[go: up one dir, main page]

JPH0552820A - Method for discriminating defect in electric resistance welded tube - Google Patents

Method for discriminating defect in electric resistance welded tube

Info

Publication number
JPH0552820A
JPH0552820A JP3244685A JP24468591A JPH0552820A JP H0552820 A JPH0552820 A JP H0552820A JP 3244685 A JP3244685 A JP 3244685A JP 24468591 A JP24468591 A JP 24468591A JP H0552820 A JPH0552820 A JP H0552820A
Authority
JP
Japan
Prior art keywords
defect
defects
electric resistance
welding
resistance welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3244685A
Other languages
Japanese (ja)
Inventor
Katsunori Nagao
勝則 永尾
Akio Takahashi
昭夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3244685A priority Critical patent/JPH0552820A/en
Publication of JPH0552820A publication Critical patent/JPH0552820A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

(57)【要約】 【目的】 電縫鋼管における溶接部近傍の欠陥の弁別を
精度良くしかも迅速に行う。 【構成】 超音波探傷情報(欠陥エコー高さ,欠陥
エコー継続長さ,ビーム路程の差)と製管情報(ア
ーキング結果,溶接入熱の変動,使用帯鋼の材質,
製管の内面形状)とを組み合わせて、検出した欠陥を
溶接欠陥,材料欠陥,形状欠陥に分類し、溶接欠陥につ
いては更に冷接,ペネトレータ,アーキングに種類分け
し、材料欠陥については更にフッククラック,介在物に
種類分けする。
(57) [Summary] [Purpose] To accurately and quickly identify defects in the vicinity of welds in ERW pipes. [Structure] Ultrasonic flaw detection information (defect echo height, defect echo continuation length, beam path difference) and pipe manufacturing information (arcing result, welding heat input fluctuation, material of strip steel used,
(Inner surface shape of pipe manufacturing), the detected defects are classified into welding defects, material defects, and shape defects. Weld defects are further classified into cold welding, penetrator, and arcing. , Classify into inclusions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電縫鋼管の溶接部近傍
に発生する欠陥を弁別する方法に関し、特に超音波探傷
情報と製管情報とを組み合わせて精度良く欠陥の種類を
弁別する電縫鋼管の欠陥弁別方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for discriminating a defect generated in the vicinity of a welded portion of an electric resistance welded steel pipe, and more particularly to an electric discharge method for discriminating a defect type with high precision by combining ultrasonic flaw detection information and pipe manufacturing information. The present invention relates to a method of discriminating defects in a sewn steel pipe.

【0002】[0002]

【従来の技術】電縫鋼管は一般的に、帯鋼を成形ロール
群に通して両端の端縁が互いに対向する円筒状に成形す
る成形工程と、対向端縁近傍に溶接電流を通電し、抵抗
熱により加熱しながらスクイズロール間に通し、加熱状
態にある端縁同士を突き合わせて溶接せしめる溶接工程
と、溶接により生じる溶接ビードを切削除去し、サイザ
ロール等の仕上げロールに通して外形を整える仕上げ工
程とを含む一連の工程をこの順に経て製造される。
2. Description of the Related Art Generally, an electric resistance welded steel pipe is formed by passing a strip of steel through a forming roll group to form a cylindrical shape in which both edges are opposed to each other, and a welding current is passed in the vicinity of the opposite edges. A welding process in which heated edges are passed between squeeze rolls while they are being heated by resistance heat, and the edges that are in a heated state are butted against each other and welded together. Is manufactured through a series of steps including a step.

【0003】以上の如く製造される電縫鋼管にあって
は、溶接部近傍に欠陥が生じ易く、この欠陥を仕上げ工
程の中途において可逆的早期に検出し、この検出結果を
溶接工程にフィードバックして溶接時の品質管理に利用
することが行われている。この欠陥検出は、仕上げ工程
の中途を所定の経路に沿って送導される電縫鋼管に対
し、超音波を用いた探傷装置にて実施されており、この
超音波探傷にて得られる情報に基づいて、検出された欠
陥の種類を弁別している。
In the electric resistance welded steel pipe manufactured as described above, a defect is likely to occur in the vicinity of the welded portion, the defect is detected reversibly early in the middle of the finishing process, and the detection result is fed back to the welding process. It is used for quality control during welding. This defect detection is carried out by an ultrasonic flaw detector for electric resistance welded steel pipe that is guided along a predetermined path in the middle of the finishing process. Based on this, the types of detected defects are discriminated.

【0004】このような欠陥弁別については従来から種
々の方法が提案されている。代表的な弁別方法として、
以下に示す2つの方法がある。特開昭60-98364号公報等
に開示された第1の方法は、電縫鋼管と探触子とを管軸
方向に一定速度で相対移動させて探傷を行うと共に、欠
陥から反射した欠陥エコーの超音波パルスより測定した
欠陥継続長さと、この欠陥エコーの周波数スペクトルの
周波数帯域幅またはピーク数との組み合わせにより欠陥
を弁別している。
Various methods have been conventionally proposed for such defect discrimination. As a typical discrimination method,
There are two methods shown below. The first method disclosed in Japanese Patent Laid-Open No. Sho 60-98364 is to perform flaw detection by moving the electric resistance welded steel pipe and the probe relative to each other in the pipe axis direction at a constant speed, and at the same time, a defect echo reflected from the defect. Defects are discriminated by the combination of the defect continuation length measured from the ultrasonic pulse of 1 and the frequency bandwidth or the number of peaks of the frequency spectrum of the defect echo.

【0005】また、特開昭61-111461 号公報等に開示さ
れた第2の方法は、電縫鋼管の溶接部に対して、入射角
が0°以上20°以下, 周波数が25MHz 以上500MHz以下の
第1超音波と、入射角が15°以上27°以下, 周波数が2
MHz 以上 10MHz以下の第2超音波とを同時または相前後
して入射し、第1超音波による反射エコーにより冷接欠
陥,ペネトレータ及び介在物を検出し、第2超音波によ
る反射エコーによりペネトレータ及び介在物を検出し、
第1,第2超音波による検出結果の差異に基づいて冷接
欠陥のみを検出している。
The second method disclosed in Japanese Patent Laid-Open No. 61-111461 is that the incident angle is 0 ° or more and 20 ° or less and the frequency is 25 MHz or more and 500 MHz or less with respect to the welded portion of the electric resistance welded steel pipe. The first ultrasonic wave of, the incident angle is 15 ° or more and 27 ° or less, the frequency is 2
The second ultrasonic wave of 10 MHz or more and 10 MHz or less is incident simultaneously or before and after, the cold welding defect, the penetrator and the inclusion are detected by the reflection echo of the first ultrasonic wave, and the penetrator and the penetrator are detected by the reflection echo of the second ultrasonic wave. Detect inclusions,
Only the cold welding defect is detected based on the difference between the detection results by the first and second ultrasonic waves.

【0006】[0006]

【発明が解決しようとする課題】ところが、上述した従
来の弁別方法では何れも超音波探傷結果における情報に
基づいてのみ欠陥を弁別しているので、その弁別精度が
低く、欠陥検出環境が少し悪化すると正確な弁別を行え
ないという問題がある。第1の方法では、検出された欠
陥エコーの継続長さと周波数帯域幅とにより単純に欠陥
の弁別が可能であるとしている。しかしながら、一対探
傷の場合にはエコー高さ,ビーム路程の差等の超音波探
傷情報と、溶接入熱の変動,帯鋼の材質等の製管情報と
が、欠陥の弁別には不可欠であると考えられ、上記情報
のみで欠陥の弁別を行い得るとは考え難い。また、第2
の方法では、同様に弁別の基盤となる情報が不足してい
るだけでなく高周波の超音波を使用しているので、装置
のコストが嵩む、減衰が大きくて弁別対象の電縫鋼管の
板厚に制限がある等の課題がある。
However, in any of the conventional discrimination methods described above, the defects are discriminated only based on the information in the ultrasonic flaw detection result, so that the discrimination accuracy is low and the defect detection environment is slightly deteriorated. There is a problem that accurate discrimination cannot be performed. According to the first method, it is possible to simply discriminate a defect based on the duration of the detected defect echo and the frequency bandwidth. However, in the case of paired flaw detection, ultrasonic flaw detection information such as echo height and beam path difference, and pipe manufacturing information such as welding heat input variation and strip steel material are essential for defect discrimination. Therefore, it is unlikely that the defect can be discriminated based on the above information alone. Also, the second
Similarly, in the method of (1), not only the information that is the basis for discrimination is insufficient, but also because high-frequency ultrasonic waves are used, the cost of the device increases, the attenuation is large, and the plate thickness of the electric resistance welded steel pipe to be discriminated is high. There are issues such as restrictions on

【0007】本発明はかかる事情に鑑みてなされたもの
であり、超音波探傷情報と製管情報との組み合わせに基
づいて、電縫鋼管の溶接部近傍の欠陥の種類を弁別する
ことにより、欠陥検出環境に種々の制約がある場合に
も、精度が高い弁別結果を迅速に得ることができる電縫
鋼管の欠陥弁別方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to discriminate the types of defects in the vicinity of a welded portion of an electric resistance welded steel pipe on the basis of a combination of ultrasonic flaw detection information and pipe manufacturing information, thereby obtaining a defect. An object of the present invention is to provide a defect discrimination method for an electric resistance welded steel pipe that can quickly obtain a highly accurate discrimination result even when the detection environment has various restrictions.

【0008】[0008]

【課題を解決するための手段】本発明に係る電縫鋼管の
欠陥弁別方法は、1対の探触子を用いた超音波探傷法に
より、電縫鋼管の溶接部近傍の欠陥を弁別する方法にお
いて、欠陥エコー高さ,欠陥エコー継続長さ,ビーム路
程の差を含む超音波探傷情報と、アーキング検出結果,
溶接入熱の変動,使用帯鋼の材質,ビード切削後の電縫
鋼管の内面形状を含む製管情報とを組み合わせて前記欠
陥の弁別を行うことを特徴とする。
A defect discrimination method for an electric resistance welded steel pipe according to the present invention is a method for discriminating a defect near a welded portion of an electric resistance welded steel pipe by an ultrasonic flaw detection method using a pair of probes. , Ultrasonic flaw detection information including defect echo height, defect echo continuation length, beam path difference, arcing detection result,
It is characterized in that the defect is discriminated by combining the fluctuation of the welding heat input, the material of the band steel used, and the pipe manufacturing information including the inner surface shape of the electric resistance welded steel pipe after bead cutting.

【0009】[0009]

【作用】本発明の電縫鋼管の欠陥弁別方法では、まず1
組の探触子を用いた超音波探傷により欠陥の有無を検出
する。そして超音波探傷結果の情報と製管情報との組み
合わせに基づいて、検出した欠陥の種類を弁別する。欠
陥エコー高さ,欠陥エコー継続長さ,ビーム路程の差に
より、有害である溶接欠陥とあまり有害でない材料欠
陥,形状欠陥とにある程度弁別する。アーキング検出結
果により溶接欠陥を特定する。溶接入熱の変動により溶
接欠陥を特定する。使用帯鋼の材質により材料欠陥及び
溶接欠陥を特定する。ビード切削後の電縫鋼管の内面形
状により形状欠陥を特定する。
According to the defect discrimination method of the electric resistance welded steel pipe of the present invention, first,
The presence or absence of defects is detected by ultrasonic flaw detection using a pair of probes. Then, the type of the detected defect is discriminated based on the combination of the ultrasonic flaw detection result information and the pipe manufacturing information. Depending on the difference in the height of the defect echo, the length of the defect echo, and the beam path length, the welding defect which is harmful and the material defect and the shape defect which are not so harmful are discriminated to some extent. Weld defects are identified by arcing detection results. Weld defects are identified by changes in welding heat input. Material defects and welding defects are specified according to the material of the steel strip used. Shape defects are identified by the inner surface shape of the electric resistance welded steel pipe after bead cutting.

【0010】[0010]

【実施例】以下、本発明の実施例について具体的に説明
する。
EXAMPLES Examples of the present invention will be specifically described below.

【0011】図1は電縫鋼管の製造ラインを示す模式図
である。この製造ラインには、その上流側から下流側に
かけて、帯鋼Kを円筒状に成形する成形ロール群1、円
筒状に成形された帯鋼Kの両端縁を溶接して電縫鋼管P
とする溶接装置2、電縫鋼管Pを送導するプルアウトロ
ール群3、電縫鋼管Pの溶接部を熱処理する熱処理装置
4、溶接部を冷却する水冷槽5、電縫鋼管Pの外径仕上
げを行うサイザロール群6、電縫鋼管Pを切断する切断
機7がこの順に配設されている。溶接装置2と熱処理装
置4との間のプルアウトロール群3内には、電縫鋼管P
の溶接部近傍の欠陥を検出すべく超音波探傷を行う探傷
装置8が設けられている。また、探傷装置8の上流側近
傍には、溶接によって発生するビードを切削した後の電
縫鋼管Pの内面形状をモニタする内面ビード監視装置9
が配設されている。更に、溶接装置2には、アーキング
(一時的に溶接電流が短絡する現象)を検出するアーキ
ング検出器10が接続されている。
FIG. 1 is a schematic view showing a production line for electric resistance welded steel pipe. In this production line, from the upstream side to the downstream side, a forming roll group 1 for forming the strip steel K into a cylindrical shape, and both end edges of the strip steel K formed into a cylindrical shape are welded to each other to form an electric resistance welded pipe P.
Welding device 2, a pull-out roll group 3 that guides the electric resistance welded steel pipe P, a heat treatment device 4 that heat-treats the welded portion of the electric resistance welded steel pipe P, a water cooling tank 5 that cools the welded portion, and an outer diameter finish of the electric resistance welded steel pipe P. A sizer roll group 6 for performing the above and a cutting machine 7 for cutting the electric resistance welded steel pipe P are arranged in this order. In the pull-out roll group 3 between the welding device 2 and the heat treatment device 4, the electric resistance welded steel pipe P
There is provided a flaw detector 8 for performing ultrasonic flaw detection in order to detect defects near the welded portion. Further, in the vicinity of the upstream side of the flaw detection device 8, an inner bead monitoring device 9 for monitoring the inner surface shape of the electric resistance welded steel pipe P after cutting the bead generated by welding.
Are arranged. Further, the welding device 2 is connected to an arcing detector 10 that detects arcing (a phenomenon in which the welding current is temporarily short-circuited).

【0012】このような構成の製造ラインにおける電縫
鋼管Pの製造手順について簡単に説明する。素材である
帯鋼Kは、成形ロール群1に通されてその幅方向両側の
端縁が互いに対向する円筒状に成形された後、溶接装置
2に送給される。溶接装置2に送給された帯鋼Kは、そ
の対向端縁近傍を溶接電流の通電に伴う抵抗熱により加
熱されながら一対のスクイズロール(図示せず)間に挟
持され、加熱状態にある端縁同士が突き合わされて電縫
鋼管Pとなり、電縫鋼管Pはプルアウトロール群3によ
り下流側に送導される。送導された電縫鋼管Pは、まず
熱処理装置4に通されて溶接部が熱処理され、水冷槽5
に通されて溶接部が冷却され、次いでサイザロール群6
に通されて所定の外径を有するように仕上げ圧延され、
最後に切断機7にて所定の長さに切断される。
The manufacturing procedure of the electric resistance welded steel pipe P in the manufacturing line having such a configuration will be briefly described. The strip steel K, which is a raw material, is passed through the forming roll group 1 and formed into a cylindrical shape in which the edges on both sides in the width direction face each other, and then is fed to the welding device 2. The steel strip K fed to the welding device 2 is heated in the vicinity of the opposite end edge thereof by resistance heat accompanying the passage of a welding current and is sandwiched between a pair of squeeze rolls (not shown) to be in an heated state. The edges are abutted against each other to form an electric resistance welded steel pipe P, and the electric resistance welded steel pipe P is guided to the downstream side by the pullout roll group 3. The transferred electric resistance welded steel pipe P is first passed through the heat treatment device 4 to heat-treat the welded portion, and the water-cooled tank 5
To cool the weld, and then the sizer roll group 6
Is finished and rolled to have a predetermined outer diameter,
Finally, the cutting machine 7 cuts it into a predetermined length.

【0013】製造される電縫鋼管Pに対して、製造ライ
ン中に、溶接部近傍の欠陥が検出されその種類が弁別さ
れる。図2は探傷装置8内における超音波を用いた1対
探傷の実施状態を示す模式図である。電縫鋼管Pの上方
には、溶接部Wを挟んで2個の探触子8a, 8bが等間隔に
配置されている。探触子8a, 8bから発生した超音波ビー
ムが電縫鋼管P内に入射されて内部を伝播する(図中
A,B)。そして、欠陥が存在する場合には、その欠陥
によりこれらの超音波ビームが反射して欠陥エコーが生
じるが、本実施例ではその欠陥エコーを探傷装置8内に
設けたブラウン管画面に表示する。また、製管情報を得
るために、内面ビード監視装置9にて電縫鋼管Pの内面
形状が監視され、アーキング検出器10にてアーキングの
有無が検出される。
With respect to the electric resistance welded steel pipe P to be manufactured, a defect in the vicinity of the welded portion is detected in the manufacturing line, and its type is discriminated. FIG. 2 is a schematic diagram showing an implementation state of paired flaw detection using ultrasonic waves in the flaw detection device 8. Above the electric resistance welded steel pipe P, two probes 8a and 8b are arranged at equal intervals with the welded portion W interposed therebetween. Ultrasonic beams generated from the probes 8a and 8b are made incident on the electric resistance welded steel pipe P and propagated inside (A and B in the figure). If there is a defect, these ultrasonic beams are reflected by the defect to generate a defect echo. In the present embodiment, the defect echo is displayed on the screen of the cathode ray tube provided in the flaw detector 8. Further, in order to obtain pipe manufacturing information, the inner bead monitoring device 9 monitors the inner surface shape of the electric resistance welded steel pipe P, and the arcing detector 10 detects the presence or absence of arcing.

【0014】次に、本発明の要旨である欠陥の弁別方法
について説明する。本発明では、超音波探傷情報と製管
情報とに基づいて欠陥を弁別する。図3はこの弁別の流
れを示す模式図である。超音波探傷情報(欠陥エコー
高さ,欠陥エコー継続長さ,ビーム路程の差)と製
管情報(アーキング検出器10の検出結果,溶接入熱
の変動,使用帯鋼の材質,内面ビード監視装置9の
監視結果)とを組み合わせて、検出した欠陥を溶接欠
陥,材料欠陥,形状欠陥に分類し、更に溶接欠陥につい
ては冷接,ペネトレータ,アーキングに種類分けし、材
料欠陥についてはフッククラック,介在物に種類分けす
る。以下、欠陥の弁別に用いる超音波探傷情報と、発生
する欠陥の種類とについて説明する。
Next, the defect discriminating method which is the gist of the present invention will be described. In the present invention, the defect is discriminated based on the ultrasonic flaw detection information and the pipe manufacturing information. FIG. 3 is a schematic diagram showing the flow of this discrimination. Ultrasonic flaw detection information (defect echo height, defect echo continuation length, beam path difference) and pipe manufacturing information (detection result of arcing detector 10, welding heat input fluctuation, strip steel material used, inner bead monitoring device) 9), the detected defects are classified into welding defects, material defects, and shape defects. Further, welding defects are classified into cold welding, penetrator, and arcing. Classify into items. The ultrasonic flaw detection information used for defect discrimination and the types of defects that occur will be described below.

【0015】図4は、各探触子8a, 8bから発生した超音
波ビームA,B(図2参照)が、欠陥にて反射された欠
陥エコーを探傷装置8内のブラウン管画面に表示した状
態を示している。図中(a) は一方の探触子8aからの超音
波ビームAに対する欠陥エコーを示し、(b) は他方の探
触子8bからの超音波ビームBに対する欠陥エコーを示し
ている。欠陥エコー高さは欠陥の種類によって異なり、
また両エコーの差(Δh)も欠陥の種類に依存する。図
4に示す例では、エコー(a) はH(High)レベル、エコー
(b) はL(Low) レベルであるといえる。
FIG. 4 shows a state in which the ultrasonic echoes A and B (see FIG. 2) generated from the respective probes 8a and 8b show defect echoes reflected by the defects on the screen of the cathode ray tube in the flaw detector 8. Is shown. In the figure, (a) shows a defect echo for the ultrasonic beam A from one probe 8a, and (b) shows a defect echo for the ultrasonic beam B from the other probe 8b. Defect echo height depends on the type of defect,
The difference (Δh) between both echoes also depends on the type of defect. In the example shown in FIG. 4, echo (a) is the H (High) level, echo
It can be said that (b) is at L (Low) level.

【0016】図5は、欠陥エコー高さの経時変化を示し
ており、ある定められたエコー高さHを越える時間Lを
欠陥エコー継続長さと称する。また、図6は、各探触子
8a,8bから発生した超音波ビームA,Bが欠陥Dに到達
するまでの経路を示しており、各超音波ビームA,Bの
ビーム路程は夫々La ,Lb であり、La −Lb の絶対
値をビーム路程の差と称する。
FIG. 5 shows the change over time in the height of the defect echo, and the time L that exceeds a certain predetermined echo height H is called the defect echo continuation length. Further, FIG. 6 shows each probe.
8a, the ultrasonic beam A generated from 8b, B is shows the route to reach the defect D, the ultrasonic beam A, beam path length of the B are each L a, L b, L a -L The absolute value of b is called the beam path difference.

【0017】図7は、欠陥の種類を模式的に示してい
る。図中D1 は溶接欠陥である冷接(溶接入熱の過少が
原因)またはアーキング(溶接中に溶接点にスケール等
が食い込んで一時的に溶接電流が短絡することが原因)
を示している。またD2 は溶接欠陥であるペネトレータ
(溶接入熱の過多または特にMn/Si比が関与する使用帯
鋼の材質が原因)を示している。またD3 は材料欠陥で
あるフッククラック(圧延により生じる組織の流れ状態
を表すメタルフローM上の介在物が溶接工程で発生する
アプセットによりメタルフローMに沿って割れることが
原因)を示している。またD4 は材料欠陥である介在物
を示している。更にD5 は形状欠陥であるビード高(溶
接工程で発生するビードを工具にて切削する際の調整不
足が原因)を示している。
FIG. 7 schematically shows types of defects. In the figure, D 1 is a welding defect cold welding (due to insufficient heat input to the welding) or arcing (due to scale shortage at the welding point during welding, resulting in a temporary short circuit of the welding current).
Is shown. Further, D 2 indicates a penetrator which is a welding defect (because of excessive welding heat input or particularly the material of the strip steel used in which the Mn / Si ratio is involved). Further, D 3 indicates a hook crack which is a material defect (caused by inclusions on the metal flow M representing the flow state of the structure caused by rolling being cracked along the metal flow M by an upset generated in the welding process). .. Further, D 4 indicates an inclusion which is a material defect. Further, D 5 indicates a bead height which is a shape defect (due to insufficient adjustment when cutting the bead generated in the welding process with a tool).

【0018】3種類の超音波探傷情報(欠陥エコー高
さ,欠陥エコー継続長さ,ビーム路程の差)と4種
類の製管情報(アーキング検出器10の検出結果,溶
接入熱の変動,使用帯鋼の材質,内面ビード監視装
置9の監視結果)とを組み合わせた欠陥の具体的な弁別
基準を下記第1表に示す。
Three kinds of ultrasonic flaw detection information (defect echo height, defect echo continuation length, beam path difference) and four kinds of pipe making information (detection result of arcing detector 10, welding heat input variation, use) Table 1 below shows specific discrimination criteria for defects by combining the material of the strip steel and the monitoring result of the inner bead monitoring device 9).

【0019】[0019]

【表1】 [Table 1]

【0020】例えば、第1表中において、2個の探触子
8a, 8bともに欠陥エコー高さがHレベルであり、欠陥エ
コー継続長さは短く、ビーム路程の差はあまりなく、製
管情報の中の溶接入熱が著しく低い状態である場合に
は、この欠陥は溶接欠陥のうちの冷接であると弁別でき
る。同様にして、超音波探傷情報と製管情報との組み合
わせに基づき、第1表に応じて、他の欠陥についてもそ
の分類及び種類の弁別を行うことが可能である。
For example, in Table 1, two probes are used.
In both 8a and 8b, the defect echo height is H level, the defect echo continuation length is short, the beam path difference is not so large, and the welding heat input in the pipe manufacturing information is extremely low. The defect can be discriminated as cold welding among welding defects. Similarly, based on the combination of ultrasonic flaw detection information and pipe manufacturing information, it is possible to perform classification and type discrimination for other defects according to Table 1.

【0021】次に、本発明を利用して具体的に欠陥の弁
別を行った例について説明する。その弁別結果を下記第
2表に示す。
Next, an example in which the present invention is used to specifically discriminate a defect will be described. The discrimination results are shown in Table 2 below.

【0022】[0022]

【表2】 [Table 2]

【0023】14本のサンプル電縫鋼管を対象にして欠陥
弁別を実施した。何れのサンプル電縫鋼管も、外径が22
9.1 mm, 肉厚が9.5 mmであった。また探傷条件は、2個
の探触子が共に入射角22.5°, 周波数5.0MHzとし、探傷
速度が20m/min.として、局部水浸法を用いた。また、欠
陥エコー高さについてのレベル基準は、API で定められ
たN10ノッチ疵を基準に感度設定を行い、人工欠陥から
のエコー高さ以上の欠陥エコーをHレベル、その半分の
レベルをLレベルと設定した。欠陥エコー継続長さは管
軸方向に1mm単位にて計測し、ビーム路程は0.5 mm単位
にて計測した。また、アーキング結果はアーキング発生
に伴ってデュアルタイムにて検出し、溶接入熱は適正条
件の±10%以内を適正範囲とみなして0.1 sec.単位にて
計測した。
Defect discrimination was performed on 14 sample ERW steel pipes. The outer diameter of all sample ERW pipes is 22
The thickness was 9.1 mm and the wall thickness was 9.5 mm. As for the flaw detection conditions, the two probes had an incident angle of 22.5 °, a frequency of 5.0 MHz, and a flaw detection speed of 20 m / min. As for the level standard for the defect echo height, the sensitivity is set based on the N10 notch flaw defined by API, and the defect echo higher than the echo height from the artificial defect is at the H level, and half the level is at the L level. Was set. The defect echo continuation length was measured in 1 mm units along the tube axis direction, and the beam path was measured in 0.5 mm units. In addition, the arcing result was detected in dual time as the arcing occurred, and the welding heat input was measured in 0.1 sec.

【0024】全サンプル電縫鋼管について、第2表に示
す欠陥の弁別結果は切断試験結果と一致した。以上によ
り、本発明の弁別方法では精度良く欠陥を弁別できるこ
とが立証された。
With respect to all the samples of electric resistance welded steel pipe, the result of discrimination of defects shown in Table 2 was in agreement with the result of the cutting test. From the above, it was proved that the discriminating method of the present invention can discriminate defects accurately.

【0025】[0025]

【発明の効果】以上のように、本発明の電縫鋼管の欠陥
弁別方法では、超音波探傷情報と製管情報とを組み合わ
せて欠陥の弁別を行うので、精度良くしかも迅速に欠陥
の弁別を行うことができ、この結果、製造ラインにおけ
る電縫鋼管の品質向上に大幅に寄与することができる。
As described above, in the defect discrimination method of the electric resistance welded steel pipe of the present invention, since the defect discrimination is performed by combining the ultrasonic flaw detection information and the pipe manufacturing information, the defect discrimination can be performed accurately and quickly. As a result, the quality of the electric resistance welded steel pipe in the production line can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】電縫鋼管の製造ラインを示す模式図である。FIG. 1 is a schematic view showing a production line of an electric resistance welded steel pipe.

【図2】超音波探傷の実施状態を示す模式図である。FIG. 2 is a schematic diagram showing an implementation state of ultrasonic flaw detection.

【図3】超音波探傷情報と製管情報との組み合わせによ
り欠陥の弁別を行う流れを示す模式図である。
FIG. 3 is a schematic diagram showing a flow of performing defect discrimination by combining ultrasonic flaw detection information and pipe manufacturing information.

【図4】超音波探傷における欠陥エコーのブラウン管表
示を示す模式図である。
FIG. 4 is a schematic diagram showing a cathode ray tube display of a defect echo in ultrasonic flaw detection.

【図5】超音波探傷における欠陥エコー継続長さを説明
するための模式図である。
FIG. 5 is a schematic diagram for explaining a defect echo continuation length in ultrasonic flaw detection.

【図6】超音波探傷におけるビーム路程を示す模式図で
ある。
FIG. 6 is a schematic diagram showing a beam path length in ultrasonic flaw detection.

【図7】各種の欠陥を示す模式図である。FIG. 7 is a schematic diagram showing various defects.

【符号の説明】[Explanation of symbols]

2 溶接装置 8 探傷装置 8a 探触子 8b 探触子 9 内面ビード監視装置 10 アーキング検出器 K 帯鋼 P 電縫鋼管 W 溶接部 D 欠陥 2 Welding device 8 Flaw detector 8a Probe 8b Probe 9 Inner bead monitoring device 10 Arcing detector K Strip steel P ERW pipe W Weld zone D Defect

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月7日[Submission date] July 7, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 1対の探触子を用いた超音波探傷法によ
り、電縫鋼管の溶接部近傍の欠陥を弁別する方法におい
て、欠陥エコー高さ,欠陥エコー継続長さ,ビーム路程
の差を含む超音波探傷情報と、アーキング検出結果,溶
接入熱の変動,使用帯鋼の材質,ビード切削後の電縫鋼
管の内面形状を含む製管情報とを組み合わせて前記欠陥
の弁別を行うことを特徴とする電縫鋼管の欠陥弁別方
法。
1. A method for discriminating a defect in the vicinity of a welded portion of an electric resistance welded steel pipe by an ultrasonic flaw detection method using a pair of probes, wherein a difference in defect echo height, defect echo continuation length, and beam path difference is provided. Distinguishing the above defects by combining ultrasonic flaw detection information including arc detection information, arcing detection results, welding heat input fluctuations, strip material used, and pipe manufacturing information including the inner surface shape of ERW pipe after bead cutting A method for discriminating defects in electric resistance welded steel pipe.
JP3244685A 1991-08-28 1991-08-28 Method for discriminating defect in electric resistance welded tube Pending JPH0552820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3244685A JPH0552820A (en) 1991-08-28 1991-08-28 Method for discriminating defect in electric resistance welded tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3244685A JPH0552820A (en) 1991-08-28 1991-08-28 Method for discriminating defect in electric resistance welded tube

Publications (1)

Publication Number Publication Date
JPH0552820A true JPH0552820A (en) 1993-03-02

Family

ID=17122422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3244685A Pending JPH0552820A (en) 1991-08-28 1991-08-28 Method for discriminating defect in electric resistance welded tube

Country Status (1)

Country Link
JP (1) JPH0552820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004669A (en) * 2013-05-21 2015-01-08 Jfeスチール株式会社 Device and method for ultrasonic flaw detection of electro-resistance-welded tube and quality assurance method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004669A (en) * 2013-05-21 2015-01-08 Jfeスチール株式会社 Device and method for ultrasonic flaw detection of electro-resistance-welded tube and quality assurance method

Similar Documents

Publication Publication Date Title
JP5909873B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
JP2541078B2 (en) ERW pipe defect discrimination method
JP2905157B2 (en) Inspection method of high frequency welded steel pipe and its manufacturing apparatus
JP5909874B2 (en) Welding defect detection system for ERW pipe and method for manufacturing ERW pipe
JPH0552820A (en) Method for discriminating defect in electric resistance welded tube
JP5026153B2 (en) Method and apparatus for ultrasonic inspection of tubes
JP2515460B2 (en) ERW welded pipe manufacturing method
JP2012018153A (en) High carbon electric resistance welded steel tube and method for manufacturing the same
JP2012012697A (en) Electric resistance welded steel pipe for oil well excellent in pipe expandability and method of producing the same
JP5909870B2 (en) WELDING DEFECT DETECTING METHOD, ERW TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP2011056558A (en) System for monitoring electrically-welded part
GB1591814A (en) Method and apparatus for continuous manufacture and non-destruction testing of tubes
JP2015010936A (en) Surface flaw detection device and surface flaw detection method
JP2000015474A (en) Inspecting method of weld zone in welded tube
JP2952187B2 (en) ERW pipe inspection apparatus, ERW pipe manufacturing apparatus and manufacturing method
JP2953301B2 (en) Ultrasonic flaw detection method and device
JP5797375B2 (en) ERW steel pipe manufacturing method
JPH05223788A (en) Method for diagnosing soundness of weld on sheet
JPS6410777B2 (en)
Baralla et al. Integrated System for Process Control of High Frequency Electric Resistance Welded Steel Pipe
JP7654479B2 (en) Eddy current testing method for ERW steel pipes
JP5440014B2 (en) ERW Weld Monitoring Method
JPS61126461A (en) Inspecting method of wire
JP2019215227A (en) Ultrasonic flaw detection method
Ahmad et al. Nondestructive Inspection of Steel Bar, Wire, and Billets