JPH0560558A - Optical micro displacement measuring apparatus - Google Patents
Optical micro displacement measuring apparatusInfo
- Publication number
- JPH0560558A JPH0560558A JP22617491A JP22617491A JPH0560558A JP H0560558 A JPH0560558 A JP H0560558A JP 22617491 A JP22617491 A JP 22617491A JP 22617491 A JP22617491 A JP 22617491A JP H0560558 A JPH0560558 A JP H0560558A
- Authority
- JP
- Japan
- Prior art keywords
- light
- semiconductor laser
- displacement measuring
- light beam
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Measurement Of Optical Distance (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
(57)【要約】
【目的】 光束の強度分布の不均一さに基づく変位誤差
が生じないようにする。
【構成】 半導体レーザ1の出射光を1/2波長板10
通過後偏光ビームスプリッタ3に入射するようにする。
よって、半導体レーザ1からP偏光で出射すると、2分
割検出器9A,9Bに入射するのはP偏光となり、半導
体レーザ1の活性層に直交する方向で強度分布が不均一
な方向は2分割検出器9A,9Bの分割線方向に一致す
る。
(57) [Summary] [Purpose] To prevent displacement errors due to non-uniformity of the intensity distribution of the luminous flux. [Structure] Light emitted from the semiconductor laser 1 is converted into a half-wave plate 10
After passing, it is made incident on the polarization beam splitter 3.
Therefore, when the semiconductor laser 1 emits P-polarized light, the P-polarized light is incident on the two-divided detectors 9A and 9B, and the direction in which the intensity distribution is non-uniform in the direction orthogonal to the active layer of the semiconductor laser 1 is detected by two-divided detection. It coincides with the dividing line direction of the containers 9A and 9B.
Description
【0001】[0001]
【産業上の利用分野】本発明は、被測定物の微小変位や
表面粗さを光学的手段により測定する光学式微小変位測
定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical micro-displacement measuring device for measuring micro-displacement and surface roughness of an object to be measured by optical means.
【0002】[0002]
【従来の技術】従来より、焦点ずれを検出して被測定物
の微小変位や表面粗さを測定する光学式微小変位測定装
置としては、例えば、臨界角法を用いたもの(光技術コ
ンタクトVol.26,No.11,1988,p.7
48〜755)、非点収差法を用いたもの(光技術コン
タクトVol.26,No.11,1988,p.75
6〜762)、フーコー法を用いたもの(光技術コンタ
クトVol.26,No11,1988,p.773〜
784)等がある。2. Description of the Related Art Conventionally, as an optical micro-displacement measuring apparatus for detecting a micro-displacement and a surface roughness of an object to be measured by detecting a defocus, for example, one using a critical angle method (optical technology contact Vol. 26, No. 11, 1988, p.7.
48-755), using the astigmatism method (Optical Technology Contact Vol. 26, No. 11, 1988, p. 75).
6-762), using the Foucault method (Optical Technology Contact Vol. 26, No 11, 1988, p. 773-
784) and so on.
【0003】ここで、臨界角法は、プリズムの有する固
有の臨界角近傍に入射する光ビーム強度が微小な角度変
化に対して急激な変化を呈する性質を利用したものであ
り、かかる臨界角法による従来の光学式微小変位測定装
置の構成の一例を図4に示す。同図中、101はレーザ
光源である半導体レーザ、102はコリメートレンズ、
103は偏光ビームスプリッタ、104は1/4波長
板、105は対物レンズ、106は被測定物、107は
ビームスプリッタ、108A,108Bは臨界角プリズ
ム、109A、109Bは2分割受光素子であり、半導
体レーザ101からのレーザ光はコリメートレンズ10
2により平行光束に変換され、S偏光で偏光ビームスプ
リッタ103を介して1/4波長板104へ導かれる。
この1/4波長板104に導かれたレーザ光は円偏光の
光束に変換された後、対物レンズ105を介して被測定
物106の表面に集光される。被測定物106で反射さ
れたレーザ光は1/4波長板104でP偏光にされた
後、偏光ビームスプリッタ103を透過してビームスプ
リッタ107に導かれ、分光される。分光された光はそ
れぞれ、反射面が臨界角に設定されている臨界角プリズ
ム108A,108Bで反射され、それぞれ2分割受光
素子109A,109B,に入射され、光量が検出され
る。Here, the critical angle method utilizes the property that the intensity of the light beam incident near the inherent critical angle of the prism exhibits a rapid change with respect to a minute angle change. FIG. 4 shows an example of the configuration of a conventional optical micro-displacement measuring device according to the above. In the figure, 101 is a semiconductor laser which is a laser light source, 102 is a collimating lens,
Reference numeral 103 is a polarization beam splitter, 104 is a quarter wavelength plate, 105 is an objective lens, 106 is an object to be measured, 107 is a beam splitter, 108A and 108B are critical angle prisms, 109A and 109B are two-divided light receiving elements, and a semiconductor. The laser light from the laser 101 is collimated lens 10
It is converted into a parallel light flux by 2 and is guided to the quarter-wave plate 104 as S-polarized light through the polarization beam splitter 103.
The laser light guided to the quarter-wave plate 104 is converted into a circularly polarized light beam, and then is condensed on the surface of the DUT 106 via the objective lens 105. The laser light reflected by the DUT 106 is P-polarized by the quarter-wave plate 104, then passes through the polarization beam splitter 103, is guided to the beam splitter 107, and is dispersed. The separated lights are reflected by the critical angle prisms 108A and 108B whose reflection surfaces are set to the critical angles, respectively, and are incident on the two-divided light receiving elements 109A and 109B, respectively, and the amount of light is detected.
【0004】このように、被測定物106が対物レンズ
105の焦点に位置している場合には、反射光は平行と
なり、臨界角プリズム108A,108Bにおける反射
率は全光束で一定となり、2分割受光素子109A,1
09Bに受光される光量は等しくなる。しかし、被測定
物106が対物レンズ105の焦点より遠くに位置して
いる場合には反射光は収束光となるので臨界角プリズム
108A,108Bに入る光束の入射角はその光軸に対
して臨界角プリズム108Aで図中右側、臨界角プリズ
ム108bで図中上側は臨界角より小さくなり、反射率
が低下して、2分割受光素子109A,109Bに受光
される光量に差が生じる。同様に被測定物106が対物
レンズ105の焦点より近い地点に位置している場合に
は反射光は発散光となり、上述した場合とは逆になり、
2分割受光素子109A,109Bに受光される光量に
差が生じる。このような光量の差から被測定物106
の、対物レンズ105の焦点位置からの変位を検出し、
被測定物106の微小変位や表面粗さを測定することが
できる。As described above, when the object to be measured 106 is located at the focal point of the objective lens 105, the reflected light becomes parallel, the reflectance at the critical angle prisms 108A and 108B is constant for all luminous fluxes, and is divided into two. Light receiving element 109A, 1
The amount of light received by 09B becomes equal. However, when the DUT 106 is located farther than the focal point of the objective lens 105, the reflected light becomes a convergent light, so that the incident angle of the light flux entering the critical angle prisms 108A and 108B is critical with respect to the optical axis. The angle prism 108A has a right side in the figure, and the critical angle prism 108b has an upper side in the figure smaller than the critical angle, and the reflectance decreases, which causes a difference in the amount of light received by the two-divided light receiving elements 109A and 109B. Similarly, when the DUT 106 is located closer to the focal point of the objective lens 105, the reflected light becomes divergent light, which is the opposite of the above case,
A difference occurs in the amount of light received by the two-divided light receiving elements 109A and 109B. From such a difference in the amount of light, the DUT 106
Of the displacement of the objective lens 105 from the focus position,
It is possible to measure the minute displacement and the surface roughness of the DUT 106.
【0005】一方、非点収差法は、円筒レンズを用いて
検出像に非点収差を与え、測定物の位置の移動変位量を
像の変形に変換するものであり、この方法による微小変
位測定装置では、被測定物が対物レンズの合焦点位置の
場合には、受光ビームは円形状となるが、結像位置が近
い場合には縦長な楕円形状になり、また、遠い場合には
横長な楕円形状となるので、これを4分割フォトダイオ
ードで光電変換し、縦方向、横方向のそれぞれの和を求
め、更にそれらの差の出力信号を求め、被測定物の移動
変位量に比例した出力を得るものである。On the other hand, in the astigmatism method, astigmatism is applied to a detected image by using a cylindrical lens, and the displacement amount of the position of the object to be measured is converted into image deformation. In the device, when the object to be measured is the focus position of the objective lens, the received light beam has a circular shape, but when the image forming position is close, it has an elongated elliptical shape, and when it is far, it has a horizontal shape. Since it has an elliptical shape, it is photoelectrically converted by a 4-division photodiode, the sum of each of the vertical and horizontal directions is calculated, and the output signal of the difference between them is calculated, and the output proportional to the displacement amount of the measured object is output. Is what you get.
【0006】また、フーコー法による微小変位測定装置
は、光学的ナイフエッジ効果を持つ分割プリズムを用い
て被測定物からの反射光束を2光束に分割し、2分割フ
ォトダイオードに入射させるものであり、対物レンズと
被測定面との距離が変化すると被測定物からの反射光束
の広がり角が変化するため、2分割フォトダイオードの
受光量に差が生ずるので、これにより被測定物の変位量
を求めるものである。Further, the Foucault micro-displacement measuring apparatus uses a splitting prism having an optical knife edge effect to split a light beam reflected from an object to be measured into two light beams and make them enter a two-divided photodiode. When the distance between the objective lens and the surface to be measured changes, the angle of divergence of the reflected light beam from the object to be measured changes, which causes a difference in the amount of light received by the two-divided photodiodes. It is what you want.
【0007】[0007]
【発明が解決しようとする課題】前述した従来の光学式
微小変位測定装置において被測定物が傾いた場合には、
反射光束軸は入射光束軸に対して平行移動してしまう。
例えば図4に示す装置で被測定物106がθだけ傾いた
場合、図5に示すように、入射光束軸110に対して、
反射光束軸111は△Xだけ平行移動することになる。
そして、このとき被測定物106は対物レンズ105の
焦点距離をfとすると、 △X=f・tan2θ の関係が成り立つ。When the object to be measured is tilted in the above-described conventional optical micro displacement measuring device,
The reflected light beam axis moves in parallel to the incident light beam axis.
For example, in the device shown in FIG. 4, when the DUT 106 is tilted by θ, as shown in FIG.
The reflected light beam axis 111 is translated by ΔX.
Then, in this case, assuming that the focal length of the objective lens 105 of the DUT 106 is f, the relationship of ΔX = f · tan2θ holds.
【0008】ところで、図4に示した装置では反射光を
分光してそれぞれを2分割受光素子109A,109B
で受光するようにしており、その各受光素子をA,B,
C,Dとすると、 〔(A−B)+(C−D)〕/(A+B+C+D) を変位出力とする。そして、上述した光軸のずれ△Xは
2分割受光素子109A,109Bにおいて互いに逆向
きに生じる、つまり2分割受光素子109AでAが大と
なれば、2分割受光素子109BではDが大となるの
で、△Xによる受光量の差は相殺される構成となってい
る。By the way, in the apparatus shown in FIG. 4, the reflected light is separated into two split light receiving elements 109A and 109B.
The light is received by each of the light receiving elements A, B,
Letting C and D be, [(A−B) + (C−D)] / (A + B + C + D) is the displacement output. Then, the above-mentioned deviation ΔX of the optical axis occurs in mutually opposite directions in the two-divided light receiving elements 109A and 109B, that is, when A is large in the two-divided light receiving element 109A, D is large in the two-divided light receiving element 109B. Therefore, the difference in the amount of received light due to ΔX is offset.
【0009】しかし、反射光束の強度分布が△X方向に
亘って不均一なことに基づき、△Xによる受光量の差が
相殺されず、測定誤差が生ずるという問題がある。すな
わち、半導体レーザ101からの光束は図6に示すよう
に、活性層101aに垂直な方向に長い楕円となり、活
性層101aに平行な方向と偏光方向とが一致する。一
方、臨界角法等での検出感度はP偏光(図4において偏
光方向が紙面に平行な偏光)の方がよいので、偏光ビー
ムスプリッタ102へはS偏光(遍光方向がP偏光と直
交する)として入射するので、ビーム形状は図6のよう
に横長の楕円となる。ところが、図6の垂直方向の強度
分布は回折の影響等によりガウシアン分布にはならず図
7(A),図7(A)に示すような不均一なものとな
る。したがって、このような光束が上記△X方向にずれ
た場合、図8(B),図8(B)のようになり、誤差が
補正されないという問題がある。However, since the intensity distribution of the reflected light flux is non-uniform in the ΔX direction, there is a problem that the difference in the amount of received light due to ΔX is not canceled and a measurement error occurs. That is, as shown in FIG. 6, the light flux from the semiconductor laser 101 becomes an ellipse elongated in the direction perpendicular to the active layer 101a, and the direction parallel to the active layer 101a and the polarization direction coincide with each other. On the other hand, since the detection sensitivity in the critical angle method or the like is better for P-polarized light (polarized light whose polarization direction is parallel to the paper surface in FIG. 4), S-polarized light (polarization direction is orthogonal to P-polarized light) is input to the polarization beam splitter 102. ), The beam shape becomes a horizontally long ellipse as shown in FIG. However, the intensity distribution in the vertical direction in FIG. 6 does not become a Gaussian distribution due to the influence of diffraction etc., but becomes non-uniform as shown in FIGS. 7 (A) and 7 (A). Therefore, when such a light flux is deviated in the ΔX direction, it becomes as shown in FIGS. 8B and 8B, and there is a problem that the error is not corrected.
【0010】本発明はこのような事情に鑑み、反射光束
の強度分布の不均一さに基づく変位誤差の生じない光学
式微小変位測定装置を提供することを目的とする。In view of such circumstances, it is an object of the present invention to provide an optical micro-displacement measuring device which does not cause a displacement error due to the non-uniformity of the intensity distribution of the reflected light flux.
【0011】[0011]
【課題を解決するための手段】前記目的を達成する本発
明に係る微小変位測定装置は、半導体レーザからの光束
を被測定物に照射する照射光学系と、該被測定物からの
反射光束により焦点誤差を検出する焦点誤差検出光学系
とを有する光学式微小変位測定装置であって、光束の偏
光方向を90度回転させる素子を有し、上記焦点誤差検
出光学系の分割検出器に入る反射光束の偏光方向と半導
体レーザの活性層に平行な方向のビーム径とが一致し且
つこれらの方向が分割検出器の分割線と直交することを
特徴とする。A micro-displacement measuring apparatus according to the present invention that achieves the above object comprises an irradiation optical system for irradiating an object to be measured with a light beam from a semiconductor laser, and a reflected light beam from the object to be measured. An optical micro-displacement measuring device having a focus error detecting optical system for detecting a focus error, the device having an element for rotating a polarization direction of a light beam by 90 degrees, the reflection entering a split detector of the focus error detecting optical system. It is characterized in that the polarization direction of the light beam and the beam diameter in the direction parallel to the active layer of the semiconductor laser are the same and these directions are orthogonal to the division line of the division detector.
【0012】[0012]
【作用】照射光学系は通常偏光ビームスプリッタと1/
4波長板とを有して半導体レーザから出射した光束と焦
点誤差検出光学系の分割検出器に入る反射光束とは偏光
方向が90度ずれている。しかし上記構成では偏光方向
を90度回転させる素子を有するので、半導体レーザか
ら出射した光束と反射光束とは偏光方向が一致すること
になる。一方、分割検出器の感度上、反射光束の偏向方
向は分割線に直交しているのが好ましく、また、半導体
レーザから出射する光束は活性層に平行な方向に偏光し
ている。したがって、上記構成の装置では、半導体レー
ザの活性層に平行な方向と分割検出器の分割線とが直交
し、活性層に平行な方向のビームの強度分布はガウシア
ン分布となっているので、精度が向上する。[Operation] The irradiation optical system is usually a polarization beam splitter and 1 /
The light flux emitted from the semiconductor laser having the four-wavelength plate and the reflected light flux entering the split detector of the focus error detection optical system are deviated in polarization direction by 90 degrees. However, in the above-mentioned configuration, since there is an element that rotates the polarization direction by 90 degrees, the light flux emitted from the semiconductor laser and the reflected light flux have the same polarization direction. On the other hand, in view of the sensitivity of the split detector, the deflection direction of the reflected light beam is preferably orthogonal to the split line, and the light beam emitted from the semiconductor laser is polarized in the direction parallel to the active layer. Therefore, in the device having the above configuration, the direction parallel to the active layer of the semiconductor laser and the dividing line of the split detector are orthogonal to each other, and the beam intensity distribution in the direction parallel to the active layer is a Gaussian distribution. Is improved.
【0013】[0013]
【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.
【0014】図1には一実施例に係る光学式微小変位測
定装置の構成を示す。同図中,1はレーザ光源である半
導体レーザ、2はコリメートレンズ、3は偏光ビームス
プリッタ、4は1/4波長板、5は対物レンズ、6は被
測定物、7はビームスプリッタ、8A、8Bは臨界角プ
リズム、9A,9Bは2分割受光素子であり、10は1
/2波長板である。本実施例の装置では、半導体レーザ
1からのレーザ光はP偏光の状態で出射される。そし
て、コリメートレンズ2により平行光束に変換された
後、1/2波長板10によりS偏光とされる。このS偏
光は、偏光ビームスプリッタ3を介して1/4波長板1
04へ導かれる。、1/4波長板4に導かれたレーザ光
は円偏光の光束に変換された後、対物レンズ5を介して
被測定物6の表面に集光される。被測定物6で反射され
たレーザ光は1/4波長板4でP偏光にされた後、偏光
ビームスプリッタ3を透過してビームスプリッタ7に導
かれ、分光される。分光された光はそれぞれ、反射面が
臨界角に設定されている臨界角プリズム8A,8Bで反
射され、それぞれ2分割受光素子9A,9Bに入射さ
れ、光量が検出される。FIG. 1 shows the configuration of an optical micro-displacement measuring device according to an embodiment. In the figure, 1 is a semiconductor laser which is a laser light source, 2 is a collimating lens, 3 is a polarization beam splitter, 4 is a quarter wavelength plate, 5 is an objective lens, 6 is an object to be measured, 7 is a beam splitter, 8A, 8B is a critical angle prism, 9A and 9B are two-divided light receiving elements, and 10 is 1
It is a half wave plate. In the device of this embodiment, the laser light from the semiconductor laser 1 is emitted in the P-polarized state. Then, after being converted into a parallel light flux by the collimator lens 2, it is converted into S-polarized light by the ½ wavelength plate 10. This S-polarized light is transmitted through the polarization beam splitter 3 to the quarter-wave plate 1
You are led to 04. The laser light guided to the quarter-wave plate 4 is converted into a circularly polarized light beam, and then is condensed on the surface of the DUT 6 via the objective lens 5. The laser light reflected by the DUT 6 is P-polarized by the quarter-wave plate 4, then passes through the polarization beam splitter 3, is guided to the beam splitter 7, and is dispersed. The separated lights are reflected by the critical angle prisms 8A and 8B whose reflecting surfaces are set to the critical angles, respectively, and are incident on the two-divided light receiving elements 9A and 9B, and the light amounts are detected.
【0015】本実施例では半導体レーザ1から出射され
る光束は縦長楕円形状のP偏光であり、これは1/2波
長板10通過後には同じく縦長楕円形状のS偏光とな
る。偏光ビームスプリッタ3で反射され、1/4波長板
4を往復通過して偏光ビームスプリッタ3を通過した後
は再びP偏光となり高感度な状態が確保されるが、ビー
ム形状は縦長の楕円形状のままである。したがって、2
分割受光素子9A,9Bに入る反射光も縦長楕円形状の
ビームであり、図2、図3に示すように、2分割受光素
子9A,9Bの分割線方向に不均一な強度分布を有する
ことになる。しかし、図示のように分割線に直交する方
向の強度分布はガウシアン分布となる。したがって、被
測定物6の傾きに起因して2分割受光そし9A,9Bに
入射するビームが分割線に直交する方向にずれても、上
述したように9Aと9Bとにおいて逆方向にずれるの
で、9Aの出力差との和をとることにより完全に補正さ
れることになる。In this embodiment, the light beam emitted from the semiconductor laser 1 is a vertically elongated elliptical P-polarized light, which also becomes a vertically elongated elliptical S-polarized light after passing through the half-wave plate 10. After being reflected by the polarization beam splitter 3, passing back and forth through the quarter-wave plate 4 and passing through the polarization beam splitter 3, it becomes P-polarized light again and a highly sensitive state is secured, but the beam shape is a vertically long elliptical shape. There is. Therefore, 2
The reflected light entering the split light receiving elements 9A and 9B is also a vertically elongated elliptical beam, and as shown in FIGS. 2 and 3, has a non-uniform intensity distribution in the split line direction of the two split light receiving elements 9A and 9B. Become. However, as shown in the figure, the intensity distribution in the direction orthogonal to the dividing line is a Gaussian distribution. Therefore, even if the beams incident on the two-divided light receiving sections 9A and 9B deviate in the direction orthogonal to the dividing line due to the inclination of the DUT 6, as described above, the beams shift in the opposite directions in 9A and 9B. It is completely corrected by taking the sum with the output difference of 9A.
【0016】[0016]
【発明の効果】以上説明したように、本発明によると、
偏光方向を90度回転する素子を備えているので、焦点
誤差検出光学系の分割検出器に入る反射光束の偏向方向
が分割線に直交し、且つこの偏向方向は半導体レーザの
活性層に平行な方向と一致する。したがって、光束の強
度分布の不均一さに基づく変位誤差の発生を防止するこ
とができる。As described above, according to the present invention,
Since the device for rotating the polarization direction by 90 degrees is provided, the deflection direction of the reflected light beam entering the split detector of the focus error detection optical system is orthogonal to the division line, and this deflection direction is parallel to the active layer of the semiconductor laser. Match the direction. Therefore, it is possible to prevent the occurrence of the displacement error due to the nonuniformity of the intensity distribution of the light flux.
【図1】一実施例に係る光学式微小変位測定装置を示す
構成図である。FIG. 1 is a configuration diagram showing an optical micro-displacement measuring device according to an embodiment.
【図2】図1の分割検出器上の反射光束を示す説明図で
ある。FIG. 2 is an explanatory diagram showing a reflected light beam on the split detector of FIG.
【図3】図1の分割検出器上の反射光束を示す説明図で
ある。FIG. 3 is an explanatory view showing a reflected light flux on the split detector of FIG.
【図4】従来技術に係る光学式微小変位測定装置の一例
を示す構成図である。FIG. 4 is a configuration diagram showing an example of an optical micro-displacement measuring device according to a conventional technique.
【図5】被測定物が傾いていた場合の光束ずれを示す説
明図である。FIG. 5 is an explanatory diagram showing a light beam deviation when an object to be measured is tilted.
【図6】半導体レーザの出射ビームを示す説明図であ
る。FIG. 6 is an explanatory diagram showing an emission beam of a semiconductor laser.
【図7】半導体レーザのビームの強度分布を示す説明図
である。FIG. 7 is an explanatory diagram showing a beam intensity distribution of a semiconductor laser.
【図8】半導体レーザのビームの強度分布を示す説明図
である。FIG. 8 is an explanatory diagram showing a beam intensity distribution of a semiconductor laser.
1 半導体レーザ 2 コリメートレンズ 3 偏光ビームスプリッタ 4 1/4波長板 5 対物レンズ 6 被測定物 7 ビームスプリッタ 8A,8B 臨界角プリズム 9A,9B 2分割受光素子 10 1/2波長板 DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Collimating lens 3 Polarization beam splitter 4 1/4 wavelength plate 5 Objective lens 6 DUT 7 Beam splitter 8A, 8B Critical angle prism 9A, 9B Divided light receiving element 10 1/2 wavelength plate
Claims (1)
射する照射光学系と、該被測定物からの反射光束により
焦点誤差を検出する焦点誤差検出光学系とを有する光学
式微小変位測定装置であって、光束の偏光方向を90度
回転させる素子を有し、上記焦点誤差検出光学系の分割
検出器に入る反射光束の偏光方向と半導体レーザの活性
層に平行な方向のビーム径とが一致し且つこれらの方向
が分割検出器の分割線と直交することを特徴とする光学
式微小変位測定装置。1. An optical micro-displacement measuring device having an irradiation optical system for irradiating an object to be measured with a light beam from a semiconductor laser, and a focus error detection optical system for detecting a focus error by a reflected light beam from the object to be measured. And having a device for rotating the polarization direction of the light beam by 90 degrees, the polarization direction of the reflected light beam entering the split detector of the focus error detection optical system and the beam diameter in the direction parallel to the active layer of the semiconductor laser are An optical micro-displacement measuring device characterized in that they coincide with each other and these directions are orthogonal to a division line of a division detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22617491A JPH0560558A (en) | 1991-09-05 | 1991-09-05 | Optical micro displacement measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22617491A JPH0560558A (en) | 1991-09-05 | 1991-09-05 | Optical micro displacement measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0560558A true JPH0560558A (en) | 1993-03-09 |
Family
ID=16841045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22617491A Withdrawn JPH0560558A (en) | 1991-09-05 | 1991-09-05 | Optical micro displacement measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0560558A (en) |
-
1991
- 1991-09-05 JP JP22617491A patent/JPH0560558A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2752003B2 (en) | Inspection interferometer with scanning function | |
JPH0363001B2 (en) | ||
JPH063125A (en) | Optical type displacement meter | |
US4776699A (en) | Optical measuring device | |
US4976543A (en) | Method and apparatus for optical distance measurement | |
US7330278B2 (en) | Optical displacement measurement device | |
JPH0587548A (en) | Attitude angle detector | |
JP3688560B2 (en) | Optical measuring device | |
JPH0560558A (en) | Optical micro displacement measuring apparatus | |
JPS62121305A (en) | Optical type surface-contour measuring device | |
JPH07294231A (en) | Optical surface roughness meter | |
JP3507262B2 (en) | Surface inspection equipment | |
JP2625209B2 (en) | Optical micro displacement measuring device | |
CN115388765B (en) | Automatic focusing device for ellipsometry system | |
JP2003232606A (en) | Angle detection system, angle detection method, and laser beam machining device | |
JP2808713B2 (en) | Optical micro displacement measuring device | |
JPH0298618A (en) | Positioning detector | |
JPH0571959A (en) | Optical measuring device for minute displacement | |
JPH0510733A (en) | Three-dimensional shape measuring apparatus | |
JPH06167305A (en) | Optical displacement meter | |
JPH0560557A (en) | Optical method and device for measuring micro displacement | |
JPH04130239A (en) | Apparatus for measuring outward position and inward position of dynamic surface | |
JPH06109435A (en) | Surface displacement meter | |
JPH05141933A (en) | Three-dimensional shape measuring device | |
JPH01203918A (en) | Optical distance measurement between measuring apparatus and object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981203 |