[go: up one dir, main page]

JPH0561222B2 - - Google Patents

Info

Publication number
JPH0561222B2
JPH0561222B2 JP1334584A JP33458489A JPH0561222B2 JP H0561222 B2 JPH0561222 B2 JP H0561222B2 JP 1334584 A JP1334584 A JP 1334584A JP 33458489 A JP33458489 A JP 33458489A JP H0561222 B2 JPH0561222 B2 JP H0561222B2
Authority
JP
Japan
Prior art keywords
mol
present
composition
amount
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1334584A
Other languages
Japanese (ja)
Other versions
JPH02221154A (en
Inventor
Masazumi Ken
Iwao Kosei
Zaisan Ri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansei Denki KK
Original Assignee
Sansei Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansei Denki KK filed Critical Sansei Denki KK
Publication of JPH02221154A publication Critical patent/JPH02221154A/en
Publication of JPH0561222B2 publication Critical patent/JPH0561222B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、音波を生じる振動子に適する圧電組
成物に関し、更に詳しくは、基本組成は
PbTiO3、PbZrO3及びPb(Co1/3Nb2/3)O3の三成
分系からなり、ペロブスカイトABO3の構造のA
格子位置に存在するPbの一部をSrイオンで置換
し、B格子位置に存在するNbをその理論量より
少なく加え、かつMnCO3とWO3とを同時に添加
することによる圧電セラミツク組成物に関する。 〔従来の技術とその問題点〕 従来、圧電セラミツク組成物としてはPZT[Pb
(TixZry)O3]系または複合酸化物を含む三成分
系に添加物を微量添加した組成物が用いられてき
たが、PZT系は焼結温度が非常に高くて、焼結
の際PbOが揮発されるがため、正確な化学組成を
コントロールすることが困難であり、又応用分野
に伴う物性調節は添加物及びZr、Tiの割合のみ
により可能であるが故、選択の幅が制限されてお
り、三成分系においては、誘電損失係数(tanδ)
が小さく、機械的品質係数(Mechanical
quality factor:Qm)と圧電常数(d33)との値
がともに大きい材料を得ることができなかつた。
一般的な従来の圧電セラミツク組成物において、
Qmの値が大きくなるとd33が小さくなり、又d33
の値が大きくなればQmが低くなる傾向を示し、
特に、振動子用組成物としては不適合であつた。 d33の値は圧電セラミツク素子に加えられる電
圧に対して、変位を生じる程度を示すもので、
d33が大きくなれば圧電セラミツク素子が同じ電
場にて生じる変位が大きくなる為、振動子用とし
て適する。 更に、Qmの値は圧電セラミツクが機械的に振
動する時、1周期当り熱に発散され再び振動エネ
ルギとして使用不可のエネルギに反比例するがた
め、Qm値が高くなれば圧電セラミツク素子の損
失が少なく、かつ熱の発散が小さくなる。もし
Qmの値が低い場合、振動子として用いると多く
の熱が発散され、圧電セラミツク素子の物性低下
を促進しその寿命も短くなる。 〔発明の目的〕 従つて、本発明の目的は振動子用として使用す
る圧電組成物において、Qm及びd33がともに高い
値を持ち、かつ誘電損失係数が低い組成物を提供
することである。 〔問題点を解決するための手段〕 上記の目的を達成する為、本発明はPbTiO3
PbZrO3−Pb(Co1/3Nb2/3)O3の三成分系におい
て、一般的に、PCN系を満たすNbの量よりNb
を少量入れ、Pbイオンの一部をSrで置換した後、
少量のWO3とMnCO3(MnOも可能であるが便宜
上MnCOを代表で以下に記する)とをともに添加
することを特徴とする圧電セラミツク組成物に関
し、更に詳しくは上記三成分系がxPbTiO3
yPbZrO3−zPb(Co1/3Nb2/3)O3で表される式に
おいて、モル比で0.43≦x≦0.48、0.04≦z≦
0.15であり、又x+y+z=1である。更に一般
のPCN系を満足するNbの量より少なくなるNb
量の限界がモル比で0<δ≦0.2であり、またPb
がSrで置換されるaの範囲はモル%で0<a≦
0.06である。そして添加されるmWO3及び
nMnCO3のモル%はそれぞれ0≦m≦2、0<n
≦2.2である。 従つて、本発明にてペロブスカイトABO3の構
造において、B格子位置に存在するNbがPCN系
を満足する量より不足となり、又A格子位置に存
在するPbイオンの一部がSrで置換された構造と
して、ここで不足したNbの量をδで、PbがSrで
aほど置換されたことを式で表し、最終使用式で
示すと、便宜上次のようになる。 (Pb1-aSra){TixZry[Co1/3Nb(1−δ)2/3Z}O3
+mモル%WO3+nモル%MnCO3 上式においてモル比で示して0.43≦x≦0.48、
0.04≦z≦0.15、x+y+z+=1、0<δ≦
0.2、0≦a≦0.06であり、モル%で示して0<
m<2、0<n≦2.2である。 〔発明の作用〕 本発明の圧電組成物においてxPbTiO3
yPbZrO3−zPb[Co1/3Nb(1−δ)2/3]O3の三成
分系(x+y+z=1)中でPbTiO3構成成分の
含量を43〜47モル%の範囲で限定することは、該
範囲ではd33及びQmがともに向上され、安定な値
を有するためであり、もし43モル%未満または48
モル%過剰の時にはd33及びQmが減少する傾向を
示し、望ましくない。また、三成分系でPb[Co1/3
Nb(1−δ)2/3]O3成分の含量を4〜15モル%に
限定することは、化合物形態の複合酸化物である
該成分が含まれることにより焼結温度が低下する
ことを目的とするが、含量が4モル%より少量で
あれば、従来のPZT系二成分系に比較して焼結
温度が別に低下しなくなり、尚、15モル%以上の
過量になれば誘電損失係数(tanδ)が増し、d33
の値が低くなり、振動子用として適合にならな
い。 ところで、本発明の三成分系中その一成分Nb
の不足により、(Pb1-aSra){TixZry[Co1/3Nb(1
−δ)2/3Z}O3+mモル%WO3+nモル%
MnCO3と表したが、実はその一成分が複合酸化
物(1−δ)Pb(Co1/3Nb2/3)O3+(2/3)δPb
(Co1/2W1/2)O+(1/3)δpb(Mn1/2W1/2)O3
思われるため、本発明の成分系を詳しく言えば
PbZrO3、PbTiO3、Pb(CoCo1/3Nb2/3)O3、Pb
(Co1/2W1/2)O3及びPb(Mn1/2W1/2)O3の固溶体
(Solid solution)であるとみなされるがPb
(CO1/2W1/2)O3とPb(Mn1/2W1/2)O3は少量であ
るとみなし便宜上三成分系として上記式を採択し
た。 上記の本発明の三成分系においてδが増すほど
にd33が少しずつ減少するが、Qmは一定量まで増
加した後減少する。従つて、δが0.2を越えると
Qmは著しく減少するので望ましくない。 本発明の三成分系基本組成物においてPbの一
部をSrで部分置換するにおいてSrの置換モル比
aが0〜0.06の範囲になるようにすることが望ま
しく、その範囲内ではd33及びQmはともに増加す
る。しかしその範囲を越えて置換するとd33及び
Qmはむしろ急激にい減少するので望ましくな
い。 以上に説明した本発明の内容を、添付した図面
を参照して更に詳細に説明する。 第1図は、本発明の三成分系圧電組成物におい
て基本三成分の最適成分構成比を図示したもので
あり、ここで平行四角形内の数値は実施例の番号
を示す。 第2図は、不足なNbの量δの値を0.13に、m
及びnを各々1.4及び1.0に固定し、Srの置換値で
あるaの値を変化させることによるd33及びQmの
変化を表する、即ち(Pb1-aSra){TiO0.45Zr0.45
[Co1/3Nb(1-0.13)2/30.1]O3+1.4モル%WO+1.0モ
ル%MnCO3のa変化によるd33及びQmの変化を
示したものであり、Pb格子位置に置換されるSr
の量が増加するとd33及びQmの値も増加するが、
6モル%以上置換されるとd33及びQmが急激に減
る傾向が現れる。 第3図は、Srの置換値であるaの値を0.04で、
m及びnの値を各々1.4及び1.0に固定し、Nb不足
量δの値を変化するによるd33及びQmの変化値を
表す。即ち(Pb1-0.04Sr0.04){Ti0.45Zr0.45[Co1/3
Nb(1−δ)2/30.01}O3+1.4モル%WO3+1.0モ
ルMnCO3のδの変化によるd33及びQmの変化を
示したものであり、δの増加によりQmが急激に
向上するが、最大値を示した後再び20モル%線に
て急に減少し始めることを表す。 本発明の圧電組成物を再び反復説明すれば、
PbTiO3、PbZrO3、Pb[Co1/3Nb(1−δ)2/3]O3
の固溶体からなる組成物であり、一般的なPCN
系であるPb(Co1/3Nb2/3)O3においてNbの一部を
不足にして、それをWO3及びMnCO3の添加物で
補償するようにし、またPbの一部をSrで置換せ
しめてd33及びQmを同時にさらに向上させること
を特徴とする。一般的にQmが増加するとd33は減
少するのに反し、本発明ではd33及びQmを同時に
向上させることができるのは、上記した全ての組
成物の構成及び構成比が複合的に満足する際可能
であり、本発明の組成物は圧電振動子用として非
常に適宜な性能を有するものである。 〔実施例〕 以下実施例により、本発明の製造方法及びその
効果につき更に詳細に説明する。しかし本発明は
次の実施例により限定されるものではない。 実施例 1−55 純度99%以上のPbO、TiO2、ZrO2、CoO、
SrCO3、WO3、Nb2O5及びMnCO3粉末を下記の
第1表及び第2表の組成になるように秤量した
後、プラナタリ ボール ミール、ナイロン ジ
ヤ及びZrO2ボールを用いて、アセトンを分散媒
とし4時間湿式混合した。混合した粉末をオブン
内で乾燥し、電気濾を用いて830℃で2時間〓焼
後混合と同様な方法で湿式粉砕した。粉砕された
粉末91ton/cm2の圧力で成形し厚さ2mm、直径25
mmのデイスクを製作した。 かくして得た成形体を1180℃で2時間焼結し両
面練磨した後、銀電極を設け、120℃の絶縁油中
で直流電界3KV/mmを15分間印加して分極処理
することに依り圧電体を得た。以上のような圧電
セラミツクは分極後24時間常温で放置した後、圧
電特性及び誘電特性を測定した。圧電特性は厚み
振動モードから測定し、物性の測定はピエゾd33
メータ(Piezo d33Meter、Berline Court社製)
を用いてd33を測定し、インピーダンス/ゲイン
フエイズ アナライザー(Impedance/Gain
phase Analyzer;Hp4194A)を用いて1KHzでの
Cp、tanδの誘電特性及び共振周波数、反共振周
波数、共振抵抗等を測定しQm(機械的品質係数)
とK(電気機械結合係数)を求めそれぞれの結果
を第1表及び第2表にて示す。 計算に用いられた式は次の通りである。 (1/kt2)=0.405(fRt/Δf)+0.810 qm=f2 At/[2πRoCPfRt(f2 At−f2 Rt)] Kt=厚み振動モード中の電気機械結合係数 fR=共振周波数 fRt=厚み振動モード中の共振周波数 fA=反共振周波数 fAt=厚み振動モード中の反共周波数 Δf=(fAt−fRt) Ro=共振抵抗 Cp=静電容量
[Industrial Application Field] The present invention relates to a piezoelectric composition suitable for a vibrator that generates sound waves, and more specifically, the basic composition is
It consists of a three-component system of PbTiO 3 , PbZrO 3 and Pb(Co 1/3 Nb 2/3 )O 3 , and the A of the structure of perovskite ABO 3
This invention relates to a piezoelectric ceramic composition in which part of the Pb present in the lattice positions is replaced by Sr ions, Nb present in the B lattice positions is added in a smaller amount than its stoichiometric amount, and MnCO 3 and WO 3 are added simultaneously. [Prior art and its problems] Conventionally, piezoelectric ceramic compositions include PZT [Pb
(Ti x Zr y ) O 3 ] system or a ternary system containing a composite oxide with a small amount of additives added, but the PZT system has a very high sintering temperature and is difficult to sinter. Since PbO evaporates during the process, it is difficult to control the exact chemical composition, and the physical properties can be adjusted depending on the application field only by adjusting the additives and the proportions of Zr and Ti, so the range of selection is limited. In a three-component system, the dielectric loss coefficient (tanδ)
is small, and the mechanical quality factor (Mechanical
It was not possible to obtain a material with large values of both quality factor (Qm) and piezoelectric constant (d 33 ).
In general conventional piezoelectric ceramic compositions,
As the value of Qm increases, d 33 decreases, and d 33
As the value of increases, Qm tends to decrease,
In particular, it was unsuitable as a composition for a vibrator. The value of d33 indicates the degree of displacement caused by the voltage applied to the piezoelectric ceramic element.
The larger d 33 is, the larger the displacement that occurs in the piezoelectric ceramic element in the same electric field, making it suitable for use as a vibrator. Furthermore, when the piezoelectric ceramic vibrates mechanically, the value of Qm is inversely proportional to the energy that is dissipated into heat per cycle and cannot be used again as vibration energy, so the higher the Qm value, the lower the loss in the piezoelectric ceramic element. , and the heat dissipation is reduced. if
If the value of Qm is low, a lot of heat will be dissipated when used as a vibrator, which will accelerate the deterioration of the physical properties of the piezoelectric ceramic element and shorten its life. [Object of the Invention] Therefore, an object of the present invention is to provide a piezoelectric composition used for a vibrator, which has high values of both Qm and d 33 and has a low dielectric loss coefficient. [Means for solving the problems] In order to achieve the above object, the present invention provides PbTiO 3
In the ternary system of PbZrO 3 −Pb(Co 1/3 Nb 2/3 )O 3 , the amount of Nb filling the PCN system is generally
After adding a small amount of Pb ions and replacing some of the Pb ions with Sr,
Regarding a piezoelectric ceramic composition characterized in that a small amount of WO 3 and MnCO 3 (MnO is also possible, but MnCO is described below as a representative for convenience), more specifically, the above three-component system is xPbTiO 3
In the formula expressed by yPbZrO 3 −zPb(Co 1/3 Nb 2/3 )O 3 , the molar ratio is 0.43≦x≦0.48, 0.04≦z≦
0.15, and x+y+z=1. Furthermore, the amount of Nb is smaller than the amount of Nb that satisfies general PCN systems.
The limit of quantity is 0<δ≦0.2 in molar ratio, and Pb
The range of a in which is substituted with Sr is 0<a≦ in mol%
It is 0.06. and added mWO 3 and
The mol% of nMnCO3 is 0≦m≦2, 0<n, respectively.
≦2.2. Therefore, in the structure of perovskite ABO 3 in the present invention, the amount of Nb present in the B lattice position is insufficient compared to the amount that satisfies the PCN system, and some of the Pb ions present in the A lattice position are replaced by Sr. For convenience, the structure is expressed as follows, where the amount of Nb lacking is represented by δ, the substitution of Pb with Sr by a amount is represented by a formula, and the final usage formula is represented as follows. (Pb 1-a Sr a ) {Ti x Zr y [Co 1/3 Nb(1-δ) 2/3 ] Z }O 3
+ m mol % WO 3 + n mol % MnCO 3 In the above formula, expressed as a molar ratio, 0.43≦x≦0.48,
0.04≦z≦0.15, x+y+z+=1, 0<δ≦
0.2, 0≦a≦0.06, expressed in mol%, 0<
m<2, 0<n≦2.2. [Action of the invention] In the piezoelectric composition of the invention, xPbTiO 3
Limiting the content of the PbTiO3 component in the ternary system (x+y+z=1) of yPbZrO3 - zPb[Co1 /3Nb (1-δ) 2/3 ] O3 in the range of 43 to 47 mol%. This is because both d 33 and Qm are improved and have stable values in this range, and if less than 43 mol% or 48
When there is a mol% excess, d 33 and Qm tend to decrease, which is not desirable. In addition, Pb[Co 1/3
Limiting the content of the Nb(1-δ) 2/3 ]O 3 component to 4 to 15 mol% prevents the sintering temperature from decreasing due to the inclusion of this component, which is a composite oxide in the form of a compound. However, if the content is less than 4 mol%, the sintering temperature will not drop significantly compared to the conventional PZT binary system, and if the content exceeds 15 mol%, the dielectric loss coefficient will decrease. (tanδ) increases, d 33
The value of is low, making it unsuitable for use in vibrators. By the way, in the three-component system of the present invention, one component Nb
Due to the shortage of (Pb 1-a Sr a ) {Ti x Zr y [Co 1/3 Nb(1
−δ) 2/3 ] Z }O 3 +mmol%WO 3 +nmol%
Although expressed as MnCO 3 , one component is actually a complex oxide (1-δ)Pb(Co 1/3 Nb 2/3 )O 3 + (2/3)δPb
(Co 1/2 W 1/2 ) O + (1/3) δpb (Mn 1/2 W 1/2 ) O 3 , so if we talk about the component system of the present invention in detail,
PbZrO3 , PbTiO3 , Pb(CoCo1 / 3Nb2 / 3 )O3, Pb
(Co 1/2 W 1/2 ) O 3 and Pb (Mn 1/2 W 1/2 ) O 3 are considered to be a solid solution, but Pb
Considering that (CO 1/2 W 1/2 )O 3 and Pb(Mn 1/2 W 1/2 )O 3 are small amounts, the above formula was adopted as a three-component system for convenience. In the above three-component system of the present invention, as δ increases, d 33 decreases little by little, but Qm increases to a certain amount and then decreases. Therefore, when δ exceeds 0.2,
This is not desirable because Qm decreases significantly. In partially substituting a part of Pb with Sr in the ternary basic composition of the present invention, it is desirable that the substitution molar ratio a of Sr is in the range of 0 to 0.06, and within that range, d 33 and Qm both increase. However, if you substitute beyond that range, d 33 and
Qm is rather undesirable because it decreases rapidly. The contents of the present invention explained above will be explained in more detail with reference to the attached drawings. FIG. 1 illustrates the optimum composition ratio of the three basic components in the three-component piezoelectric composition of the present invention, where the numbers in the parallel squares indicate the numbers of the examples. Figure 2 shows the amount of insufficient Nb δ set to 0.13, m
and n are fixed to 1.4 and 1.0, respectively, and represent the changes in d 33 and Qm by changing the value of a, which is the replacement value of Sr, that is, (Pb 1-a Sr a ) {TiO 0.45 Zr 0.45
[Co 1/3 Nb (1-0.13)2/3 ] 0.1 ] O 3 + 1.4 mol% WO + 1.0 mol% MnCO 3 This shows the change in d 33 and Qm due to the change in a of Pb lattice. Sr substituted in position
As the amount of increases, the values of d33 and Qm also increase, but
When 6 mol% or more is substituted, d 33 and Qm tend to decrease rapidly. Figure 3 shows that the value of a, which is the replacement value of Sr, is 0.04.
The values of m and n are fixed at 1.4 and 1.0, respectively, and the values of changes in d 33 and Qm are expressed by changing the value of the Nb deficiency amount δ. That is, (Pb 1-0.04 Sr 0.04 ) {Ti 0.45 Zr 0.45 [Co 1/3
Nb(1-δ) 2/3 ] 0.01 }O 3 + 1.4 mol% WO 3 + 1.0 mol MnCO 3 This shows the change in d 33 and Qm due to the change in δ, and as δ increases, Qm The value increases rapidly, but after reaching the maximum value, it suddenly begins to decrease again at the 20 mol% line. To reiterate the piezoelectric composition of the present invention,
PbTiO3 , PbZrO3 , Pb[Co1 /3 Nb(1-δ) 2/3 ] O3
It is a composition consisting of a solid solution of general PCN
In the Pb (Co 1/3 Nb 2/3 ) O 3 system, some of the Nb is deficient, and this is compensated for with additives of WO 3 and MnCO 3 , and some of the Pb is replaced with Sr. It is characterized by further improving d 33 and Qm at the same time through substitution. Generally, when Qm increases, d 33 decreases, but in the present invention, d 33 and Qm can be simultaneously improved because the compositions and composition ratios of all the compositions described above are satisfied in a complex manner. The composition of the present invention has very suitable performance for use in piezoelectric vibrators. [Example] The manufacturing method of the present invention and its effects will be explained in more detail with reference to Examples below. However, the present invention is not limited to the following examples. Example 1-55 PbO, TiO 2 , ZrO 2 , CoO, with a purity of 99% or more
After weighing SrCO 3 , WO 3 , Nb 2 O 5 and MnCO 3 powders to have the compositions shown in Tables 1 and 2 below, acetone was added using a planetary ball meal, nylon jar and ZrO 2 balls. This was used as a dispersion medium and wet mixed for 4 hours. The mixed powder was dried in an oven and wet-pulverized using an electrofilter at 830° C. for 2 hours in the same manner as the mixing after baking. The crushed powder is molded under a pressure of 91 tons/cm 2 to a thickness of 2 mm and a diameter of 25 mm.
I made a mm disk. The thus obtained molded body was sintered at 1180°C for 2 hours and polished on both sides, then silver electrodes were attached, and a direct current electric field of 3 KV/mm was applied for 15 minutes in insulating oil at 120°C to perform polarization treatment, thereby forming a piezoelectric material. I got it. The piezoelectric ceramic as described above was left at room temperature for 24 hours after polarization, and then its piezoelectric properties and dielectric properties were measured. Piezoelectric properties are measured from the thickness vibration mode, and physical properties are measured using a piezo d 33
Meter (Piezo d 33 Meter, manufactured by Berlin Court)
Measure d 33 using an impedance/gain phase analyzer (Impedance/Gain Phase Analyzer).
phase analyzer; Hp4194A) at 1KHz.
Measure the dielectric properties of Cp, tanδ, resonance frequency, anti-resonance frequency, resonance resistance, etc. and obtain Qm (mechanical quality factor).
and K (electromechanical coupling coefficient) are determined and the respective results are shown in Tables 1 and 2. The formula used for the calculation is as follows. (1/kt 2 ) = 0.405 (fRt / Δf) + 0.810 qm = f 2 At / [2πRoCPfR t (f 2 At − f 2 Rt )] Kt = Electromechanical coupling coefficient in thickness vibration mode f R = Resonance Frequency f Rt = Resonant frequency in thickness vibration mode f A = Anti-resonant frequency f At = Anti-resonant frequency Δf in thickness vibration mode = (f At −f Rt ) Ro = Resonant resistance Cp = Capacitance

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の三成分系圧電組成物におい
て基本三成分の最適成分構成比を示したものであ
り、第2図は、aに対するd33及びQmの変化値を
示したものであり、第3図は、δに対するd33
びQmの変化値を示したものである。
Fig. 1 shows the optimum composition ratio of the three basic components in the ternary piezoelectric composition of the present invention, and Fig. 2 shows the change values of d 33 and Qm with respect to a. , FIG. 3 shows the change values of d 33 and Qm with respect to δ.

Claims (1)

【特許請求の範囲】 1 PbTiO3−PbZrO3−Pb(Co1/3Nb2/3)O3の三
成分系に、Nbを理論値より不足量加え、Pbイオ
ンの一部をSrで置換させ、少量のWO3とMnCO3
とを同時に添加することを特徴とする、下記の式 (Pb1-aSra){Tix−ZrY−[Co1/3Nb2/3(1−δ)]Z
}O3+mモル%WO3+nモル%MnCO3 (但し、式中のx、y、z、a、δ、m、nは、
それぞれ0.43≦x≦0.48、0.04≦z≦0.15、x+
y+z=1、0<a≦0.06、0<δ≦0.2、0<
m≦2、0<n≦2.2の範囲の数を表す)で示さ
れる圧電セラミツク組成物。
[Claims] 1. Adding Nb in an amount less than the theoretical value to the three-component system of PbTiO 3 −PbZrO 3 −Pb(Co 1/3 Nb 2/3 )O 3 and replacing some of the Pb ions with Sr. and a small amount of WO3 and MnCO3
The following formula (Pb 1-a Sra ) {Ti x −Zr Y − [Co 1/3 Nb 2/3 (1−δ)] Z
}O 3 +mmol% WO3 +nmol% MnCO3 (However, x, y, z, a, δ, m, n in the formula are,
0.43≦x≦0.48, 0.04≦z≦0.15, x+, respectively
y+z=1, 0<a≦0.06, 0<δ≦0.2, 0<
A piezoelectric ceramic composition represented by m≦2, 0<n≦2.2.
JP1334584A 1988-12-23 1989-12-22 Piezoelectric ceramic composition Granted JPH02221154A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019880017309A KR920001408B1 (en) 1988-12-23 1988-12-23 Piezo-ceramic composition
KR88-17309 1988-12-23

Publications (2)

Publication Number Publication Date
JPH02221154A JPH02221154A (en) 1990-09-04
JPH0561222B2 true JPH0561222B2 (en) 1993-09-03

Family

ID=19280560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1334584A Granted JPH02221154A (en) 1988-12-23 1989-12-22 Piezoelectric ceramic composition

Country Status (2)

Country Link
JP (1) JPH02221154A (en)
KR (1) KR920001408B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471978B1 (en) * 2000-12-22 2005-03-07 재단법인 포항산업과학연구원 Piezoelectric ceramic composition for accelerometer
US7045075B2 (en) * 2000-12-28 2006-05-16 Bosch Automotive Systems Corporation Ceramic material and piezoelectric element using the same

Also Published As

Publication number Publication date
KR900011059A (en) 1990-07-11
KR920001408B1 (en) 1992-02-13
JPH02221154A (en) 1990-09-04

Similar Documents

Publication Publication Date Title
JP3482394B2 (en) Piezoelectric ceramic composition
JP4929522B2 (en) Piezoelectric ceramic composition
KR100379202B1 (en) Piezoelectric Ceramic Composition and Ceramic Piezoelectric Device Employing the Composition
JP2613671B2 (en) Ferroelectric ceramics
US6558567B2 (en) Piezoelectric ceramic compact and piezoelectric ceramic device using the same
JP4432280B2 (en) Piezoelectric ceramic
JPWO2006018930A1 (en) Piezoelectric ceramic composition and piezoelectric element
JP3613140B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JPH0561222B2 (en)
JPH07315926A (en) Piezoelectric porcelain composition for ceramic filter device excellent in moisture resistance
JPH08283069A (en) Piezoelectric ceramic and its production
JP4003920B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic sintered body and electronic component
JP3646619B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP2866986B2 (en) Piezoelectric ceramic composition
JP3912098B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP2737451B2 (en) Piezoelectric material
US6391223B1 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JPH0437076A (en) Piezoelectric porcelain compound
JP3404212B2 (en) Piezoelectric ceramic composition
JP3215013B2 (en) Piezoelectric ceramic composition
JPH06252468A (en) Piezoelectric porcelain
JPH0469108B2 (en)
EP1083611A2 (en) Piezoelectric ceramic material and monolithic piezoelectric transducer employing the ceramic material
JPH0891927A (en) Piezoelectric composition
JPH0517218A (en) Piezoelectric porcelain composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 17