JPH0558789A - Production of silicone single crystal by chemical vapor phase growing method and fractional determination of ultramicro-element in chlorosilane as its raw material and in silicon single crystal produced - Google Patents
Production of silicone single crystal by chemical vapor phase growing method and fractional determination of ultramicro-element in chlorosilane as its raw material and in silicon single crystal producedInfo
- Publication number
- JPH0558789A JPH0558789A JP4019683A JP1968392A JPH0558789A JP H0558789 A JPH0558789 A JP H0558789A JP 4019683 A JP4019683 A JP 4019683A JP 1968392 A JP1968392 A JP 1968392A JP H0558789 A JPH0558789 A JP H0558789A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- silicon single
- gas
- silicon
- chlorosilane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010703 silicon Substances 0.000 title claims abstract description 96
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 96
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 93
- 239000013078 crystal Substances 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 48
- 239000005046 Chlorosilane Substances 0.000 title claims abstract description 26
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000002994 raw material Substances 0.000 title abstract description 14
- 239000000126 substance Substances 0.000 title abstract description 3
- 229920001296 polysiloxane Polymers 0.000 title abstract 2
- 239000012808 vapor phase Substances 0.000 title abstract 2
- 239000007789 gas Substances 0.000 claims abstract description 35
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 21
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims abstract description 13
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims abstract description 13
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000005052 trichlorosilane Substances 0.000 claims abstract description 12
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 claims abstract description 9
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000005530 etching Methods 0.000 claims abstract description 7
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 21
- 238000001228 spectrum Methods 0.000 claims description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 17
- 229910052785 arsenic Inorganic materials 0.000 abstract description 17
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 abstract description 17
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 17
- 239000011574 phosphorus Substances 0.000 abstract description 17
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 14
- 229910052796 boron Inorganic materials 0.000 abstract description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 abstract description 13
- 239000004065 semiconductor Substances 0.000 abstract description 11
- 238000000295 emission spectrum Methods 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 239000004411 aluminium Substances 0.000 abstract 1
- 239000011573 trace mineral Substances 0.000 description 11
- 238000011002 quantification Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 235000013619 trace mineral Nutrition 0.000 description 4
- 150000003376 silicon Chemical class 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000006124 Pilkington process Methods 0.000 description 2
- 239000000370 acceptor Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、化学的気相成長法によ
る半導体用シリコン単結晶の製造方法、その原料となる
クロロシラン類中の超微量元素(リン、ヒ素、ホウ素、
アルミニウム等)と製造されたシリコン単結晶中の超微
量元素の分別定量方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon single crystal for semiconductors by a chemical vapor deposition method, and ultratrace elements (phosphorus, arsenic, boron,
Aluminum and the like) and a method for fractionating and quantifying ultratrace elements in manufactured silicon single crystals.
【0002】[0002]
【従来の技術】半導体用シリコン単結晶を化学的気相成
長法により製造するには、固相としてシリコン多結晶の
種を使用し、原料のクロロシラン類やモノシランを水素
などの還元性成分により加熱して還元しながら供給し、
シリコン多結晶の種の上にシリコン多結晶を成長させて
ゆき、成長したシリコン多結晶をサンプリングして帯域
浮融法(FZ法)によりシリコン単結晶を得る。このシ
リコン単結晶をウエハーとして半導体が製造される。2. Description of the Related Art In order to produce silicon single crystals for semiconductors by chemical vapor deposition, silicon polycrystal seeds are used as a solid phase, and chlorosilanes or monosilane as a raw material are heated with a reducing component such as hydrogen. And then supply while reducing
A silicon polycrystal is grown on a seed of the silicon polycrystal, the grown silicon polycrystal is sampled, and a silicon single crystal is obtained by the zone floating method (FZ method). A semiconductor is manufactured using this silicon single crystal as a wafer.
【0003】このようにして得られたシリコン単結晶中
には、原料として使用されたクロロシラン類中に含まれ
ている超微量元素のリン、ヒ素、ホウ素、及びアルミニ
ウムなどが不純物としてそのまま存在し、半導体の電気
特性を決定する大きな要因となっている。したがってシ
リコン単結晶中の超微量元素を正確に分別定量すること
が、原料中の超微量元素を定量することにつながり、ま
た半導体の電気特性を知る要因となる。In the silicon single crystal thus obtained, the ultratrace elements such as phosphorus, arsenic, boron and aluminum contained in the chlorosilanes used as raw materials exist as impurities as they are, It is a major factor in determining the electrical characteristics of semiconductors. Therefore, accurate fractional quantification of the ultratrace element in the silicon single crystal leads to quantification of the ultratrace element in the raw material and also becomes a factor to know the electrical characteristics of the semiconductor.
【0004】半導体用シリコン結晶中の微量元素の量を
測定する方法として、アメリカ材料試験協会、F574
−83の方法が知られている。この方法は、化学的気相
成長法によりシリコン多結晶を製造し、そのシリコン多
結晶から帯域浮融法によりシリコン単結晶を得てからそ
の抵抗率を測定後、さらに真空中で帯域浮融法を数回繰
り返してドナー(リン及びヒ素)を除去し、再度、抵抗
率を測定して残存するアクセプタ(ホウ素及びアルミニ
ウム)の合計濃度を算出する。リン及びヒ素の合計濃度
は、先に測定した抵抗率と後に測定した抵抗率の差を求
め、抵抗率の差よりリン及びヒ素の合計濃度から算出す
ることができる。As a method of measuring the amount of trace elements in silicon crystals for semiconductors, American Society for Testing and Materials, F574.
The -83 method is known. In this method, a silicon polycrystal is manufactured by a chemical vapor deposition method, a silicon single crystal is obtained from the silicon polycrystal by a zone-floating method, the resistivity is measured, and then the zone-floating method is further performed in vacuum. Are repeated several times to remove the donors (phosphorus and arsenic), and the resistivity is measured again to calculate the total concentration of the remaining acceptors (boron and aluminum). The total concentration of phosphorus and arsenic can be calculated from the total concentration of phosphorus and arsenic from the difference in resistivity by calculating the difference between the resistivity measured previously and the resistivity measured later.
【0005】しかし、上記した従来の化学的気相成長法
と帯域浮融法を組み合わせたシリコン単結晶の製造法で
あると、帯域浮融装置からの汚染があり、十分に純度が
良いものを得るのは、困難であった。また帯域浮融法
は、操作が煩雑で熟練を要し、時間も長くかかることも
問題である。However, in the method for producing a silicon single crystal which is a combination of the conventional chemical vapor deposition method and the zone-floating method described above, there is contamination from the zone-floating apparatus and a sufficiently high purity is required. It was difficult to get. In addition, the band floatation method is also problematic in that the operation is complicated, requires skill, and takes a long time.
【0006】また上記した従来の微量元素の量を測定す
る方法では、以下のような欠点があり、精度の高い測定
を必要とされる超微量元素の定量には適さない。化学的
気相成長法で生成されたシリコン多結晶中の超微量元素
の濃度は、シリコン多結晶の夫々の結晶により異なるこ
とがある。このようなシリコン多結晶を帯域浮融法によ
り連続的に単結晶化すると、後から単結晶化するシリコ
ン多結晶中の超微量元素の濃度は、先に単結晶化したシ
リコン多結晶中に含まれる微量元素の濃度の影響を受け
ることになる。さらにリン、ヒ素、ホウ素は帯域浮融法
を行なう方向に偏析するため、実際の濃度は偏析による
影響を考慮しなければならない。また抵抗率を測定する
に際し、超微量元素がかなり少量であると抵抗率が大き
くなり、5000Ω・cm程度以上になるとジュール熱
が発生し、測定値に誤差が生じてしまう。算出される微
量元素の量は各元素の濃度ではなく、リンとヒ素の合計
濃度、およびホウ素とアルミニウムの合計濃度しか算出
できない。Further, the above-mentioned conventional method for measuring the amount of trace elements has the following drawbacks and is not suitable for quantitative determination of ultra-trace elements which requires highly accurate measurement. The concentration of the ultratrace element in the silicon polycrystal produced by the chemical vapor deposition method may vary depending on each crystal of the silicon polycrystal. When such a silicon polycrystal is continuously single-crystallized by the zone-floating method, the concentration of the ultratrace element in the silicon polycrystal, which is subsequently single-crystallized, is contained in the previously single-crystallized silicon polycrystal. It will be affected by the concentration of trace elements. Further, phosphorus, arsenic, and boron segregate toward the zone float method, so the actual concentration must take into consideration the effect of segregation. Further, when measuring the resistivity, if the amount of the ultratrace element is considerably small, the resistivity becomes large, and if it exceeds about 5000 Ω · cm, Joule heat is generated and an error occurs in the measured value. The calculated amounts of trace elements are not the concentration of each element, but only the total concentration of phosphorus and arsenic and the total concentration of boron and aluminum.
【0007】[0007]
【発明が解決しようとする課題】本発明は前記の課題を
解決するためなされたもので、帯域浮融法を使うことな
く、化学的気相成長法により直接に半導体用シリコン単
結晶を製造する方法を提供することを目的とする。ま
た、化学的気相成長法により製造されたシリコン単結晶
中の超微量元素(リン、ヒ素、ホウ素、アルミニウム
等)、およびシリコン単結晶を製造する際の原料となる
クロロシラン類中の超微量元素(リン、ヒ素、ホウ素、
アルミニウム等)を分別定量する方法を提供するもので
ある。The present invention has been made to solve the above-mentioned problems, and directly produces a silicon single crystal for semiconductors by a chemical vapor deposition method without using a zone-floating-fusing method. The purpose is to provide a method. In addition, ultra-trace elements (phosphorus, arsenic, boron, aluminum, etc.) in silicon single crystals produced by chemical vapor deposition, and ultra-trace elements in chlorosilanes used as raw materials for producing silicon single crystals. (Phosphorus, arsenic, boron,
The present invention provides a method for separately quantifying aluminum).
【0008】[0008]
【課題を解決するための手段】前記の目的を達成するた
めになされた本発明の化学的気相成長法によるシリコン
単結晶の製造方法は、ジクロロシラン、トリクロロシラ
ンおよびテトラクロロシランから選ばれる少なくとも1
種類のクロロシランガスと水素ガスを高温度で混合して
生成する塩化水素ガスとシリコンを、シリコン単結晶の
種棒に供給し、塩化水素ガスでシリコン単結晶の表面を
エッチングしつつシリコン単結晶を成長させてゆく。The method for producing a silicon single crystal by the chemical vapor deposition method of the present invention, which has been made to achieve the above-mentioned object, comprises at least one selected from dichlorosilane, trichlorosilane and tetrachlorosilane.
Hydrogen chloride gas and silicon produced by mixing different types of chlorosilane gas and hydrogen gas at high temperature are supplied to a silicon single crystal seed rod, and the silicon single crystal is etched while etching the surface of the silicon single crystal with hydrogen chloride gas. Let it grow.
【0009】また、本発明のシリコン単結晶中の超微量
元素(リン、ヒ素、ホウ素、アルミニウム等)の分別定
量方法は、化学的気相成長法により製造したシリコン単
結晶に、照射面におけるエネルギーが3100〜335
8mW/cm2 のレーザー光線を照射し、発光したスペ
クトルを光電的に測定してシリコン単結晶中の超微量元
素を定量する。The method for fractionating and quantifying ultratrace elements (phosphorus, arsenic, boron, aluminum, etc.) in a silicon single crystal according to the present invention is a method for quantifying the energy of an irradiated surface of a silicon single crystal produced by chemical vapor deposition. Is 3100-335
An ultratrace element in a silicon single crystal is quantified by irradiating a laser beam of 8 mW / cm 2 and photoelectrically measuring the emitted spectrum.
【0010】また、本発明のクロロシランガス中の超微
量元素(リン、ヒ素、ホウ素、アルミニウム等)の分別
定量方法は、クロロシランガスと水素ガスを高温度で混
合して生成する塩化水素ガスとシリコンを、シリコン単
結晶の種棒に供給し、塩化水素ガスでシリコン単結晶の
表面をエッチングしつつシリコン単結晶を成長させて製
造したシリコン単結晶に、照射面におけるエネルギーが
3100〜3358mW/cm2 のレーザー光線を照射
し、発光したスペクトルを光電的に測定してシリコン単
結晶中の超微量元素を定量し、その超微量元素量をクロ
ロシランガス中の超微量元素の量に換算する。Further, the method for fractionating and quantifying ultratrace elements (phosphorus, arsenic, boron, aluminum, etc.) in chlorosilane gas of the present invention is a hydrogen chloride gas and silicon produced by mixing chlorosilane gas and hydrogen gas at high temperature. To a seed rod of a silicon single crystal, and a silicon single crystal produced by growing the silicon single crystal while etching the surface of the silicon single crystal with hydrogen chloride gas has an energy on the irradiation surface of 3100 to 3358 mW / cm 2 Is irradiated with the laser beam and the emitted spectrum is photoelectrically measured to quantify the ultra-trace element in the silicon single crystal, and the ultra-trace element amount is converted into the amount of the ultra-trace element in the chlorosilane gas.
【0011】原料ガス中のクロロシランガスがジクロロ
シランである場合、その混合割合がジクロロシランと水
素ガスの合計量中に5.0〜5.5モル%、ジクロロシ
ランと水素ガスの合計流量が800〜850リットル/
時間、温度が1250〜1280℃であることが好ましい。原料
ガス中のクロロシランガスがトリクロロシランである場
合、その混合割合がトリクロロシランと水素ガスの合計
量中に9.0〜9.5モル%、トリクロロシランと水素
ガスの合計流量が 960〜990 リットル/時間、前記温度
が1200〜1250℃であることが好ましい。原料ガ
ス中のクロロシランガスがテトラクロロシランである場
合、その混合割合がテトラクロロシランと水素ガスの合
計量中に12.0〜12.5モル%、テトラクロロシラ
ンと水素ガスの合計流量が1100〜1150リットル
/時間、前記温度が1150〜1200℃であることが
好ましい。When the chlorosilane gas in the raw material gas is dichlorosilane, the mixing ratio is 5.0 to 5.5 mol% in the total amount of dichlorosilane and hydrogen gas, and the total flow rate of dichlorosilane and hydrogen gas is 800. ~ 850 liters /
The time and temperature are preferably 1250 to 1280 ° C. When the chlorosilane gas in the raw material gas is trichlorosilane, the mixing ratio is 9.0 to 9.5 mol% in the total amount of trichlorosilane and hydrogen gas, and the total flow rate of trichlorosilane and hydrogen gas is 960 to 990 liters. / Hour, the temperature is preferably 1200 to 1250 ° C. When the chlorosilane gas in the raw material gas is tetrachlorosilane, the mixing ratio is 12.0 to 12.5 mol% in the total amount of tetrachlorosilane and hydrogen gas, and the total flow rate of tetrachlorosilane and hydrogen gas is 1100 to 1150 liters. / Hour, the temperature is preferably 1150 to 1200 ° C.
【0012】クロロシランは水素ガスと混合されて高温
でシリコンに還元され、このとき同時に塩化水素が副生
する。副生した塩化水素がシリコン単結晶棒をエッチン
グしながら、シリコンはシリコン単結晶棒上に化学的気
相成長してシリコン単結晶になる。単結晶が得られる条
件は、副生した塩化水素の量が最大になってエッチング
される量より、化学的気相成長の量が大きく維持されて
いることである。Chlorosilane is mixed with hydrogen gas and reduced to silicon at high temperature, and at the same time, hydrogen chloride is by-produced. While hydrogen chloride generated as a by-product etches the silicon single crystal rod, silicon chemically vapor-deposits on the silicon single crystal rod to become a silicon single crystal. The condition for obtaining a single crystal is that the amount of chemical vapor deposition is maintained larger than the amount of etching by which the amount of by-produced hydrogen chloride is maximized.
【0013】図1に示すようにシリコン単結晶棒1は、
直径が4mm程度の単結晶棒をコの字型に曲げたものを
伏せて使用する。同図で保持構造の縦aと横bの長さの
比は、前記のエッチングと化学的気相成長法の効果を良
くするためにガスフローの流体力学的見地から重要なも
のである。縦と横の長さの比a/bは3:1〜12:1
であることが好ましい。シリコン単結晶棒の断面形状は
丸型、角型のどちらでもかまわない。As shown in FIG. 1, the silicon single crystal ingot 1 has
A single crystal rod with a diameter of about 4 mm bent in a U-shape is used by lying down. In the figure, the ratio of the length a to the length b of the holding structure is important from the hydrodynamic viewpoint of the gas flow in order to improve the effects of the etching and the chemical vapor deposition method. The ratio a / b of length to width is 3: 1 to 12: 1.
Is preferred. The cross-sectional shape of the silicon single crystal ingot may be round or square.
【0014】上記の条件で化学的気相成長法によって得
られたシリコン単結晶に、照射面におけるエネルギーが
3100〜3358mW/cm2 のレーザー光線を照射
したときにS/N比が良好なスペクトルが与えられる。
このシリコン単結晶は結晶欠陥を含んでいるため、低エ
ネルギーなレーザー光線を照射してもS/N比が低いス
ペクトルしか得られないので、超微量元素を分別定量す
ることができない。超微量元素の定量は、液体ヘリウム
(4°K)中でケイ素の価電子帯と伝導帯間の遷移エネ
ルギー(バンドギャップ)以上のエネルギーを与えら
れ、自由励起子が超微量元素に捕らえられた束縛励起子
が再結合後、発光し、この発光スペクトルの強度を測定
することにより行なわれる。定量を行なうためには、あ
らかじめ超微量元素の濃度が既知である標準物質による
キャリブレーションを行なう。結晶欠陥を含むシリコン
単結晶が低エネルギ−なレーザー光線を照射しても良好
なスペクトルが与えられないのは、前記の束縛励起子が
結晶欠陥、転移欠陥に伴う局所歪みにエネルギーを与え
る非発光過程を経るためであると考えられる。When a silicon single crystal obtained by the chemical vapor deposition method under the above conditions is irradiated with a laser beam having an energy on the irradiation surface of 3100 to 3358 mW / cm 2 , a spectrum having a good S / N ratio is given. Be done.
Since this silicon single crystal contains crystal defects, only a spectrum having a low S / N ratio can be obtained even when irradiated with a low energy laser beam, and thus it is not possible to separately quantify ultratrace elements. For the determination of ultratrace elements, free excitons were trapped in ultratrace elements by giving energy above the transition energy (band gap) between the valence band and conduction band of silicon in liquid helium (4 ° K). After the bound excitons recombine, they emit light, and the intensity of this emission spectrum is measured. To perform the quantification, calibration with a standard substance whose concentration of the ultratrace element is known in advance is performed. The reason why a silicon single crystal containing a crystal defect does not give a good spectrum even when irradiated with a low energy laser beam is that the above-mentioned bound excitons give energy to local strains associated with crystal defects and transition defects It is thought to be due to going through.
【0015】そこでこの束縛励起子の再結合・遷移の効
率を向上させる目的で、より強度なレーザー光線を照射
したところ、若干のS/N比が向上した。さらにS/N
比を向上させるために分光学的要因、検出器の応答性な
どについて詳細な検討を行なったところ、S/N比がさ
らに向上し良好なスペクトルを与え、超微量元素量を測
定することができるに至った。レーザー光線はアルゴン
レーザーが好ましい。波長5145Åにおいて励起用レ
ーザー照射出力は600〜650mW(レーザーから試
料表面までの光路長が1.3m)である。分光器(集光
系に8群8枚の非球面レンズを使用し、グレーティング
が1200本/mm)の入口及び出口のスリット幅が600
〜700μm、分光器の波長送り速度が0.5〜0.7
Å/秒である。検出器に光電増倍管を使用し、光電増倍
管の時定数は3〜4秒である。Therefore, when a more intense laser beam was irradiated for the purpose of improving the efficiency of recombination / transition of the bound excitons, the S / N ratio was slightly improved. Further S / N
In order to improve the ratio, a detailed study was conducted on spectroscopic factors, detector response, etc., and the S / N ratio was further improved to give a good spectrum, and it was possible to measure the amount of ultratrace elements. Came to. The laser beam is preferably an argon laser. The excitation laser irradiation output is 600 to 650 mW (optical path length from the laser to the sample surface is 1.3 m) at a wavelength of 5145 Å. The slit width at the entrance and exit of the spectroscope (using 8 aspherical lenses in 8 groups for the condensing system and having 1200 gratings / mm) is 600
~ 700 μm, wavelength feed rate of spectroscope is 0.5 ~ 0.7
Å / second. A photomultiplier tube is used for the detector, and the time constant of the photomultiplier tube is 3 to 4 seconds.
【0016】[0016]
【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.
【0017】実施例1 固相としてシリコン単結晶の種棒を使用し、その保持構
造(図1参照)は縦と横の長さの比が6であった。原料
ガスとしてトリクロロシランと水素ガスとの混合ガスを
使用した。トリクロロシランの混合割合は、原料ガスの
合計量に対して9.0モル%とした。原料ガスの流量は
960リットル/時間、温度は1200℃に設定し、化
学的気相成長法によりシリコン単結晶を生成させた。生
成したシリコン単結晶に表1に示す条件でレーザー光線
を照射し、発光したスペクトルを光電的に測定して超微
量元素の濃度を分別定量した。測定結果のS/N比は表
1に示す。測定結果は図2のチャート図に示してある。
超微量元素の濃度は表2に示してある。Example 1 A seed rod of silicon single crystal was used as the solid phase, and the holding structure (see FIG. 1) had a length to width ratio of 6. A mixed gas of trichlorosilane and hydrogen gas was used as a raw material gas. The mixing ratio of trichlorosilane was 9.0 mol% with respect to the total amount of raw material gas. The flow rate of the raw material gas was set to 960 liters / hour, the temperature was set to 1200 ° C., and a silicon single crystal was produced by the chemical vapor deposition method. The generated silicon single crystal was irradiated with a laser beam under the conditions shown in Table 1, and the emitted spectrum was photoelectrically measured to separately and quantitatively determine the concentration of the ultratrace element. The S / N ratio of the measurement result is shown in Table 1. The measurement results are shown in the chart of FIG.
The concentrations of ultratrace elements are shown in Table 2.
【0018】比較例1 固相としてシリコン多結晶の種棒を使用し、化学的気相
成長法により、試料のトリクロロシランを水素ガスによ
り加熱還元させてシリコン多結晶を生成させた。このシ
リコン多結晶の一部をサンプリングし、帯域浮融法によ
りシリコン単結晶を得た。シリコン単結晶の抵抗率を測
定後、さらに真空中で帯域浮融法を数回繰り返してドナ
ー(リン及びヒ素)を除去し、再度、抵抗率を測定して
残存するアクセプタ(ホウ素及びアルミニウム)の合計
濃度を算出した。リン及びヒ素の合計濃度は、先に測定
した抵抗率と後に測定した抵抗率の差を求め、抵抗率の
差から算出された。結果を表2に示す。Comparative Example 1 A silicon polycrystalline seed rod was used as a solid phase, and the sample trichlorosilane was heated and reduced with hydrogen gas by a chemical vapor deposition method to generate a silicon polycrystalline. A part of this silicon polycrystal was sampled and a silicon single crystal was obtained by the zone float method. After measuring the resistivity of the silicon single crystal, the band-floating method is further repeated several times in vacuum to remove the donors (phosphorus and arsenic), and the resistivity is measured again to measure the residual acceptors (boron and aluminum). The total concentration was calculated. The total concentration of phosphorus and arsenic was calculated from the difference in resistivity by calculating the difference between the previously measured resistivity and the later measured resistivity. The results are shown in Table 2.
【0019】表2で表す濃度はppta(part per trillio
n atomic)で、これを抵抗値に換算する計算は、下記式
のとおりである。The concentrations shown in Table 2 are ppta (part per trillio
n atomic), and the calculation to convert this into a resistance value is as follows.
【0020】 抵抗値=1000×93/{[P+As(ppta)]−[B+Al(ppta)]} 実施例1で製造したシリコン単結晶の抵抗値 =1000×93/{[104 + 2]−[21+2 ]}= 1120(Ω・cm) 比較例1で製造したシリコン単結晶の抵抗値 =1000×93/{[170 ]−[38]}= 704 (Ω・cm) 表2には実測抵抗値も併せて示してある。実施例1によ
る定量で得た濃度から換算した抵抗値が比較例1による
定量で得た濃度から換算した抵抗値より、実測抵抗値に
近いことが解る。Resistance value = 1000 × 93 / {[P + As (ppta)] − [B + Al (ppta)]} Resistance value of the silicon single crystal manufactured in Example 1 = 1000 × 93 / {[104 + 2]-[ 21 + 2]} = 1120 (Ω · cm) Resistance value of the silicon single crystal produced in Comparative Example 1 = 1000 × 93 / {[170] − [38]} = 704 (Ω · cm) Table 2 shows measured resistance values. Is also shown. It can be seen that the resistance value converted from the concentration obtained by the quantification according to Example 1 is closer to the measured resistance value than the resistance value converted from the concentration obtained by the quantification according to Comparative Example 1.
【0021】比較例2 実施例1と同様にして化学的気相成長法でシリコン単結
晶を生成させた。生成したシリコン単結晶に表1に示す
条件でレーザー光線を照射し、発光したスペクトルを光
電的に測定して超微量元素の濃度を分別定量した。測定
結果のS/N比は表1に示す。測定結果は図2のチャー
ト図に示してある。Comparative Example 2 In the same manner as in Example 1, a silicon single crystal was produced by the chemical vapor deposition method. The generated silicon single crystal was irradiated with a laser beam under the conditions shown in Table 1, and the emitted spectrum was photoelectrically measured to separately and quantitatively determine the concentration of the ultratrace element. The S / N ratio of the measurement result is shown in Table 1. The measurement results are shown in the chart of FIG.
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【表2】 [Table 2]
【0024】表2からわかるように定量下限は、比較例
1の方法では20pptaであり、しかもリンとヒ素と
の合計量としての濃度、及びホウ素とアルミニウムの合
計量としての濃度である。本発明方法の定量下限は2p
ptaであり、リン、ヒ素、ホウ素、及びアルミニウム
の各々の濃度として測定できる。このことはクロロシラ
ンの製造工程管理、及びシリコン単結晶の製造工程管理
に大きく貢献するものである。As can be seen from Table 2, the lower limit of quantification is 20 ppta in the method of Comparative Example 1, and is the concentration as the total amount of phosphorus and arsenic and the concentration as the total amount of boron and aluminum. The lower limit of quantification of the method of the present invention is 2 p
pta, which can be measured as the concentration of phosphorus, arsenic, boron, and aluminum. This greatly contributes to the production process control of chlorosilane and the production process of silicon single crystal.
【0025】[0025]
【発明の効果】以上、詳細に説明したように本発明の半
導体用シリコン単結晶の製造方法は、帯域浮融法を使う
ことなく、化学的気相成長法により直接、シリコン単結
晶を製造するため、帯域浮融装置からの汚染がなくな
り、純度の良いものが得られる。また帯域浮融法が省略
できるため、煩雑で熟練を要する操作から解放され、作
業時間を短縮できる。As described above in detail, in the method for producing a silicon single crystal for semiconductor according to the present invention, the silicon single crystal is directly produced by the chemical vapor deposition method without using the zone-floating-fusing method. Therefore, contamination from the zone floater and blower is eliminated, and a high purity one can be obtained. Further, since the band floating method can be omitted, the complicated and skilled operation is released, and the working time can be shortened.
【0026】さらに本発明の原料クロロシラン類中の超
微量元素と製造されたシリコン単結晶中の超微量元素の
分別定量方法によれば、pptaの精度まで正確に測定
することができ、結晶欠陥を含むシリコン結晶でもその
中に含まれる超微量元素を同様に測定できる。Further, according to the method of fractionating and quantifying the ultratrace element in the raw material chlorosilanes and the ultratrace element in the produced silicon single crystal of the present invention, the accuracy of ppta can be accurately measured, and the crystal defects can be detected. The ultra-trace element contained in the contained silicon crystal can be similarly measured.
【0027】目的の半導体の電気特性を得るために、原
料のクロロシラン類には超微量元素であるリン、ヒ素、
ホウ素、アルミニウムが必要に応じてさらにドーパント
として添加されるが、本発明の超微量元素の分別定量方
法によれば、これらの元素の既存量が正確にわかってい
るので、ドーパントとしての添加量が正確に決定でき
る。In order to obtain the desired electrical characteristics of the semiconductor, the raw material chlorosilanes include ultratrace elements such as phosphorus, arsenic,
Boron and aluminum are further added as dopants as needed, but according to the method for fractionating and quantifying ultratrace elements of the present invention, the existing amounts of these elements are accurately known. Can be accurately determined.
【図1】本発明を適用するシリコン単結晶棒の保持構造
である。FIG. 1 is a holding structure for a silicon single crystal ingot to which the present invention is applied.
【図2】本発明を適用するシリコン単結晶にレーザー光
線を照射したスペクトルのチャート図である。FIG. 2 is a chart of a spectrum obtained by irradiating a silicon single crystal to which the present invention is applied with a laser beam.
1…シリコン単結晶棒。 1 ... Silicon single crystal rod.
Claims (8)
びテトラクロロシランから選ばれる少なくとも1種類の
クロロシランガスと水素ガスを高温度で混合して生成す
る塩化水素ガスとシリコンを、シリコン単結晶の種棒に
供給し、塩化水素ガスでシリコン単結晶の表面をエッチ
ングしつつシリコン単結晶を成長させてゆくことを特徴
とする化学的気相成長法によるシリコン単結晶の製造方
法。1. A hydrogen chloride gas produced by mixing at least one kind of chlorosilane gas selected from dichlorosilane, trichlorosilane and tetrachlorosilane and hydrogen gas at high temperature and silicon are supplied to a seed rod of a silicon single crystal. A method for producing a silicon single crystal by a chemical vapor deposition method, which comprises growing the silicon single crystal while etching the surface of the silicon single crystal with hydrogen chloride gas.
であり、その混合割合がジクロロシランと水素ガスの合
計量中に5.0〜5.5モル%、ジクロロシランと水素
ガスの合計流量が800〜850リットル/時間、前記
温度が1250〜1280℃であることを特徴とする請求項1に
記載の化学的気相成長法によるシリコン単結晶の製造方
法。2. The chlorosilane gas is dichlorosilane, the mixing ratio thereof is 5.0 to 5.5 mol% in the total amount of dichlorosilane and hydrogen gas, and the total flow rate of dichlorosilane and hydrogen gas is 800 to 850. The method for producing a silicon single crystal by the chemical vapor deposition method according to claim 1, wherein the temperature is 1250 to 1280 ° C. in liter / hour.
ンであり、その混合割合がトリクロロシランと水素ガス
の合計量中に9.0〜9.5モル%、トリクロロシラン
と水素ガスの合計流量が960〜990リットル/時
間、前記温度が1200〜1250℃であることを特徴
とする請求項1に記載の化学的気相成長法によるシリコ
ン単結晶の製造方法。3. The chlorosilane gas is trichlorosilane, and the mixing ratio thereof is 9.0 to 9.5 mol% in the total amount of trichlorosilane and hydrogen gas, and the total flow rate of trichlorosilane and hydrogen gas is 960 to 990. The method for producing a silicon single crystal by the chemical vapor deposition method according to claim 1, wherein the temperature is 1200 to 1250 ° C. in liter / hour.
ランであり、その混合割合がテトラクロロシランと水素
ガスの合計量中に12.0〜12.5モル%、テトラク
ロロシランと水素ガスの合計流量が1100〜1150
リットル/時間、前記温度が1150〜1200℃であ
ることを特徴とする請求項1に記載の化学的気相成長法
によるシリコン単結晶の製造方法。4. The chlorosilane gas is tetrachlorosilane, the mixing ratio thereof is 12.0 to 12.5 mol% in the total amount of tetrachlorosilane and hydrogen gas, and the total flow rate of tetrachlorosilane and hydrogen gas is 1100 to 1150.
The method for producing a silicon single crystal by the chemical vapor deposition method according to claim 1, wherein the temperature is 1150 to 1200 ° C. in liter / hour.
ン単結晶に、照射面におけるエネルギーが3100〜3
358mW/cm2 のレーザー光線を照射し、発光した
スペクトルを光電的に測定してシリコン単結晶中の超微
量元素を定量することを特徴とするシリコン単結晶中の
超微量元素の分別定量方法。5. A silicon single crystal produced by a chemical vapor deposition method has an irradiation surface energy of 3100-3.
A method for fractionating and quantifying an ultratrace element in a silicon single crystal, which comprises irradiating a laser beam of 358 mW / cm 2 and photoelectrically measuring the emitted spectrum to quantify the ultratrace element in the silicon single crystal.
とを特徴とする請求項5に記載のシリコン単結晶中の超
微量元素の分別定量方法。6. The method for fractionating and quantifying ultratrace elements in a silicon single crystal according to claim 5, wherein the laser beam is an Ar laser.
混合して生成する塩化水素ガスとシリコンを、シリコン
単結晶の種棒に供給し、塩化水素ガスでシリコン単結晶
の表面をエッチングしつつシリコン単結晶を成長させて
製造したシリコン単結晶に、照射面におけるエネルギー
が3100〜3358mW/cm2 のレーザー光線を照
射し、発光したスペクトルを光電的に測定してシリコン
単結晶中の超微量元素を定量し、その超微量元素量をク
ロロシランガス中の超微量元素の量に換算することを特
徴とするクロロシランガス中の超微量元素の分別定量方
法。7. Hydrogen chloride gas and silicon produced by mixing chlorosilane gas and hydrogen gas at a high temperature are supplied to a seed rod of a silicon single crystal, and silicon is etched while etching the surface of the silicon single crystal with hydrogen chloride gas. A silicon single crystal produced by growing a single crystal is irradiated with a laser beam having an energy of 3100 to 3358 mW / cm 2 on the irradiation surface, and the emitted spectrum is photoelectrically measured to quantify ultratrace elements in the silicon single crystal. Then, the ultratrace element amount in the chlorosilane gas is converted into the amount of the ultratrace element in the chlorosilane gas.
とを特徴とする請求項7に記載のクロロシランガス中の
超微量元素の分別定量方法。8. The method for fractionating and quantifying ultratrace elements in chlorosilane gas according to claim 7, wherein the laser beam is an Ar laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1968392A JP2650003B2 (en) | 1991-02-14 | 1992-02-05 | Method for producing silicon single crystal by chemical vapor deposition method and method for fractional determination of ultratrace elements in chlorosilanes as raw materials and ultratrace elements in produced silicon single crystal |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2065291 | 1991-02-14 | ||
JP3-20652 | 1991-02-14 | ||
JP1968392A JP2650003B2 (en) | 1991-02-14 | 1992-02-05 | Method for producing silicon single crystal by chemical vapor deposition method and method for fractional determination of ultratrace elements in chlorosilanes as raw materials and ultratrace elements in produced silicon single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0558789A true JPH0558789A (en) | 1993-03-09 |
JP2650003B2 JP2650003B2 (en) | 1997-09-03 |
Family
ID=26356527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1968392A Expired - Fee Related JP2650003B2 (en) | 1991-02-14 | 1992-02-05 | Method for producing silicon single crystal by chemical vapor deposition method and method for fractional determination of ultratrace elements in chlorosilanes as raw materials and ultratrace elements in produced silicon single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2650003B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5639698A (en) * | 1993-02-15 | 1997-06-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor, semiconductor device, and method for fabricating the same |
US5843225A (en) * | 1993-02-03 | 1998-12-01 | Semiconductor Energy Laboratory Co., Ltd. | Process for fabricating semiconductor and process for fabricating semiconductor device |
US5915174A (en) * | 1994-09-30 | 1999-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for producing the same |
US6168980B1 (en) | 1992-08-27 | 2001-01-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for forming the same |
US6610142B1 (en) | 1993-02-03 | 2003-08-26 | Semiconductor Energy Laboratory Co., Ltd. | Process for fabricating semiconductor and process for fabricating semiconductor device |
US6997985B1 (en) * | 1993-02-15 | 2006-02-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor, semiconductor device, and method for fabricating the same |
JP2011157235A (en) * | 2010-02-02 | 2011-08-18 | Hitachi Kokusai Electric Inc | Apparatus and method for producing crystal |
US8956458B2 (en) | 2011-02-28 | 2015-02-17 | Toyota Jidosha Kabushiki Kaisha | Vapor deposition device and vapor deposition method |
-
1992
- 1992-02-05 JP JP1968392A patent/JP2650003B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6168980B1 (en) | 1992-08-27 | 2001-01-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for forming the same |
US5843225A (en) * | 1993-02-03 | 1998-12-01 | Semiconductor Energy Laboratory Co., Ltd. | Process for fabricating semiconductor and process for fabricating semiconductor device |
US6610142B1 (en) | 1993-02-03 | 2003-08-26 | Semiconductor Energy Laboratory Co., Ltd. | Process for fabricating semiconductor and process for fabricating semiconductor device |
US5639698A (en) * | 1993-02-15 | 1997-06-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor, semiconductor device, and method for fabricating the same |
US5897347A (en) * | 1993-02-15 | 1999-04-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor, semiconductor device, and method for fabricating the same |
US5956579A (en) * | 1993-02-15 | 1999-09-21 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor, semiconductor device, and method for fabricating the same |
US6084247A (en) * | 1993-02-15 | 2000-07-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having a catalyst enhanced crystallized layer |
US6997985B1 (en) * | 1993-02-15 | 2006-02-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor, semiconductor device, and method for fabricating the same |
US5915174A (en) * | 1994-09-30 | 1999-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for producing the same |
US6316789B1 (en) | 1994-09-30 | 2001-11-13 | Semiconductor Energy Laboratory Co. Ltd. | Semiconductor device and method for producing the same |
JP2011157235A (en) * | 2010-02-02 | 2011-08-18 | Hitachi Kokusai Electric Inc | Apparatus and method for producing crystal |
US8956458B2 (en) | 2011-02-28 | 2015-02-17 | Toyota Jidosha Kabushiki Kaisha | Vapor deposition device and vapor deposition method |
Also Published As
Publication number | Publication date |
---|---|
JP2650003B2 (en) | 1997-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Becker et al. | Large-scale production of highly enriched 28Si for the precise determination of the Avogadro constant | |
CA1194385A (en) | Device fabrication using gas-solid processes | |
US4100310A (en) | Method of doping inpurities | |
CN103827661B (en) | Determine the dopant content of compensation silicon sample | |
JP2650003B2 (en) | Method for producing silicon single crystal by chemical vapor deposition method and method for fractional determination of ultratrace elements in chlorosilanes as raw materials and ultratrace elements in produced silicon single crystal | |
KR102017957B1 (en) | Calibration curve determination method, carbon concentration measurement method, and silicon wafer-manufacturing method | |
JP2015105917A (en) | Method for measuring surface temperature of polycrystalline silicon rod and method for producing polycrystalline silicon | |
Colley et al. | Calibration of the photoluminescence technique for measuring B, P and Al concentrations in Si in the range 1012 to 1015 cm-3 using Fourier transform spectroscopy | |
KR20120050383A (en) | Method for the determination of impurities in silicon | |
Smith Jr et al. | Inelastic light scattering studies of chemical vapor deposition systems | |
Vella et al. | Zero‐phonon absorption transitions in S 2− and Se 2− molecules dissolved in potassium iodide crystals | |
US5483918A (en) | Method for producing single-crystal silicon by chemical vapor deposition and method for fractional determination of ultratrace elements present in chlorosilanes as starting materials and single-crystal silicon produced | |
CA1319278C (en) | Trace metals analysis in semiconductor material | |
JP2790020B2 (en) | Method for measuring substitutional carbon concentration in silicon single crystal and automatic measuring device | |
Marshall et al. | Multi-element atomic fluorescence spectroscopy: Stimulation of atomic fluorescence of mixtures of bismuth, mercury, selenium and tellurium; cadmium and zinc; gallium and indium by means of multi-element microwaveexcited electrode less discharge tubes | |
JPS5860550A (en) | Measuring method for density of impurities in epitaxial silicon crystal | |
Meier et al. | The ¹D‐³S transition in atomic oxygen: A new method of measuring the O abundance in planetary thermospheres | |
Bruno et al. | Phosphorus ablation process as a hydrogen atom probe in a remote H2 plasma reactor | |
US12180078B2 (en) | Process for producing polycrystalline silicon | |
Taddia | Determination of silicon in gallium arsenide by electrothermal atomisation atomic absorption spectrometry using the L'vov platform | |
Stinson et al. | Sulfur hexafluoride etching effects in silicon | |
Liu et al. | Polysilicon and Its Characterization Methods | |
WO2019171880A1 (en) | Oxygen concentration evaluation method | |
JP2833479B2 (en) | Liquid phase epitaxial growth method for controlling Si concentration in GaP single crystal layer | |
Becker et al. | The Avogadro problem: Summary of tests on crystal imperfections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080516 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090516 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100516 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |