[go: up one dir, main page]

JPH0556004B2 - - Google Patents

Info

Publication number
JPH0556004B2
JPH0556004B2 JP8239189A JP8239189A JPH0556004B2 JP H0556004 B2 JPH0556004 B2 JP H0556004B2 JP 8239189 A JP8239189 A JP 8239189A JP 8239189 A JP8239189 A JP 8239189A JP H0556004 B2 JPH0556004 B2 JP H0556004B2
Authority
JP
Japan
Prior art keywords
electrical steel
magnetic
steel sheets
laminated
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8239189A
Other languages
Japanese (ja)
Other versions
JPH02260612A (en
Inventor
Yasuo Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8239189A priority Critical patent/JPH02260612A/en
Publication of JPH02260612A publication Critical patent/JPH02260612A/en
Publication of JPH0556004B2 publication Critical patent/JPH0556004B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、変圧器やアクチユエータ等の電気機
器に用いられる電磁積層鉄心に関する。 〔従来の技術〕 電気機器に用いられる電磁鋼板には、無方向性
電磁鋼板と方向性電磁鋼板とがある。 これらの電磁鋼板の磁気特性は、鉄の結晶の揃
い方によつて左右される。鉄の結晶は立方体の各
頂点とその中心に鉄の原子が配列された体心立方
格子と呼ばれる構造を有している。鉄中の磁力線
の透し易さは、磁化の方向が、結晶中の原子配列
方向(結晶方位)で異なる。稜の方向〔100〕が
最も透し易く、次いで面対角線方向〔110〕、体対
角方向〔111〕が最も悪い。 磁力線も最も透し易い稜方向〔100〕を圧延方
向に整然と揃えた電磁鋼板を方向性(一方向性)
電磁鋼板と言う。また、この方向がランダムの電
磁鋼板を無方向性電磁鋼板と言う。 一方向性電磁鋼板は圧延方向(長手方向)の磁
性は良いが、その他の方向、例えば、圧延と直角
方向(幅方向)あるいは厚み方向は非常に悪い。
これに対し、無方向性電磁鋼板は、圧延方向が若
干良い磁性を示すものの、殆ど全方向均等であ
る。 一般に変圧器は磁力線の方向が常に一定に流れ
るので、その方向と一方向性電磁鋼板の圧延方向
を合致させて使用する。一方、モーター等の回転
機は磁力線の方向が常に変化しているので、無方
向性電磁鋼板を使用する。 一方向性電磁鋼板を用いる場合、巻鉄心型変圧
器はその磁束の方向を鋼板の磁化方向に合致させ
ることができるが、積層型鉄心に比べて製造方法
が複雑となる。そのため、鉄心をヨーク部(継鉄
部)とレグ部(脚鉄部)に分割し、それぞれに、
磁束の流れ方向に沿う磁化容易軸を有する電磁鋼
板を用い、これらを継いで鉄心を形成する構造と
したものがある。しかしながら、このような複雑
な形状の積層鉄心型変圧器においては、その製造
工程が複雑になるばかりでなく、継鉄部、脚鉄部
の接合部分において複雑な磁束の流れを呈し、必
ずしも磁気回路全体にわたつて磁気特性を保持す
ることができない。 このような従来の電磁鋼板に対し、二方向性電
磁鋼板が提案されている(例えば特公昭38−
21857号公報参照)。 これは、圧延方向と、それに直角な方向に磁化
容易軸を持つものである。この二方向性電磁鋼板
は、二方向で磁気特性が優れていることから、一
方向性電磁鋼板に比較して優れた特性を備えてお
り、変圧器の鉄心等の用途に適用することが期待
されている。 ところで、一方向性電磁鋼板においては、<100
>軸に張力を付与させると、磁区が細分化され、
鉄損、特に渦電流損のうち異常渦電流損が低下す
ることが知られている。この異常渦電流損は、磁
壁の移動に基づく渦電流損であり、磁区理論や磁
区観察が発展した最近に至つてその解析が行われ
てきたものである。方向性電磁鋼板においては、
この異常渦電流損が全体鉄損の約50%を占めてい
る。第6図はその様子を示すものである。この図
では、磁化容易軸<100>方向に張力を掛けると、
異常渦電流損が低下することが現れている。これ
は、張力を掛けると磁区に変形が生じ、磁化容易
軸<100>が張力の方向に揃うことによると考え
られる。 〔発明が解決しようとする問題点〕 一方向性電磁鋼板においては、このように一方
向に張力を掛けることにより異常渦電流損を低下
させることができるが、二方向性電磁鋼板では、
異常渦電流損を低下させようとすると、2つの磁
化容易軸の方向に同時に張力を加えなければなら
ず、現実的ではない。 そこで本発明は、力を付与する方向が一方向で
も、二方向に同時に張力効果を与えることによ
り、二方向性電磁鋼板の鉄損の低下を図ることを
目的とする。 〔課題を解決するための手段〕 本発明の積層鉄心は、以上の目的を達成するた
め、二方向性電磁鋼板を積層した鉄心において、
該鉄心の積層面に垂直に、0.3Kgf/cm2以上の面
圧を付与する手段を備えたことを特徴とする。 〔作用〕 本発明においては、積層鉄心に二方向性電磁鋼
板を使用し、積層鉄心の状態で、積層面に垂直に
面圧を与える。二方向性電磁鋼板では、磁化容易
軸が圧延方向とそれに直交する方向(幅方向)に
形成される。板厚方向に圧縮力を作用させれば、
板面の2つの磁化容易軸方向に張力が与えられた
と同等の効果が生じ、異常渦電流損を要因とする
鉄損の低下を図ることができる。 すなわち、面圧を付与することにより、板厚方
向の磁区は板面は平行な二方向の磁区に分かれ、
かつ、これらの磁区は細分化される。したがつ
て、二方向の特性が改善され、特に低磁場の磁化
特性が向上する。 第4図及び第5図は、3%Si二方向性電磁鋼板
をリング状に切り出し、積層して鉄心を形成し、
積層面に応力を付与して測定した磁気特性を示し
ている。第4図は面圧を変えて抗磁力Hcを測定
した結果であり、第5図は初期透磁力μiを測定し
た結果である。 これらのグラフから分かるように、面圧が0.3
Kgf/cm2のところで抗磁力Hcが急激に低下し、
初期透磁率μiが急増する変曲点があることが分か
る。 そこで、積層面に0.3Kgf/cm2以上の面圧を付
与すれば、磁気特性改善効果が得られることにな
る。 〔実施例〕 以下、本発明を実施例に基づいて具体的に説明
する。 C0.048重量%、Si3.40重量%、Mn0.14重量%、
酸可溶性Al0.023重量%、全N0.0035重量%、残
部Fe及び不可避的不純物からなる厚み1.65mmの熱
延板を、1070℃で2分間焼鈍し、熱間圧延方向と
同一方向に圧下率65%で冷間圧延した。次いで、
この圧延方向に交差する方向に圧下率60%で冷間
圧延し、0.23mmの最終板厚に仕上げた。この冷延
板を、湿水素雰囲気中810℃で90秒間脱炭焼鈍し
た。 脱炭焼鈍後、マグネシア系焼鈍分離型剤を鋼板
表面に塗布し、H2100%の雰囲気中で1200℃×20
時間の仕上げ焼鈍を行い、二次再結晶させた。こ
れにより、(100)<001>方位粒をもつ二方向性電
磁鋼板が得られた。そして、この二方向性電磁鋼
板を850℃及び600℃でそれぞれ1時間焼鈍した。
その結果を第1表に示す。
[Industrial Application Field] The present invention relates to an electromagnetic laminated core used in electrical equipment such as transformers and actuators. [Prior Art] There are two types of electrical steel sheets used in electrical equipment: non-oriented electrical steel sheets and grain-oriented electrical steel sheets. The magnetic properties of these electrical steel sheets depend on the alignment of iron crystals. Iron crystals have a structure called a body-centered cubic lattice, in which iron atoms are arranged at each vertex of a cube and at its center. The ease with which magnetic lines of force penetrate through iron varies depending on the direction of magnetization and the direction of atomic arrangement in the crystal (crystal orientation). The ridge direction [100] is the easiest to see through, followed by the plane diagonal direction [110] and the body diagonal direction [111] the worst. Directional (unidirectional) electromagnetic steel sheet in which the ridge direction [100], where magnetic lines of force are most transparent, is neatly aligned in the rolling direction.
It is called electromagnetic steel sheet. Further, an electrical steel sheet in which the direction is random is called a non-oriented electrical steel sheet. Unidirectional electrical steel sheets have good magnetism in the rolling direction (longitudinal direction), but are very poor in other directions, such as the direction perpendicular to rolling (width direction) or the thickness direction.
On the other hand, non-oriented electrical steel sheets show slightly better magnetism in the rolling direction, but are almost uniform in all directions. Generally, in a transformer, the direction of the lines of magnetic force always flows in a constant manner, so the direction is matched with the rolling direction of the grain-oriented electrical steel sheet. On the other hand, in rotating machines such as motors, the direction of magnetic lines of force is constantly changing, so non-oriented electrical steel sheets are used. When using a unidirectional electrical steel sheet, a wound core transformer can match the direction of the magnetic flux with the magnetization direction of the steel sheet, but the manufacturing method is more complicated than that of a laminated core. Therefore, the iron core is divided into a yoke part (yoke part) and a leg part (leg part), and each
There is a structure in which an iron core is formed by using electromagnetic steel sheets having an axis of easy magnetization along the flow direction of magnetic flux and joining these sheets together. However, in a laminated core transformer with such a complicated shape, not only is the manufacturing process complicated, but also the flow of magnetic flux is complicated at the joints between the yoke and the leg iron, and the magnetic circuit is not always correct. It is not possible to maintain magnetic properties throughout. In contrast to such conventional electromagnetic steel sheets, bidirectional electromagnetic steel sheets have been proposed (for example,
(See Publication No. 21857). This has an axis of easy magnetization in the rolling direction and in a direction perpendicular to the rolling direction. This bidirectional electrical steel sheet has excellent magnetic properties in two directions, so it has superior properties compared to unidirectional electrical steel sheets, and is expected to be applied to applications such as transformer cores. has been done. By the way, in unidirectional electrical steel sheets, <100
> When tension is applied to the axis, the magnetic domains are subdivided,
It is known that iron loss, especially abnormal eddy current loss among eddy current losses, is reduced. This abnormal eddy current loss is an eddy current loss based on the movement of domain walls, and its analysis has been conducted only recently when magnetic domain theory and magnetic domain observation were developed. In grain-oriented electrical steel sheets,
This abnormal eddy current loss accounts for approximately 50% of the total iron loss. FIG. 6 shows this situation. In this figure, when tension is applied in the direction of the easy magnetization axis <100>,
It appears that the abnormal eddy current loss is reduced. This is thought to be because when tension is applied, the magnetic domains are deformed, and the axis of easy magnetization <100> is aligned in the direction of tension. [Problems to be solved by the invention] In unidirectional electrical steel sheets, abnormal eddy current loss can be reduced by applying tension in one direction, but in bidirectional electrical steel sheets,
In order to reduce the abnormal eddy current loss, tension must be applied simultaneously in the directions of the two easy magnetization axes, which is not realistic. Therefore, an object of the present invention is to reduce the iron loss of a bidirectional electrical steel sheet by simultaneously applying a tension effect in two directions even if the force is applied in one direction. [Means for Solving the Problems] In order to achieve the above object, the laminated core of the present invention has the following features:
It is characterized by comprising means for applying a surface pressure of 0.3 Kgf/cm 2 or more perpendicular to the laminated surface of the iron core. [Function] In the present invention, a bidirectional electrical steel sheet is used for the laminated core, and a surface pressure is applied perpendicularly to the laminated surface in the state of the laminated core. In a bidirectional electrical steel sheet, easy magnetization axes are formed in the rolling direction and a direction (width direction) perpendicular thereto. If compressive force is applied in the thickness direction,
The same effect as when tension is applied in the directions of the two easy magnetization axes of the plate surface is produced, and iron loss due to abnormal eddy current loss can be reduced. In other words, by applying surface pressure, the magnetic domain in the plate thickness direction is divided into two magnetic domains in two directions parallel to the plate surface.
And these magnetic domains are subdivided. Therefore, the properties in two directions are improved, especially the magnetization properties in a low magnetic field. Figures 4 and 5 show that 3% Si bidirectional electrical steel sheets are cut into ring shapes and laminated to form an iron core.
It shows the magnetic properties measured by applying stress to the laminated surface. FIG. 4 shows the results of measuring the coercive force H c while changing the surface pressure, and FIG. 5 shows the results of measuring the initial magnetic permeability μ i . As you can see from these graphs, the surface pressure is 0.3
At Kgf/ cm2 , the coercive force Hc decreases rapidly,
It can be seen that there is an inflection point where the initial magnetic permeability μ i rapidly increases. Therefore, if a surface pressure of 0.3 Kgf/cm 2 or more is applied to the laminated surfaces, the effect of improving magnetic properties can be obtained. [Examples] Hereinafter, the present invention will be specifically described based on Examples. C0.048wt%, Si3.40wt%, Mn0.14wt%,
A hot rolled plate with a thickness of 1.65 mm consisting of 0.023% by weight of acid-soluble Al, 0.0035% by weight of total N, the balance Fe and unavoidable impurities was annealed at 1070℃ for 2 minutes, and the rolling reduction was applied in the same direction as the hot rolling direction. Cold rolled at 65%. Then,
It was cold rolled in a direction crossing this rolling direction at a reduction rate of 60%, and finished to a final plate thickness of 0.23 mm. This cold-rolled sheet was decarburized and annealed at 810°C for 90 seconds in a wet hydrogen atmosphere. After decarburization annealing, a magnesia-based annealing separation agent was applied to the surface of the steel plate, and annealing was performed at 1200℃ x 20 in an atmosphere of 100% H2 .
Final annealing was performed for an hour and secondary recrystallization was performed. As a result, a bidirectional electrical steel sheet with (100) <001> oriented grains was obtained. Then, this bidirectional electrical steel sheet was annealed at 850°C and 600°C for 1 hour, respectively.
The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明においては、二方
向性電磁鋼板を積層した鉄心の積層面に垂直に、
0.3Kgf/cm2以上の面圧を付与する手段を備えて
いる。二方向性電磁鋼板では、磁化容易軸が圧延
方向とそれに直交する方向(幅方向)に形成され
るため、板厚方向に圧縮力を作用させれば、板面
の2つの磁化容易軸方向に張力が与えられたと同
等の効果が生じ、異常渦電流損を要因とする鉄損
の低下を図ることができる。これにより、変圧器
やアクチユエータ等の電気機器の鉄心として、鉄
損の少ない、高性能の積層鉄心を得ることができ
る。
As described above, in the present invention, perpendicular to the laminated surface of the core in which bidirectional electrical steel sheets are laminated,
It is equipped with means for applying a surface pressure of 0.3 Kgf/cm 2 or more. In bidirectional electrical steel sheets, the easy magnetization axes are formed in the rolling direction and the direction perpendicular thereto (width direction), so if compressive force is applied in the sheet thickness direction, the two easy magnetization axes on the sheet surface are The same effect as when tension is applied is produced, and iron loss caused by abnormal eddy current loss can be reduced. As a result, a high-performance laminated core with low core loss can be obtained as a core for electrical equipment such as transformers and actuators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す分解斜視図、
第2図は積層した状態の側面図、第3図は本発明
の他の実施例を示す図、第4図は面圧を変化させ
たときの抗磁力の変化を示すグラフ、第5図は面
圧を変化させたときの初期透磁率の変化を示すグ
ラフ、第6図は一方向性電磁鋼板における異常渦
電流損が張力によつて変化することを示す図であ
る。 1:積層鉄心 2,3:端板 4:ビード
5:銅巻線。
FIG. 1 is an exploded perspective view showing an embodiment of the present invention;
Fig. 2 is a side view of the laminated state, Fig. 3 is a diagram showing another embodiment of the present invention, Fig. 4 is a graph showing changes in coercive force when surface pressure is changed, and Fig. 5 is a graph showing changes in coercive force when surface pressure is changed. FIG. 6 is a graph showing changes in initial magnetic permeability when surface pressure is changed, and FIG. 6 is a diagram showing how abnormal eddy current loss in a grain-oriented electrical steel sheet changes depending on tension. 1: Laminated core 2, 3: End plate 4: Bead
5: Copper winding.

Claims (1)

【特許請求の範囲】[Claims] 1 二方向性電磁鋼板を積層した鉄心において、
該鉄心の積層面に垂直に、0.3Kgf/cm2以上の面
圧を付与する手段を備えたことを特徴とする積層
鉄心。
1 In an iron core laminated with bidirectional electrical steel sheets,
A laminated iron core comprising means for applying a surface pressure of 0.3 Kgf/cm 2 or more perpendicular to the laminated surface of the iron core.
JP8239189A 1989-03-31 1989-03-31 laminated core Granted JPH02260612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8239189A JPH02260612A (en) 1989-03-31 1989-03-31 laminated core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8239189A JPH02260612A (en) 1989-03-31 1989-03-31 laminated core

Publications (2)

Publication Number Publication Date
JPH02260612A JPH02260612A (en) 1990-10-23
JPH0556004B2 true JPH0556004B2 (en) 1993-08-18

Family

ID=13773282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8239189A Granted JPH02260612A (en) 1989-03-31 1989-03-31 laminated core

Country Status (1)

Country Link
JP (1) JPH02260612A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7471801B2 (en) 2002-05-10 2008-12-30 Osseofon Ab Device for the generation of or monitoring of vibrations
JP2011114111A (en) * 2009-11-26 2011-06-09 Panasonic Corp Reactor
CN111033979B (en) * 2017-09-07 2022-04-08 日本电产株式会社 Method and apparatus for manufacturing stator core, motor, and method for manufacturing laminated member

Also Published As

Publication number Publication date
JPH02260612A (en) 1990-10-23

Similar Documents

Publication Publication Date Title
JPS6328483B2 (en)
JPS60716A (en) Amorphous cut core
Luborsky Perspective on application of amorphous alloys in magnetic devices
WO1998020179A1 (en) Bidirectional electromagnetic steel plate and method of manufacturing the same
JP3086387B2 (en) Non-oriented electrical steel sheet for transformers with small leakage flux
JPH0556004B2 (en)
KR102596935B1 (en) Laminated block core, laminated block, and method of manufacturing laminated block
Alves et al. Soft magnetic materials for electrical engineering: State of the art and recent advances
JP3869768B2 (en) Transformer
JP5131747B2 (en) Manufacturing method of bi-directional electrical steel sheet
JP2576621B2 (en) Silicon steel sheet with excellent magnetic properties
JP2941534B2 (en) Fe-Co based soft magnetic material having good soft magnetism and soft magnetic electric component assembly
JPS61261451A (en) Magnetic material and its production
KR950002895B1 (en) Ultra-high silicon oriented electrical steel sheet and manufacturing method
JP2007508711A (en) Controllable guidance device
KR960006027B1 (en) Process for production of non-oriented electrical steel sheet having excellent magnetic properties
JPS62167840A (en) Magnetic material and its manufacture
US3158516A (en) Method for producing alloy bodies having improved magnetic properties
KR20000068543A (en) coil
JP2007056303A (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JPH02260613A (en) laminated core
JPH0920966A (en) Magnetic steel sheet with excellent magnetic properties and punchability
WO2023007953A1 (en) Wound core and wound core manufacturing method
JPH02260611A (en) Manufacturing method of laminated iron core
JPH05275222A (en) Bi-directional electrical steel sheet and laminated iron core with excellent magnetic properties

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 16