 以下であり、かつ、誘電体膜4の膜
厚は5nm以上40nm以下とし、反射膜5は少なくともAu,A
l,Ti,Ni,Crの単体あるいは合金で構成し、かつ膜厚を35
nm以上と特定したことにある。なおA,B,C,Dの各
点の座標を以下に示す。FIG. 1 shows the structure of the optical disk of the present invention.
A dielectric film 2, a recording film 3, a dielectric film 4, and a reflective film 5 are laminated on a substrate 1 in this order. As the substrate 1, metal, glass,
A resin or the like can be used, but since a laser beam is generally incident from the substrate side, transparent glass, quartz, polycarbonate, polymethylmethacrylate or the like is used.
The optical disk according to the present invention is characterized in that the recording film composition is specified in a region surrounded by points A, B, C and D in FIG. 2, the recording film thickness is 10 nm or more and 35 nm or less, and the dielectric film is used. The thickness of 4 is 5 nm or more and 40 nm or less, and the reflective film 5 is at least Au, A
It consists of l, Ti, Ni, Cr alone or alloy and has a film thickness of 35
It has been specified as nm or more. The coordinates of the points A, B, C and D are shown below.
【0015】( Ge, Sb, Te ) at% A (23.5, 23.5, 53) B (13 , 34, 53) C (15.5, 39.5, 45) D (27.5, 27.5, 45) このような光ディスクでは薄い記録膜が金属の反射膜に
非常に近接して設けられているため放熱効果が大きく、
記録膜は昇温した後速やかに冷却され、したがって蓄熱
現象が低減されて、低線速度においても記録マークの形
状歪が抑えられると同時に、記録膜の組成を限定するこ
とにより、良好な消去速度、記録感度、繰返し特性を実
現することができる。(Ge, Sb, Te) at% A (23.5, 23.5, 53) B (13, 34, 53) C (15.5, 39.5, 45) D (27.5, 27.5, 45) Since the recording film is provided very close to the metal reflection film, the heat dissipation effect is large,
The recording film is cooled rapidly after the temperature is raised, so that the heat storage phenomenon is reduced, the shape distortion of the recording mark is suppressed even at a low linear velocity, and at the same time, the composition of the recording film is limited, thereby achieving a good erasing speed. It is possible to realize recording sensitivity and repeatability.
【0016】ここで光ディスクの各構成要素を上述のよ
うに限定した理由について説明する。Here, the reason why each component of the optical disk is limited as described above will be explained.
【0017】記録膜組成は図2のABCDの各点で囲ま
れた領域に限定したが、これは以下の理由による。上記
光ディスク構造を保ちながら組成を変化させたとき、直
線ABよりTeの多い領域では結晶化速度が速すぎるため
記録膜が溶融した後も結晶化しやすくなり、アモルファ
スの記録マークの形状が歪み、逆に直線CDよりTeの少
ない領域では結晶化速度が遅すぎてアモルファス部分が
十分に結晶化されず大きな消し残りが生じ、共にジッタ
ーが増大した。また、直線BCよりGeの少ない領域、お
よび直線DAよりGeの多い領域では記録・消去の繰返し
特性が低いことが分かった。したがって、蓄熱現象を小
さく抑えた光ディスク構造においては、記録膜組成は図
2のA,B,C,Dの各点で囲まれた領域がよい。The composition of the recording film is limited to the area surrounded by each point of ABCD in FIG. 2, for the following reason. When the composition is changed while maintaining the above optical disc structure, the crystallization speed is too fast in the region where Te is larger than the straight line AB, so that the recording film is easily crystallized even after melting, and the shape of the amorphous recording mark is distorted and reverse. In the region with less Te than the linear CD, the crystallization speed was too slow and the amorphous portion was not sufficiently crystallized, resulting in a large unerased portion, and the jitter was increased. It was also found that the recording / erasing repetitive characteristic is low in the region where Ge is smaller than that of the straight line BC and in the region where Ge is larger than that of the straight line DA. Therefore, in the optical disc structure in which the heat storage phenomenon is suppressed to a small level, the recording film composition is preferably a region surrounded by points A, B, C and D in FIG.
【0018】また上記構造を保ったまま記録膜厚のみを
変化させたところ、記録膜厚が10nm未満では記録膜によ
るレーザー光の吸収が悪くかつ放熱効果が大きいために
記録感度が悪くなり、35nmを越えると記録膜の熱容量が
大きくなり蓄熱現象による記録マークの形状歪が大きく
なった。したがって、記録膜厚は10nm以上35nm以下がよ
い。Further, when only the recording film thickness was changed while maintaining the above structure, when the recording film thickness was less than 10 nm, the recording film had a poor absorption of laser light and a large heat dissipation effect, and the recording sensitivity was deteriorated. When the value exceeds the range, the heat capacity of the recording film increases, and the shape distortion of the recording mark due to the heat storage phenomenon increases. Therefore, the recording film thickness is preferably 10 nm or more and 35 nm or less.
【0019】同様に反射膜側の誘電体膜4の膜厚を検討
したところ、5nm未満では記録膜が反射膜に近接しすぎ
て放熱効果が大きくなりすぎ記録感度が悪くなり、40nm
を越えると反射膜への放熱が小さくなり蓄熱現象による
記録マークの形状歪が大きくなった。したがって、誘電
体膜4の膜厚は5nm以上40nm以下がよい。なお、誘電体
2および4の材質としては、たとえばSiO2,SiO,Al2O3,G
eO2,TeO2,MoO3,WO3,Si3N4,AlN,BN,TiN,ZnS,ZnSe,ZnTe,S
iCの単体あるいはこれらの混合物が使用できるが、熱的
安定性に優れ、成膜が容易なものがよく特にZnS,SiO2,S
i3N4,AlN,TiN,ZnSとSiO2の混合物,ZnSeとSiO2の混合物
がよい。Similarly, when the thickness of the dielectric film 4 on the reflective film side was examined, if the thickness was less than 5 nm, the recording film was too close to the reflective film, the heat dissipation effect was too large, and the recording sensitivity was deteriorated.
When the temperature exceeds the range, the heat radiation to the reflective film becomes small and the shape distortion of the recording mark due to the heat storage phenomenon becomes large. Therefore, the film thickness of the dielectric film 4 is preferably 5 nm or more and 40 nm or less. The materials for the dielectrics 2 and 4 are, for example, SiO2, SiO, Al2O3, G
eO2, TeO2, MoO3, WO3, Si3N4, AlN, BN, TiN, ZnS, ZnSe, ZnTe, S
Although iC can be used alone or a mixture of these, it is preferable that it has excellent thermal stability and easy film formation, especially ZnS, SiO2, S
A mixture of i3N4, AlN, TiN, ZnS and SiO2, and a mixture of ZnSe and SiO2 are good.
【0020】さらに、反射膜5の膜厚を検討したとこ
ろ、35nm未満では反射膜の放熱効果が小さくなり蓄熱現
象による記録マークの形状歪が大きくなった。したがっ
て、反射膜5の膜厚は35nm以上がよい。なお反射膜の組
成は反射率が大きいこと、熱伝導が大きいこと、成膜が
容易であることを考慮すれば、少なくともAu,Al,Ti,Ni,
Crの単体あるいは合金で構成するのが良い。Further, when the film thickness of the reflection film 5 was examined, when the thickness was less than 35 nm, the heat dissipation effect of the reflection film was reduced and the shape distortion of the recording mark due to the heat storage phenomenon was increased. Therefore, the thickness of the reflective film 5 is preferably 35 nm or more. Considering that the composition of the reflective film has high reflectance, high thermal conductivity, and easy film formation, at least Au, Al, Ti, Ni,
It is preferable to use Cr alone or an alloy.
【0021】次に、記録レーザー光の照射方法について
説明する。CD規格のEFM信号は、3T〜11T(Tはクロ
ック周期)の9種類のパルス幅の異なるパルスで構成さ
れており、従来の1ビームオーバーライトによる記録方
法は、レーザーパワーを消去レベルと記録レベルの間
で、EFM信号により直接変調して光ディスク上に信号
を記録していた。しかしながら、この記録方法では記録
マークは涙滴状に大きく歪むため、発明者らはこれを低
減する方法を考案した(例えば特願平1-32336
9)。これは、1ビームオーバーライトする際に一つの
記録マークを形成する記録パルスを特定形状の複数の短
パルスからなるパルス列に変換して信号を記録するもの
である(この記録方法は以後マルチパルス記録方法ある
いはMP記録方法と記す)。本発明の記録方法はMP記
録方法のうち本発明の光ディスクに特に有効な要素を抽
出し限定したものである。Next, a method of irradiating the recording laser light will be described. The CD standard EFM signal is composed of 9 types of pulses with different pulse widths of 3T to 11T (T is a clock period), and the conventional 1-beam overwrite recording method uses the laser power as the erasing level and the recording level. In the meantime, the signal was directly modulated by the EFM signal and recorded on the optical disk. However, in this recording method, the recording mark is greatly distorted into a teardrop shape, and the inventors have devised a method of reducing this (for example, Japanese Patent Application No. 1-32336).
9). This is a method for recording a signal by converting a recording pulse forming one recording mark at the time of one-beam overwriting into a pulse train consisting of a plurality of short pulses of a specific shape (this recording method is hereinafter referred to as multi-pulse recording. Method or MP recording method). The recording method of the present invention extracts and limits elements particularly effective for the optical disk of the present invention among MP recording methods.
【0022】すなわち、デジタル信号に含まれるそれぞ
れのパルスを複数のパルスからなるパルス列に変換した
後、レーザーパワーをパルス列により消去レベルと記録
レベルの間で変調して、それぞれのパルス列でそれぞれ
一つの記録マークを光ディスク上に形成して前記デジタ
ル信号を記録するときに、パルス列は先頭パルスと後続
パルス列で構成し、先頭パルスの幅は記録マークの長さ
に係わらず常に一定でかつ後続パルス列中の各パルスの
幅より大きく、後続パルス列中の各パルスの幅と間隔は
それぞれ等しく、そして長さがn番目の記録マークを形
成する場合の後続パルス中のパルス数はn−1個とする
ものである。That is, after converting each pulse included in the digital signal into a pulse train consisting of a plurality of pulses, the laser power is modulated between the erasing level and the recording level by the pulse train, and one recording is performed for each pulse train. When the mark is formed on the optical disc and the digital signal is recorded, the pulse train is composed of a leading pulse and a trailing pulse train, and the width of the leading pulse is always constant regardless of the length of the recording mark, and each pulse in the trailing pulse train is The pulse width is larger than the pulse width, the width and interval of each pulse in the subsequent pulse train are equal, and the number of pulses in the subsequent pulse when forming the n-th recording mark is n-1. ..
【0023】図3のように、EFM信号に含まれる3T〜
11Tの幅の異なる9種類のパルスのうち、3Tのパルスは
幅の広い先頭パルスに変換され、4Tのパルスには幅の狭
い後続パルスが先頭パルスに一つ追加され、その後パル
ス幅が広くなるにつれて幅の等しいパルスが一つずつ追
加されたパルス列に変換される。そしてこのパルス列に
よりレーザーパワーを記録レベルと消去レベルの間で変
調して信号を記録するため、例えば図4(a)の様な入
力波形は図4(b)のようなレーザー出力により光ディ
スク上に照射されて、予め記録されている信号を消去し
ながら新しい信号が記録される。なお、レーザーパワー
の変調方法としてはさらに図4(c)のようにパルス列
の期間だけ記録レベルPpと再生レベルPrまたはオフレベ
ルの間で変調してもよい。As shown in FIG. 3, 3T ~ included in the EFM signal.
Of the 9 types of pulses with different widths of 11T, 3T pulse is converted to a wide leading pulse, 4T pulse has one narrow trailing pulse added to the leading pulse, and then the pulse width becomes wider. As a result, pulses having the same width are converted into a pulse train in which pulses are added one by one. The pulse train modulates the laser power between the recording level and the erasing level to record a signal. Therefore, for example, an input waveform as shown in FIG. 4A is recorded on the optical disk by the laser output as shown in FIG. 4B. A new signal is recorded while being illuminated and the previously recorded signal is erased. As a method of modulating the laser power, the modulation may be performed between the recording level Pp and the reproduction level Pr or the off level only during the pulse train period as shown in FIG.
【0024】次に本発明のさらに具体的実施例を示す。 (実施例1)最初に本発明による光ディスクおよび光学
情報の記録方法の有効性を従来例と比較した例を示す。
ここでは本発明による光ディスクと従来例による光ディ
スクの2種類を用意し、それぞれの光ディスクに対して
本発明による記録レーザー光の照射方法と従来例による
記録レーザー光の照射方法でEFM信号を記録したの
ち、再生して信号のジッターの大きさを比較した。Next, more specific examples of the present invention will be shown. (Embodiment 1) First, an example in which the effectiveness of the optical disc and the method for recording optical information according to the present invention is compared with a conventional example will be shown.
Here, two kinds of optical disks according to the present invention and an optical disk according to a conventional example are prepared, and an EFM signal is recorded on each optical disk by the irradiation method of the recording laser light according to the present invention and the irradiation method of the recording laser light according to the conventional example. , And reproduced and compared the magnitude of the signal jitter.
【0025】本発明による光ディスクAは図1の構造と
同じであり、基板1は信号トラックを予め設けた120mm
φのポリカーボネート基板、記録膜3の組成はGe20Sb30
Te50:at%で膜厚は20nm、誘電体膜の組成は20mol%のSiO2
を含むZnSとSiO2の混合物で膜厚は誘電体膜2が150nm、
誘電体膜4が12nm、反射膜5の組成はAuで膜厚は50nmと
した。なおこれらの薄膜層を保護するためにさらにポリ
カーボネート製の保護カバーを接着した。光ディスクと
レーザースポットの相対速度、すなわち線速度は1.25m/
secで一定とした。The optical disk A according to the present invention has the same structure as that of FIG. 1, and the substrate 1 is 120 mm in which signal tracks are provided in advance.
The composition of φ polycarbonate substrate and recording film 3 is Ge20Sb30
Te50: at% film thickness is 20 nm, dielectric film composition is 20 mol% SiO2
Is a mixture of ZnS and SiO2 containing
The dielectric film 4 had a thickness of 12 nm, and the reflective film 5 had a composition of Au and a thickness of 50 nm. A protective cover made of polycarbonate was further adhered to protect these thin film layers. Relative velocity between optical disc and laser spot, that is, linear velocity is 1.25m /
Fixed at sec.
【0026】従来例の光ディスクBは図14の構造と同
じであり、基板、記録膜、誘電体の組成は光ディスクA
と同じとした。膜厚は基板側の誘電体膜が100nm、反対
側が200nm、記録膜厚が100nmである。光ディスクBも薄
膜層を保護するためにさらにポリカーボネート製の保護
カバーを接着した。The optical disk B of the conventional example has the same structure as that of FIG. 14, and the composition of the substrate, the recording film and the dielectric is the optical disk A.
Same as Regarding the film thickness, the dielectric film on the substrate side is 100 nm, the opposite side is 200 nm, and the recording film thickness is 100 nm. For the optical disc B, a polycarbonate protective cover was further adhered to protect the thin film layer.
【0027】記録レーザー光の照射方法は、EFM信号
で直接レーザー光を記録レベルと消去レベルの間でパワ
ー変調する従来の方法と、EFM信号を本発明によるパ
ルス列に変換してからレーザー光を変調するMP記録方
法を採用した。MP記録方法における3Tから11Tの入力
パルスは一定の規則にしたがってパルス列化されるた
め、先頭パルスの幅t1、後続パルスの幅t2を指定すれば
全てのパルス列を知ることができる。すなわち、図5
(a)の11Tの波形を図5(b)の様にパルス列化した
とき、先頭パルスの幅t1、後続パルスの幅t2を指定すれ
ば3T〜11Tに対する全てのパルス列が分かる(t3=T-t2で
ある)。The irradiation method of the recording laser light is the conventional method in which the power of the laser light is directly modulated between the recording level and the erasing level by the EFM signal, and the laser light is modulated after converting the EFM signal into the pulse train according to the present invention. The MP recording method is adopted. Since the input pulse of 3T to 11T in the MP recording method is converted into a pulse train according to a certain rule, all pulse trains can be known by designating the width t1 of the leading pulse and the width t2 of the subsequent pulse. That is, FIG.
When the waveform of 11T in (a) is converted into a pulse train as shown in FIG. 5 (b), all pulse trains for 3T to 11T can be found by specifying the width t1 of the leading pulse and the width t2 of the subsequent pulse (t3 = T- t2).
【0028】図6に図4(b)の波形を得るために本実
施例で用いた記録装置を示す。まず光ディスク6をスピ
ンドルモータ7により光学ヘッド8からのレーザースポ
ットと光ディスク6の相対速度、すなわち線速度が1.25
m/secで一定になるように回転する。FIG. 6 shows a recording apparatus used in this embodiment to obtain the waveform of FIG. 4 (b). First, the relative velocity of the laser spot from the optical head 8 and the optical disc 6 by the spindle motor 7 of the optical disc 6, that is, the linear velocity is 1.25.
Rotate to be constant at m / sec.
【0029】信号を記録するときには、信号発生器9か
らのEFM信号s1をMP回路10でパルス列信号s4に変
換する。MP回路10はパルス幅が最も長い11Tのパル
スに対応するパルス列のパターンを予め設定しておくパ
ターン設定器11と、s1中のパルス幅を検知し、その長
さに応じてパターン設定器11の設定パターンの先頭か
ら必要な長さを切り出してパルス列を発生して出力する
変調器12で構成した。なお信号発生器からの入力信号
のエッジ位置がパルス列に変調されることによって変動
しないように、入力信号の発生器、変調器、パターン設
定器を同一のクロックC1で同期させて記録信号のジッタ
を抑えた。When recording a signal, the EFM signal s1 from the signal generator 9 is converted into a pulse train signal s4 by the MP circuit 10. The MP circuit 10 detects a pulse width in s1 and a pattern setter 11 which presets a pattern of a pulse train corresponding to a pulse of 11T having the longest pulse width, and the pattern setter 11 detects the pulse width according to the length. The modulator 12 is constructed by cutting out a required length from the beginning of the set pattern and generating and outputting a pulse train. To prevent fluctuations in the edge position of the input signal from the signal generator due to modulation in the pulse train, synchronize the input signal generator, modulator, and pattern setter with the same clock C1 to reduce jitter in the recording signal. Suppressed.
【0030】また、光学ヘッド8中の半導体レーザーは
信号再生時には再生レベルPrを得るために電流Irが流れ
ているが、信号の記録期間中、すなわち記録ゲート信号
Wgが入力されるときには消去レベルPbを得るためのバイ
アス電流Ibが流れ、かつs4のパルス列信号でスイッチ1
3が作動したときにはさらに記録レベルPpを得るための
電流Iaが重畳される。したがって信号記録時にはレーザ
ーパワーは図4(b)の様に消去レベルPbと記録レベル
Ppの間で、パルス列波形に基づいて変調される。なお基
準電圧設定回路14は電流Ir,Ia,Ibを得るのに必要な電
圧を発生させるものでる。また、光学ヘッド8中の半導
体レーザーの波長は830nm,対物レンズの開口数(numeric
al aperture;NA)は0.5である。The semiconductor laser in the optical head 8 has a current Ir flowing to obtain a reproduction level Pr at the time of signal reproduction, but during the signal recording period, that is, a recording gate signal.
When Wg is input, the bias current Ib for obtaining the erase level Pb flows, and the switch 1 receives the pulse train signal of s4.
When 3 operates, the current Ia for obtaining the recording level Pp is further superimposed. Therefore, at the time of signal recording, the laser power is the erase level Pb and the recording level as shown in FIG.
Between Pp, it is modulated based on the pulse train waveform. The reference voltage setting circuit 14 generates the voltages necessary to obtain the currents Ir, Ia, Ib. The wavelength of the semiconductor laser in the optical head 8 is 830 nm, and the numerical aperture of the objective lens is
al aperture; NA) is 0.5.
【0031】本実施例におけるパルス列の構成は図5に
おいてt1=348nsec,t2=116nsec,T=232nsecである。The configuration of the pulse train in this embodiment is t1 = 348nsec, t2 = 116nsec, T = 232nsec in FIG.
【0032】また従来の記録方法による場合はEFM信
号s1でスイッチ13を直接動作して、レーザーパワーを
変調した。In the case of the conventional recording method, the switch 13 is directly operated by the EFM signal s1 to modulate the laser power.
【0033】以上の様な光ディスクと記録方法の組合せ
によって、同じトラック上に10回オーバーライトした
信号を再生して、そのジッターの大きさを測定した。ジ
ッター測定には目黒電機(株)製のCDジッターメータ
ー MJM-631 を用いた。With the combination of the optical disk and the recording method as described above, a signal overwritten 10 times on the same track was reproduced and the magnitude of the jitter was measured. A CD jitter meter MJM-631 manufactured by Meguro Denki Co., Ltd. was used for the jitter measurement.
【0034】(表1)に測定結果を示す。ここで示した
ジッターの値は、それぞれの組合せにおいてレーザーパ
ワーPbとPpを変化させ、最小のジッターを求めたもので
あり、そのときPbとPpも同時に記した。なおレーザーパ
ワーは光ディスクの盤面上での値である。(表1)から
分かるように従来の光ディスクBと従来の記録方法の組
合せではジッターが非常に大きいが、従来の光ディスク
BとMP記録方法の組合せ、または本発明による光ディ
スクAと従来の記録方法の組合せでジッターは大きく改
善される。さらに、本発明による光ディスクAとMP記
録方法の組合せによるジッター低減効果は非常に大きく
なっている。したがってジッターの低減には本発明によ
る光ディスクAに対して本発明により限定されたMP記
録方法を同時に採用することに大きな意義がある。The measurement results are shown in (Table 1). The jitter values shown here are obtained by changing the laser powers Pb and Pp in each combination to obtain the minimum jitter. At that time, Pb and Pp are also noted. The laser power is a value on the surface of the optical disc. As can be seen from Table 1, the combination of the conventional optical disc B and the conventional recording method has a very large jitter, but the combination of the conventional optical disc B and the MP recording method, or the optical disc A according to the present invention and the conventional recording method. The combination greatly improves the jitter. Further, the effect of reducing the jitter by the combination of the optical disk A and the MP recording method according to the present invention is very large. Therefore, in order to reduce the jitter, it is of great significance to simultaneously adopt the MP recording method limited by the present invention for the optical disc A according to the present invention.
【0035】[0035]
【表1】 [Table 1]
【0036】以下に光ディスクの構成要因を限定した詳
細な実施例について述べるが、実施例1から分かるよう
に記録レーザー光の照射方法はMP記録方法の方がジッ
ターが小さくなるため、以下の実施例2〜8では全て実
施例1と同じ波形のMP記録方法を用いた。A detailed example in which the constituent factors of the optical disk are limited will be described below. As can be seen from Example 1, the recording laser beam irradiation method has a smaller jitter in the MP recording method. In 2 to 8, the MP recording method with the same waveform as in Example 1 was used.
【0037】また、本実施例では線速度は1.25m/secで
一定としたが、線速度を1.2〜1.4m/secの範囲で変化さ
せても同様の結果が得られた。Further, although the linear velocity was constant at 1.25 m / sec in this example, similar results were obtained even when the linear velocity was changed within the range of 1.2 to 1.4 m / sec.
【0038】最初に記録膜組成を図2のA,B,C,D
で囲まれた領域に限定した実施例を示す。First, the composition of the recording film is set to A, B, C, D in FIG.
An example limited to the area surrounded by is shown.
【0039】(実施例2)発明者らは JJAP,Vol.26(198
7) Suppl.26-4,P61-P66 においてGeSbTe合金のうちGeTe
とSb2Te3を結ぶライン上に、アモルファスから高速で結
晶化する3種類の化合物GeSb4Te7,GeSb2Te4,Ge2Sb2Te5
が存在し、これらの化合物は記録消去特性、繰り返し特
性が優れていることを示し、かつGeTe-Sb2Te3ラインか
ら離れるにつれて結晶化速度が遅くなることを示した。
CDの線速度ではGeTe-Sb2Te3ライン上での結晶化速度
は速すぎてアモルファス化が困難なため、化合物Ge2Sb2
Te5にSbを添加して結晶化速度を遅くすることを試み
た。光ディスク構造を実施例1における光ディスクAと
同様にして記録膜組成のみGe2Sb2Te5とSbを結ぶライン
上で変化させた。作成した光ディスクは実施例1と同様
の方法でジッターを測定した。 さらに相変化光ディス
クに要求される特性としては記録・消去の繰返し特性が
ある。繰返し特性の評価は、ジッターが最小になる記録
レベルPpおよび消去レベルPbでEFM信号を繰返し記録
してジッターを測定して、ジッターが初期の2倍になる
繰返し回数を求めることで行なった。Example 2 The inventors of the present invention, JJAP, Vol.26 (198)
7) In Suppl.26-4, P61-P66, GeTe of GeSbTe alloy
On the line connecting Sb2Te3 and Sb2Te3, three kinds of compounds that crystallize from amorphous at high speed GeSb4Te7, GeSb2Te4, Ge2Sb2Te5
It was shown that these compounds had excellent recording and erasing properties and excellent repetitive properties, and that the crystallization rate slowed down as the distance from the GeTe-Sb2Te3 line increased.
With the linear velocity of CD, the crystallization rate on the GeTe-Sb2Te3 line is too fast, and it is difficult to amorphize. Therefore, the compound Ge2Sb2
An attempt was made to slow down the crystallization rate by adding Sb to Te5. The optical disc structure was changed in the same manner as the optical disc A in Example 1 except that only the recording film composition was changed on the line connecting Ge2Sb2Te5 and Sb. The jitter of the produced optical disk was measured in the same manner as in Example 1. Further, a characteristic required for the phase change optical disk is a repeated recording / erasing characteristic. The repetition characteristics were evaluated by repeatedly recording the EFM signal at the recording level Pp and the erasing level Pb that minimize the jitter, measuring the jitter, and determining the number of repetitions at which the jitter is twice the initial value.
【0040】測定結果を図7に示す。ジッターJ0は記録
レベルPpおよび消去レベルPbを変化させて得られる最小
値を示している。再生信号のジッターJ0はSb量が30at%
(図2におけるE点)付近において極小値を示した。E
点よりSb量が減少すると結晶化速度が速くなり記録マー
ク形状が歪み、増加すると結晶化速度が遅くなって消去
率が悪くなり以前に記録されていた信号の影響を受ける
ために、どちらもジッターが増加するものと考えられ
る。ジッターの大きさはCDの規格を考慮すれば30nsec
以下がよい。これはSb量が25at%〜37at%の範囲である。The measurement results are shown in FIG. Jitter J0 indicates the minimum value obtained by changing the recording level Pp and the erasing level Pb. The reproduction signal jitter J0 has an Sb amount of 30 at%
A minimum value was shown near (point E in FIG. 2). E
If the Sb amount decreases from the point, the crystallization speed becomes faster and the recording mark shape is distorted, and if the Sb amount increases, the crystallization speed becomes slower and the erasing rate becomes worse, and the signal recorded before is affected. Is expected to increase. The size of the jitter is 30nsec considering the CD standard.
The following is good. This is in the range of Sb amount of 25 at% to 37 at%.
【0041】繰返し試験は初期のジッターJ0が30nsec以
下の光ディスクについて10万回まで行い、ジッターが
初期の2倍になる繰返し回数C2を求めた。Ge2Sb2Te5とS
bを結ぶライン上では、10万回の繰返しによってもジ
ッターは初期の2倍までは増加しなかった。The repetition test was carried out up to 100,000 times for an optical disc having an initial jitter J0 of 30 nsec or less, and the number of repetitions C2 at which the jitter was twice the initial value was obtained. Ge2Sb2Te5 and S
On the line connecting b, the jitter did not increase to twice the initial value even after 100,000 repetitions.
【0042】以上より本発明による放熱構造と記録方法
に適したGe2Sb2Te5-Sbライン上の組成は、Sb量が25at%
〜37at%の範囲である。As described above, the composition on the Ge2Sb2Te5-Sb line suitable for the heat dissipation structure and the recording method according to the present invention has an Sb content of 25 at%.
The range is from ~ 37 at%.
【0043】(実施例3)次にTe量を一定:50at%に保
った状態でGeとSbの比率を変えて記録膜を成膜し(図2
のFとGを結ぶライン上の組成)、光ディスクを作製し
て、実施例2と同様の方法で信号を記録しジッターおよ
び繰返し特性を測定した。光ディスク構造は実施例2と
同じである。結果を図8に示す。初期のジッターJ0はGe
を変化させても30nsec以下であり、良好な値が得られ
た。(Example 3) Next, a recording film was formed by changing the ratio of Ge and Sb while keeping the Te amount constant at 50 at%.
The composition on the line connecting F and G) was prepared, an optical disc was prepared, and a signal was recorded in the same manner as in Example 2 to measure jitter and repetitive characteristics. The optical disc structure is the same as that of the second embodiment. The results are shown in Fig. 8. Initial jitter J0 is Ge
Even when was changed, it was 30 nsec or less, and a good value was obtained.
【0044】しかし、繰返し特性はGe量が14at%〜25at%
の範囲では、10万回の繰返しによってもジッターは初
期の2倍までは増加しなかったが、この範囲よりGe量が
少ない領域および多い領域では繰り返し回数C2は10万
回以下となり、ジッターは10万回より少ない回数で初
期の2倍となった。However, the repetitive characteristic is that the Ge amount is 14 at% to 25 at%.
In the range of, the jitter did not increase up to twice the initial value even after 100,000 repetitions, but in the region where the Ge amount was smaller or larger than this range, the repetition number C2 was 100,000 times or less, and the jitter was 10 times. It was twice the initial number with less than 10,000 times.
【0045】以上より、本発明による光ディスク構造お
よび記録レーザー光の照射方法に適した記録膜組成は、
Te量を50at%で一定に保った場合、Ge量が14at%〜25at%
の範囲である。From the above, the recording film composition suitable for the optical disk structure and the recording laser beam irradiation method according to the present invention is as follows:
If the Te amount is kept constant at 50 at%, the Ge amount is 14 at% to 25 at%
The range is.
【0046】(実施例4)次にSb量を一定:30at%に保
った状態でGeとTeの比率を変えて記録膜を成膜し(図2
のHとIを結ぶライン上の組成)、光ディスクを作製し
て、実施例2と同様の方法で信号を記録しジッターおよ
び繰返し特性を測定した。光ディスク構造は実施例2と
同じである。(Example 4) Next, a recording film was formed by changing the ratio of Ge and Te while keeping the Sb amount constant at 30 at%.
The composition on the line connecting H and I), an optical disc was prepared, and a signal was recorded in the same manner as in Example 2 to measure jitter and repetitive characteristics. The optical disc structure is the same as that of the second embodiment.
【0047】結果を図9に示す。再生信号の初期のジッ
ターJ0はGe量が20at%(図2におけるE点)付近におい
て極小値を示した。E点よりGe量が減少すると結晶化速
度が速くなり記録マーク形状が歪み、増加すると結晶化
速度が遅くなって消去率が悪くなり以前に記録されてい
た信号の影響を受けるために、どちらもジッターが増加
するものと考えられる。ジッターの大きさが30nsec以下
である領域はSb量を一定:30at%に保った場合、Ge量が1
7at%〜25at%の範囲である。The results are shown in FIG. The initial jitter J0 of the reproduced signal showed a minimum value when the Ge amount was around 20 at% (point E in FIG. 2). If the amount of Ge decreases from the point E, the crystallization speed becomes faster and the recording mark shape is distorted, and if it increases, the crystallization speed becomes slower and the erasing rate deteriorates, and the signals recorded before are affected. Jitter is expected to increase. In the region where the jitter size is 30 nsec or less, the Sb amount is constant: When the Sb amount is kept at 30 at%, the Ge amount is 1
It is in the range of 7 at% to 25 at%.
【0048】繰返し試験は初期のジッターJ0が30nsec以
下の光ディスクについて10万回まで行い、ジッターが
初期の2倍になる繰返し回数C2を求めた。Sb量一定(30a
t%)でGe量を17at%〜25at%の範囲で変化させた記録膜を
有する光ディスクでは、10万回の繰返しによってもジ
ッターは初期の2倍までは増加しなかった。The repetition test was carried out up to 100,000 times for an optical disk having an initial jitter J0 of 30 nsec or less, and the number of repetitions C2 at which the jitter was twice the initial value was obtained. Sb constant (30a
In an optical disc having a recording film in which the Ge amount was changed in the range of 17 at% to 25 at% at (%), the jitter did not increase to twice the initial value even after 100,000 repetitions.
【0049】以上より、本発明による光ディスク構造お
よび記録レーザー光の照射方法に適した記録膜組成は、
Sb量を30at%で一定に保った場合、Ge量が17at%〜25at%
の範囲である。From the above, a recording film composition suitable for the optical disc structure and the recording laser beam irradiation method according to the present invention is
When the Sb amount is kept constant at 30 at%, the Ge amount is 17 at% to 25 at%.
The range is.
【0050】以上の実施例2〜4より本発明による放熱
構造と記録方法に適したGeSbTe合金の組成範囲は図2の
A,B,C,Dで囲まれた範囲、つまりGexSbyTez( 45
≦z≦53 at%, 0.5≦y/(x+y)≦0.72, x+y+z=100 at%) で
表される範囲である。なおA,B,C,Dの各座標を以
下に示す。The above composition range of GeSbTe alloy suitable for heat dissipation structure and a recording method according to the invention from Examples 2-4 in FIG. 2 A, B, C, range surrounded by D, ie Ge x Sb y Te z (45
≦ z ≦ 53 at%, 0.5 ≦ y / (x + y) ≦ 0.72, x + y + z = 100 at%). The coordinates of A, B, C and D are shown below.
【0051】( Ge, Sb, Te ) at% A (23.5, 23.5, 53) B (13 , 34, 53) C (15.5, 39.5, 45) D (27.5, 27.5, 45) (実施例5)次に記録膜の膜厚範囲を決定するための実
施例を示す。光ディスク構造と記録膜組成は実施例1に
おける光ディスクAと同様にして記録膜の膜厚のみ変化
させて作成し、実施例2と同様の記録方法で信号を記録
し、そのジッターと記録感度を測定した。結果を図10
に示す。初期のジッターJ0は膜厚が25nm以下では20nsec
程度と非常に小さく一定であるが、25nmを越えると大き
くなり35nm以上では30nsecを越えてしまう。これは記録
膜の熱容量が大きくなり蓄熱現象が現れ、記録マークの
形状歪が大きくなったためと考えられる。したがってジ
ッターの観点からは、記録膜厚は35nm以下がよく、特に
25nm以下がよい。(Ge, Sb, Te) at% A (23.5, 23.5, 53) B (13, 34, 53) C (15.5, 39.5, 45) D (27.5, 27.5, 45) (Example 5) An example for determining the film thickness range of the recording film is shown in FIG. The optical disc structure and the recording film composition were prepared by changing only the film thickness of the recording film in the same manner as the optical disc A in Example 1, and the signal was recorded by the same recording method as in Example 2, and the jitter and recording sensitivity were measured. did. The result is shown in FIG.
Shown in. The initial jitter J0 is 20 nsec when the film thickness is 25 nm or less.
Although it is very small and constant, it becomes large when it exceeds 25 nm and exceeds 30 nsec when it is 35 nm or more. It is considered that this is because the heat capacity of the recording film is increased and a heat storage phenomenon appears, and the shape distortion of the recording mark is increased. Therefore, from the viewpoint of jitter, the recording film thickness should be 35 nm or less, especially
25nm or less is good.
【0052】しかしながら、記録膜厚が薄くなると、記
録膜によるレーザー光の吸収が悪くかつ放熱効果が大き
くなるために、記録感度が低下する。現在入手できる光
ディスクの光源用の半導体レーザーは出力が40〜50mw
程度以下であり、光学系の伝送効率を考慮すると、光デ
ィスクの盤面上では20mW程度となる。したがってレーザ
ー光の記録レベルPpは20mW以下がよい。本実施例による
構造では記録膜厚が10nmより薄くなると記録感度の低下
により記録レベルは20mWを越えた。つまり記録感度の観
点からは、記録膜厚は10nm以上がよい。However, when the recording film thickness is thin, the recording film is poorly absorbed by the recording film and has a large heat radiation effect, so that the recording sensitivity is lowered. Currently available semiconductor lasers for optical disk light sources have an output of 40-50 mw
It is about 20 mW or less on the surface of the optical disk, considering the transmission efficiency of the optical system. Therefore, the recording level Pp of laser light is preferably 20 mW or less. In the structure according to this example, when the recording film thickness became thinner than 10 nm, the recording level exceeded 20 mW due to the deterioration of the recording sensitivity. That is, from the viewpoint of recording sensitivity, the recording film thickness is preferably 10 nm or more.
【0053】すなわち本発明による放熱構造と記録方法
に適したGeSbTe記録膜の膜厚はジッター、記録感度の両
方の観点から10nm以上35nm以下がよく、特に10nm以上25
nm以下が優れている。That is, the film thickness of the GeSbTe recording film suitable for the heat dissipation structure and the recording method according to the present invention is preferably 10 nm or more and 35 nm or less, particularly 10 nm or more 25 nm from the viewpoint of both jitter and recording sensitivity.
Below nm is excellent.
【0054】なお、繰返し特性の記録膜厚依存性は、記
録膜厚が10〜35nmの範囲では見られず、10万回の繰返
しによってもジッターは初期の2倍までは増加しなかっ
た。The dependency of the repeating characteristics on the recording film thickness was not observed in the recording film thickness range of 10 to 35 nm, and the jitter did not increase to twice the initial value even after 100,000 repetitions.
【0055】(実施例6)さらに反射膜側の誘電体膜4
の膜厚範囲を決定するための実施例を示す。光ディスク
構造と記録膜組成は実施例1における光ディスクAと同
様にして誘電体膜4の膜厚のみ変化させて作成し、実施
例2と同様の記録方法で信号を記録し、そのジッターと
記録感度を測定した。結果を図11に示す。ジッターJ0
は誘電体4の膜厚が25nm以下では20nsec程度と非常に小
さく一定であるが、25nmを越えると大きくなり40nmより
厚くなると30nsecを越えてしまう。これは記録膜から反
射膜への放熱が小さくなり蓄熱現象が現れ、記録マーク
の形状歪が大きくなったためと考えられる。したがって
ジッターの観点からは、反射膜側の誘電体膜の膜厚は40
nm以下がよく、特に25nm以下がよい。Example 6 Further, the dielectric film 4 on the reflection film side
An example for determining the film thickness range of is shown. An optical disc structure and a recording film composition were prepared by changing only the film thickness of the dielectric film 4 in the same manner as the optical disc A in Example 1, and a signal was recorded by the same recording method as in Example 2, and its jitter and recording sensitivity were recorded. Was measured. The results are shown in Fig. 11. Jitter J0
When the film thickness of the dielectric 4 is 25 nm or less, it is about 20 nsec, which is extremely small and constant, but when it exceeds 25 nm, it becomes large, and when it is thicker than 40 nm, it exceeds 30 nsec. It is considered that this is because the heat radiation from the recording film to the reflective film is reduced and a heat storage phenomenon appears, and the shape distortion of the recording mark is increased. Therefore, from the viewpoint of jitter, the film thickness of the dielectric film on the reflective film side is 40
nm or less is preferable, and 25 nm or less is particularly preferable.
【0056】しかしながら、反射膜側の誘電体膜の膜厚
が薄くなると、記録膜が反射膜に接近しすぎて放熱効果
が大きくなりすぎるため、記録感度が低下する。本実施
例では5nmより薄くなると記録感度の低下により記録レ
ベルPpは20mWを越えた。つまり記録感度の観点からは、
反射膜側の誘電体膜の膜厚は5nm以上がよい。However, when the film thickness of the dielectric film on the reflective film side becomes thin, the recording film becomes too close to the reflective film and the heat dissipation effect becomes too large, so that the recording sensitivity is lowered. In this example, when the thickness was less than 5 nm, the recording sensitivity decreased and the recording level Pp exceeded 20 mW. In other words, from the viewpoint of recording sensitivity,
The thickness of the dielectric film on the reflective film side is preferably 5 nm or more.
【0057】すなわち本発明による放熱構造と記録方法
に適した誘電体膜4の膜厚はジッター、記録感度の両方
の観点から5nm以上40nm以下がよく、特に5nm以上25nm以
下が優れている。That is, the film thickness of the dielectric film 4 suitable for the heat dissipation structure and the recording method according to the present invention is preferably 5 nm or more and 40 nm or less, and particularly preferably 5 nm or more and 25 nm or less from the viewpoint of both jitter and recording sensitivity.
【0058】なお、繰返し特性の誘電体膜4の膜厚依存
性は、膜厚が5〜40nmの範囲では見られず、10万回の
繰返しによってもジッターは初期の2倍までは増加しな
かった。The film thickness dependence of the dielectric properties of the dielectric film 4 was not observed in the film thickness range of 5 to 40 nm, and the jitter did not increase to twice the initial value even after 100,000 cycles. It was
【0059】(実施例7)さらに反射膜5の膜厚範囲を
決定するための実施例を示す。光ディスク構造と記録膜
組成は実施例1における光ディスクAと同様にしてAu
の反射膜5の膜厚のみ変化させて作成し、実施例2と同
様の記録方法で信号を記録し、そのジッターと記録感度
を測定した。結果を図12に示す。ジッターJ0は反射膜
5の膜厚が45nm以上では20nsec程度と非常に小さく一定
であるが、45nmより薄くなると大きくなり35nm未満では
30nsecを越えてしまう。これは反射膜の放熱効果が小さ
くなり蓄熱現象が現れ、記録マークの形状歪が大きくな
ったためと考えられる。(Embodiment 7) An embodiment for determining the film thickness range of the reflective film 5 will be shown. The optical disc structure and the recording film composition are the same as those of the optical disc A in the first embodiment.
The film was prepared by changing only the film thickness of the reflective film 5 of No. 3, a signal was recorded by the same recording method as in Example 2, and its jitter and recording sensitivity were measured. Results are shown in FIG. The jitter J0 is very small and constant at about 20 nsec when the thickness of the reflective film 5 is 45 nm or more, but becomes large when it becomes thinner than 45 nm and becomes less than 35 nm when it is less than 35 nm.
It exceeds 30nsec. It is considered that this is because the heat dissipation effect of the reflective film was reduced, the heat storage phenomenon appeared, and the shape distortion of the recording mark increased.
【0060】また記録感度は反射膜厚が大きくなるにつ
れて放熱効果が大きくなるため低下するものの、記録パ
ワーは反射膜厚45nm以上ではほぼ飽和し、記録レベルPp
は20mW以下であった。Although the recording sensitivity decreases as the reflection film thickness increases because the heat dissipation effect increases, the recording power is almost saturated at the reflection film thickness of 45 nm or more, and the recording level Pp
Was less than 20mW.
【0061】すなわち本発明による放熱構造と記録方法
に適した反射膜5の膜厚はジッター、記録感度の両方の
観点から35nm以上がよく、特に45nm以上が優れている。That is, the film thickness of the reflective film 5 suitable for the heat dissipation structure and the recording method according to the present invention is preferably 35 nm or more, and particularly preferably 45 nm or more from the viewpoint of both jitter and recording sensitivity.
【0062】なお、繰返し特性の反射膜厚依存性は、35
nm以上では見られず、10万回の繰返しによってもジッ
ターは初期の2倍までは増加しなかった。The dependency of the repeatability on the reflection film thickness is 35
It was not observed above nm, and the jitter did not increase up to twice the initial value even after 100,000 repetitions.
【0063】また、本実施例では反射膜としてAuを使用
したが、Al,Ti,Ni,Crの単体あるいはこれらを含む合金
を用いても同様な結果が得られた。Further, although Au was used as the reflective film in this example, similar results were obtained by using Al, Ti, Ni, Cr alone or an alloy containing them.
【0064】[0064]
【発明の効果】以上の実施例から明かなように、本発明
の光学情報の記録方法は、記録膜の組成と膜厚、誘電体
膜の膜厚、反射膜の膜厚等を限定した光ディスクに、記
録レーザー光の波形を限定して信号を記録することで、
低線速度においてもCDと同じ程度の再生信号品質を実
現することができ、例えば書換え可能なデジタルオーデ
ィオディスクを提供することができる。As is apparent from the above embodiments, the optical information recording method of the present invention is an optical disc in which the composition and film thickness of the recording film, the film thickness of the dielectric film, the film thickness of the reflective film, etc. are limited. In addition, by limiting the waveform of the recording laser light and recording the signal,
Even at a low linear velocity, it is possible to realize a reproduction signal quality similar to that of a CD, and it is possible to provide a rewritable digital audio disc, for example.
【図1】本発明の光ディスクの断面図FIG. 1 is a sectional view of an optical disc of the present invention.
【図2】本発明による光ディスクの記録膜の組成範囲図FIG. 2 is a composition range diagram of a recording film of an optical disc according to the present invention.
【図3】本発明による光学情報の記録方法における信号
波形の変換例を示す図FIG. 3 is a diagram showing an example of signal waveform conversion in the optical information recording method according to the present invention.
【図4】(a)は光学情報の入力信号波形を示す図 (b)は図4(a)の入力信号に対するレーザーの変調
方法の1例を示す図 (c)は図4(a)の入力信号に対するレーザーの変調
方法の1例を示す図4A is a diagram showing an input signal waveform of optical information. FIG. 4B is a diagram showing an example of a laser modulation method for the input signal of FIG. 4A. FIG. 4C is a diagram of FIG. 4A. The figure which shows an example of the modulation method of the laser with respect to an input signal.
【図5】(a)は11Tの入力パルスの波形図 (b)は図5(a)の入力パルスをMP記録方法におい
てパルス列化した1例を示す図5A is a waveform diagram of an input pulse of 11T, and FIG. 5B is a diagram showing an example in which the input pulse of FIG.
【図6】本発明による光学情報の記録方法を実現する記
録装置の一例を示すブロック図FIG. 6 is a block diagram showing an example of a recording apparatus that realizes an optical information recording method according to the present invention.
【図7】記録膜組成(Sb量をパラメータ)と記録特性の
関係を示す特性図FIG. 7 is a characteristic diagram showing the relationship between recording film composition (Sb amount as a parameter) and recording characteristics.
【図8】記録膜組成(Te量を一定)と記録特性の関係を
示す特性図FIG. 8 is a characteristic diagram showing a relationship between a recording film composition (a constant Te amount) and recording characteristics.
【図9】記録膜組成(Sb量を一定)と記録特性の関係を
示す特性図FIG. 9 is a characteristic diagram showing the relationship between recording film composition (constant Sb amount) and recording characteristics.
【図10】記録膜厚と記録特性の関係を示す特性図FIG. 10 is a characteristic diagram showing the relationship between recording film thickness and recording characteristics.
【図11】反射膜側の誘電体4の膜厚と記録特性の関係
を示す特性図FIG. 11 is a characteristic diagram showing the relationship between the film thickness of the dielectric 4 on the reflective film side and the recording characteristics.
【図12】反射膜厚と記録特性の関係を示す特性図FIG. 12 is a characteristic diagram showing a relationship between a reflective film thickness and recording characteristics.
【図13】従来例の光ディスクの記録膜の組成を示す図FIG. 13 is a diagram showing a composition of a recording film of a conventional optical disc.
【図14】従来例の光ディスクの構造を示す断面図FIG. 14 is a cross-sectional view showing the structure of a conventional optical disc.
【図15】(a)はレーザーパワーレベルをしめす波形
図 (b)は図15(a)のレーザーパワーにおける記録膜
の到達温度を示す図 (c)は図15(a)のレーザーパワーにおける記録マ
ークの形状を示す図15A is a waveform diagram showing the laser power level. FIG. 15B is a diagram showing the temperature reached by the recording film at the laser power shown in FIG. 15A. FIG. 15C is a recording at the laser power shown in FIG. 15A. Diagram showing the shape of the mark
1 基板 2 誘電体膜 3 記録膜 4 誘電体膜 5 反射膜 6 光ディスク 7 スピンドルモータ 8 光学ヘッド 10 マルチパルス回路 1 substrate 2 dielectric film 3 recording film 4 dielectric film 5 reflective film 6 optical disk 7 spindle motor 8 optical head 10 multi-pulse circuit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤平 信夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Nobuo Akabira 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (10)
射膜の順に積層し、前記記録膜は、組成がGexSbyTez( 4
5≦z≦53 at%, 0.5≦y/(x+y)≦0.72, x+y+z=100 at%)
で表され、かつ膜厚は10nm以上35nm 以下であり、 前記反射膜側に積層された前記誘電体膜の膜厚は5nm以
上40nm以下であり、 かつ前記反射膜は少なくともAu,Al,Ti,Ni,Crの単体ある
いは合金からなり、 かつ膜厚は35nm以上であることを特徴とする光ディスク
上に、 パルス幅変調されたデジタル信号を一つのレーザースポ
ットを用いてオーバーライトする光学情報の記録方法に
おいて、 前記デジタル信号に含まれるそれぞれのパルスを複数の
パルスからなるパルス列に変換するステップと、 レーザーパワーを前記パルス列により消去レベルと記録
レベルの間で変調して、それぞれの前記パルス列でそれ
ぞれ一つの記録マークを光ディスク上に形成して前記デ
ジタル信号を記録するステップからなり、 前記パルス列は先頭パルスと後続パルス列からなり、前
記先頭パルスの幅は記録マークの長さに係わらず常に一
定でかつ後続パルス列中の各パルスの幅より大きく、前
記後続パルス列中の各パルスの幅と間隔はそれぞれ等し
く、 かつ長さがn番目の記録マークを形成する場合の前記後
続パルス中のパルス数はn−1個であることを特徴とす
る光学情報の記録方法。1. A dielectric film, a recording film, a dielectric film, and a reflective film are laminated in this order on a substrate, and the composition of the recording film is Ge x Sb y Te z (4
5 ≦ z ≦ 53 at%, 0.5 ≦ y / (x + y) ≦ 0.72, x + y + z = 100 at%)
And the film thickness is 10 nm or more and 35 nm or less, the film thickness of the dielectric film laminated on the reflective film side is 5 nm or more and 40 nm or less, and the reflective film is at least Au, Al, Ti, A method of recording optical information by overwriting a pulse-width modulated digital signal on a single optical disc on an optical disc that is composed of Ni or Cr alone or an alloy and has a film thickness of 35 nm or more. In the step of converting each pulse included in the digital signal into a pulse train consisting of a plurality of pulses, laser power is modulated between the erasing level and the recording level by the pulse train, and each pulse train has one pulse Forming a recording mark on the optical disc to record the digital signal, wherein the pulse train comprises a leading pulse and a succeeding pulse train. The width of the leading pulse is always constant irrespective of the length of the recording mark and is larger than the width of each pulse in the subsequent pulse train, the width and interval of each pulse in the subsequent pulse train are equal, and the length is n-th. 2. The method for recording optical information, wherein the number of pulses in the subsequent pulse when forming the recording mark is n-1.
度が1.2〜1.4m/secであることを特徴とする請求項1記
載の光学情報の記録方法。2. The optical information recording method according to claim 1, wherein the relative speed between the optical disk and the laser spot is 1.2 to 1.4 m / sec.
る変換前のパルス幅の期間だけ、記録レベルと再生レベ
ルまたはオフレベルとの間で行われることを特徴とする
請求項1記載の光学情報の記録方法。3. The optical information according to claim 1, wherein the modulation of the laser power is performed between the recording level and the reproduction level or the off level only during a period of the corresponding pulse width before conversion of the pulse train. Recording method.
ることを特徴とする請求項1記載の光学情報の記録方
法。4. The method for recording optical information according to claim 1, wherein the digital signal is an EFM signal of CD standard.
ぶライン上の組成であることを特徴とする請求項1記載
の光学情報の記録方法。5. The method for recording optical information according to claim 1, wherein the composition of the recording film is a composition on a line connecting the compounds Ge2Sb2Te5 and Sb.
れることを特徴とする請求項5記載の光学情報の記録方
法。6. The method for recording optical information according to claim 5, wherein the composition of the recording film is represented by Ge20Sb30Te50 (at%).
徴とする請求項1記載の光学情報の記録方法。7. The method for recording optical information according to claim 1, wherein the recording film has a thickness of 25 nm or less.
SiO2の混合物,ZnSeとSiO2の混合物の少なくとも一種類
からなることを特徴とする請求項1記載の光学情報の記
録方法。8. The dielectric film comprises ZnS, SiO2, Si3N4, AlN, TiN, ZnS.
2. The method for recording optical information according to claim 1, wherein the method comprises at least one of a mixture of SiO2 and a mixture of ZnSe and SiO2.
nm以下であることを特徴とする請求項1記載の光学情報
の記録方法。9. The film thickness of the dielectric film laminated on the reflective film side is 25.
The method for recording optical information according to claim 1, wherein the optical information is not more than nm.
徴とする請求項1記載の光学情報の記録方法。10. The method for recording optical information according to claim 1, wherein the thickness of the reflective film is 45 nm or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3219551A JPH0562193A (en) | 1991-08-30 | 1991-08-30 | Recording method of optical information |
US07/937,101 US5289453A (en) | 1990-03-14 | 1992-08-31 | Optical information recording method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3219551A JPH0562193A (en) | 1991-08-30 | 1991-08-30 | Recording method of optical information |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0562193A true JPH0562193A (en) | 1993-03-12 |
Family
ID=16737280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3219551A Pending JPH0562193A (en) | 1990-03-14 | 1991-08-30 | Recording method of optical information |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0562193A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997034298A1 (en) * | 1996-03-11 | 1997-09-18 | Matsushita Electric Industrial Co., Ltd. | Optical data recording medium, method of producing the same and method of reproducing/erasing record |
US5848043A (en) * | 1995-03-31 | 1998-12-08 | Mitsubishi Chemical Corporation | Modulation of laser power in accordance with a linear velocity by pulse division schemes |
US6268034B1 (en) | 1998-08-05 | 2001-07-31 | Matsushita Electric Industrial Co., Ltd. | Optical information recording medium and method for producing the same, method for recording and reproducing information thereon and recording/reproducing apparatus |
US6343062B1 (en) | 1997-09-26 | 2002-01-29 | Matsushita Electric Industrial Co., Ltd | Optical disk device and optical disk for recording and reproducing high-density signals |
US6388984B2 (en) | 1997-08-28 | 2002-05-14 | Matsushita Electric Industrial Co., Ltd. | Optical information recording medium and its recording and reproducing method |
US6560182B1 (en) | 1999-05-10 | 2003-05-06 | Tdk Corporation | Optical recording method |
US6821707B2 (en) | 1996-03-11 | 2004-11-23 | Matsushita Electric Industrial Co., Ltd. | Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information |
US7333414B2 (en) | 1999-05-19 | 2008-02-19 | Mitsubishi Kagaku Media Co., Ltd. | Rewritable optical recording medium, recording method on the same, and optical disc recording/retrieving apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02253986A (en) * | 1989-03-28 | 1990-10-12 | Fuji Electric Co Ltd | Optical recording medium |
JPH03169681A (en) * | 1989-11-30 | 1991-07-23 | Toshiba Corp | Information recording medium |
JPH03185628A (en) * | 1989-12-13 | 1991-08-13 | Matsushita Electric Ind Co Ltd | Recording method and recording device for optical information |
-
1991
- 1991-08-30 JP JP3219551A patent/JPH0562193A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02253986A (en) * | 1989-03-28 | 1990-10-12 | Fuji Electric Co Ltd | Optical recording medium |
JPH03169681A (en) * | 1989-11-30 | 1991-07-23 | Toshiba Corp | Information recording medium |
JPH03185628A (en) * | 1989-12-13 | 1991-08-13 | Matsushita Electric Ind Co Ltd | Recording method and recording device for optical information |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5848043A (en) * | 1995-03-31 | 1998-12-08 | Mitsubishi Chemical Corporation | Modulation of laser power in accordance with a linear velocity by pulse division schemes |
US7037413B1 (en) | 1996-03-11 | 2006-05-02 | Matsushita Electric Industrial Co., Ltd. | Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information |
US6153063A (en) * | 1996-03-11 | 2000-11-28 | Matsushita Electric Industrial Co., Ltd. | Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information |
WO1997034298A1 (en) * | 1996-03-11 | 1997-09-18 | Matsushita Electric Industrial Co., Ltd. | Optical data recording medium, method of producing the same and method of reproducing/erasing record |
US6821707B2 (en) | 1996-03-11 | 2004-11-23 | Matsushita Electric Industrial Co., Ltd. | Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information |
US6388984B2 (en) | 1997-08-28 | 2002-05-14 | Matsushita Electric Industrial Co., Ltd. | Optical information recording medium and its recording and reproducing method |
US6343062B1 (en) | 1997-09-26 | 2002-01-29 | Matsushita Electric Industrial Co., Ltd | Optical disk device and optical disk for recording and reproducing high-density signals |
US6268034B1 (en) | 1998-08-05 | 2001-07-31 | Matsushita Electric Industrial Co., Ltd. | Optical information recording medium and method for producing the same, method for recording and reproducing information thereon and recording/reproducing apparatus |
US6560182B1 (en) | 1999-05-10 | 2003-05-06 | Tdk Corporation | Optical recording method |
US7333414B2 (en) | 1999-05-19 | 2008-02-19 | Mitsubishi Kagaku Media Co., Ltd. | Rewritable optical recording medium, recording method on the same, and optical disc recording/retrieving apparatus |
US7345977B2 (en) | 1999-05-19 | 2008-03-18 | Mitsubishi Kagaku Media Co., Ltd | Recording and retrieving method on rewritable optical recording medium |
EP1936612A1 (en) | 1999-05-19 | 2008-06-25 | Mitsubishi Kagaku Media Co., Ltd. | Recording at constant angular velocity |
US7408852B2 (en) | 1999-05-19 | 2008-08-05 | Mitsubishi Kagaku Media Co., Ltd. | Rewritable optical recording medium, recording method on the same, and optical disc recording/retrieving apparatus |
US7452582B1 (en) | 1999-05-19 | 2008-11-18 | Mitsubishi Kagaku Media Co., Ltd. | Rewritable optical recording medium recording method on the same and optical disc recording/retrieving apparatus |
US7561502B2 (en) | 1999-05-19 | 2009-07-14 | Mitsubishi Kagaku Media Co., Ltd. | Rewritable optical recording medium, recording method on the same, and optical disc recording/retrieving apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0669611B1 (en) | Optical information recording method and recording apparatus | |
US5412626A (en) | Method of recording optical information with selective correction in pulse waveform and a recording system therefor | |
US5289453A (en) | Optical information recording method | |
JP3171103B2 (en) | Optical recording method and optical recording medium | |
JP3266971B2 (en) | How to record optical information | |
US5150351A (en) | Optical information recording apparatus for recording an input signal having variable width pulse duration and pulse spacing periods | |
JPH09138947A (en) | Method and device for recording/reproducing information and information recording medium | |
JP2707774B2 (en) | Optical information recording method and recording apparatus | |
JP2001250230A (en) | Optical information recording method, optical information recorder, and optical information recording medium | |
KR950003182B1 (en) | Optical disc and optical information recording method | |
JPH06162507A (en) | Method and device for information recording | |
JPH09282661A (en) | Optical recording method, device therefor and optical recording medium | |
US7068591B2 (en) | Information recording method and optical recording medium therefor | |
US5233599A (en) | Optical disk with a recording layer composed of tellurium, antimony, and germanium | |
JPH0562193A (en) | Recording method of optical information | |
JP2827545B2 (en) | How to record optical information | |
JP2574379B2 (en) | Optical information recording / erasing method | |
JP2643883B2 (en) | Initialization method of phase change optical disk | |
JP3277733B2 (en) | Method and apparatus for recording optical information on optical disc | |
JP2000132836A (en) | Optical recording method | |
JP3455521B2 (en) | Optical recording method | |
JPH113522A (en) | Phase transition optical disk initializing method | |
KR100370185B1 (en) | Recording method for Phase Change type optical disc | |
KR100275691B1 (en) | Phase change type optical disk | |
KR100275692B1 (en) | Phase change type optical disk |