JPH0551950U - Optical CVD device - Google Patents
Optical CVD deviceInfo
- Publication number
- JPH0551950U JPH0551950U JP10255091U JP10255091U JPH0551950U JP H0551950 U JPH0551950 U JP H0551950U JP 10255091 U JP10255091 U JP 10255091U JP 10255091 U JP10255091 U JP 10255091U JP H0551950 U JPH0551950 U JP H0551950U
- Authority
- JP
- Japan
- Prior art keywords
- light
- gas
- film
- vacuum chamber
- film thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 5
- 238000010494 dissociation reaction Methods 0.000 claims abstract description 10
- 230000005593 dissociations Effects 0.000 claims abstract description 10
- 238000002347 injection Methods 0.000 claims abstract description 4
- 239000007924 injection Substances 0.000 claims abstract description 4
- 239000010408 film Substances 0.000 claims abstract 8
- 239000010409 thin film Substances 0.000 claims abstract 2
- 239000007789 gas Substances 0.000 claims description 32
- 230000015572 biosynthetic process Effects 0.000 claims description 21
- 239000012495 reaction gas Substances 0.000 claims description 10
- 239000002994 raw material Substances 0.000 abstract description 9
- 238000009826 distribution Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 19
- 230000002265 prevention Effects 0.000 description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
(57)【要約】
【目的】 薄膜の膜厚分布の向上、膜厚の正確な制御を
行うための製造装置を提供する。
【構成】 真空槽1、解離エネルギー源2の光、原料ガ
ス11の供給系を基本構成とする光CVD装置であっ
て、光導入口6に光導入窓5へ解離エネルギー源の光に
吸収のないガスを照射し、その噴射口8の対面に排気口
9を設置することにより、解離エネルギー源の光に吸収
のないガスの真空槽内への混入を防ぎ、真空槽内の原料
分子数の変動および真空槽内の原料ガスのフローに影響
を与えず成膜できる。
【効果】 超格子など膜厚の正確な制御を必要とするデ
バイスに対し有効である。
(57) [Summary] [Objective] To provide a manufacturing apparatus for improving the film thickness distribution of a thin film and accurately controlling the film thickness. [Configuration] An optical CVD apparatus having a vacuum tank 1, light from a dissociation energy source 2, and a supply system of a source gas 11 as a basic configuration, which absorbs light from a dissociation energy source into a light entrance window 5 at a light inlet 6. By irradiating a non-gas, and installing an exhaust port 9 opposite to the injection port 8, mixing of a gas that is not absorbed by the light of the dissociation energy source into the vacuum chamber is prevented, and the number of raw material molecules in the vacuum chamber A film can be formed without affecting the fluctuation and the flow of the raw material gas in the vacuum chamber. [Effect] This is effective for devices that require precise control of film thickness such as superlattice.
Description
【0001】[0001]
この考案は、半導体、太陽電池、X線多層膜反射鏡の製造プロセスに用いられ る光CVD装置の光導入窓への成膜防止機構に関する。特に、膜厚の再現性を重 視する分野および膜厚分布を要求される分野、さらに多層化する場合の膜厚制御 を必要とする分野に利用される。 The present invention relates to a film formation preventing mechanism for a light introduction window of a photo CVD apparatus used in a manufacturing process of semiconductors, solar cells, and X-ray multilayer film reflecting mirrors. In particular, it is used in fields that emphasize reproducibility of film thickness, fields that require film thickness distribution, and fields that require film thickness control in the case of multiple layers.
【0002】[0002]
従来、図2に示すように、成膜は、まず反応性ガス11をマスフローコントロ ーラ12を介して真空槽1に導入され排気系を介し排出される。真空槽1には光 導入のための光導入口6が取り付けられ、光導入用の窓5が設けられている。こ の窓5は使用波長にもよるがレーザ光の場合通常、石英ガラスが用いられている 。真空槽1には、基板保持用の基板ホルダ4があり、ヒータを具備し加熱できる ようになっている。 Conventionally, as shown in FIG. 2, in film formation, first, a reactive gas 11 is introduced into a vacuum chamber 1 via a mass flow controller 12 and discharged via an exhaust system. A light inlet 6 for introducing light is attached to the vacuum chamber 1, and a window 5 for introducing light is provided. This window 5 is usually made of quartz glass in the case of laser light, although it depends on the wavelength used. The vacuum chamber 1 has a substrate holder 4 for holding a substrate, and is equipped with a heater so that it can be heated.
【0003】 光は、基板3に対し平行に導入させ気相中にて原料分子を解離し成膜する方法 、直接基板に解離エネルギー源の光を照射し成膜する方法がある。解離エネルギ ー源の光は光導入窓5を通り真空槽1に入り、原料ガスを解離し基板3上に成膜 させる。しかし、同時に光導入窓5の内側にも成膜される問題があった。 そのため、解離エネルギー源の光に吸収のない、例えば不活性ガスのアルゴン やヘリウムを光導入窓5へ噴射しパージ効果により成膜を防止する機構か、さら に、光導入口6に成膜用ガスが流入するのを防ぐようにフードを具備したものが ある。Light can be introduced parallel to the substrate 3 to dissociate the raw material molecules in the gas phase to form a film, or to directly irradiate the substrate with light from a dissociation energy source to form the film. The light from the dissociation energy source passes through the light introduction window 5 and enters the vacuum chamber 1 to dissociate the raw material gas and form a film on the substrate 3. However, at the same time, there is a problem that a film is formed inside the light introduction window 5. Therefore, a mechanism that does not absorb the light of the dissociation energy source, for example, an inert gas such as argon or helium, is injected into the light introduction window 5 to prevent the film formation by the purging effect, and further, the film is formed at the light inlet 6 for film formation. Some are equipped with a hood to prevent the inflow of gas.
【0004】 また、光導入窓5の真空槽内にロール状のフィルムを有し、成膜毎にフィルム が回転し、光の通過する部分が光の吸収を受けない機構、さらには、蒸気圧の低 いオイルを光導入窓5に循環させ光導入窓5にオイル層を作ることにより、反応 生成物の堆積を防ぎ成膜できる機構となっている。 例えば、実開昭62−28870公報、特開昭60−47416にこのような 構造が開示されている。In addition, a roll-shaped film is provided in the vacuum chamber of the light introduction window 5, the film rotates every time the film is formed, and a portion through which light passes does not receive light absorption. By circulating low-oil oil in the light introduction window 5 and forming an oil layer in the light introduction window 5, a mechanism capable of preventing deposition of reaction products and forming a film. For example, such a structure is disclosed in Japanese Utility Model Laid-Open No. 62-28870 and Japanese Patent Laid-Open No. 60-47416.
【0005】[0005]
しかし、従来の方法たとえば、実開昭62−28870公報に示された方法で は光導入窓へ不活性ガスを照射するとともに、原料ガスが光導入口に混入し、光 導入窓への成膜を防止するよう、光導入口径よりも小さな径にする構造により、 原料ガスの混入を避けるようにしていた。しかし、この方法では不活性ガスは光 導入窓へ噴射された後、真空槽の排気系により排出されるため、真空槽内へのガ スフローの影響および原料ガスの分子数への影響がある。そのため、従来の方法 では真空槽内のフローに影響を与え、精密な膜厚分布を有する膜または膜厚を正 確にコントロールする場合問題があった。 However, in the conventional method, for example, the method disclosed in Japanese Utility Model Laid-Open No. 62-28870, the light introducing window is irradiated with an inert gas, and the raw material gas is mixed into the light inlet to form a film on the light introducing window. In order to prevent this, the structure was made to be smaller than the light inlet diameter to avoid mixing of the raw material gas. However, in this method, since the inert gas is injected into the light introduction window and then discharged by the exhaust system of the vacuum chamber, there is an influence of gas flow into the vacuum chamber and an influence on the number of molecules of the source gas. Therefore, the conventional method has a problem when the flow in the vacuum chamber is affected and the film having a precise film thickness distribution or the film thickness is accurately controlled.
【0006】 そこで、この考案の目的は、従来のこのような課題を解決するため、光導入窓 への成膜を防止しながら真空槽内の原料ガスのフローに影響することなく、膜厚 分布および膜厚制御を容易にできる装置を提供することである。Therefore, an object of the present invention is to solve such a conventional problem, and to prevent the film formation on the light introduction window, while not affecting the flow of the raw material gas in the vacuum chamber. Another object of the present invention is to provide a device capable of easily controlling the film thickness.
【0007】[0007]
上記課題を解決するためにこの考案は、光導入口の光の波長に対し吸収のない ガス、すなわち成膜防止用ガスを吹き出せるための吹き出し口とその吹き出し口 の対面に吸い込み口を設けた構造を設けた。この構造において、真空槽内へ光の 波長に対し吸収のないガスの混入を防ぎ、真空槽内への原料分子数を一定に保ち 、膜厚を正確にコントロールし、膜厚分布の一定な膜を成膜できるようにした。 In order to solve the above problems, the present invention provides an outlet for blowing out a gas that does not absorb the wavelength of light at the light inlet, that is, a gas for preventing film formation, and an inlet on the opposite side of the outlet. The structure was set up. With this structure, gas that does not absorb light of the wavelength of light is prevented from entering the vacuum chamber, the number of raw material molecules in the vacuum chamber is kept constant, the film thickness is accurately controlled, and the film with a uniform film thickness distribution is obtained. Was made possible.
【0008】[0008]
上記のように構成された光CVD装置においては、光導入用窓の真空槽側にお いて成膜防止用のガスが一定の流量でフローし、真空槽内に流入することなく、 真空槽内が反応ガスにて充満するため、成膜防止用ガスによるフローの影響がな く精密な膜厚制御ができる。また、膜厚分布も良好な膜が得られる。 In the photo-CVD apparatus configured as described above, the gas for preventing film formation flows at a constant flow rate on the vacuum chamber side of the light introduction window, and does not flow into the vacuum chamber. Since the film is filled with the reaction gas, the film thickness can be precisely controlled without being affected by the flow due to the film formation preventing gas. Further, a film having a good film thickness distribution can be obtained.
【0009】[0009]
以下に、この考案の実施例を図1に基づいて説明する。 真空槽1の一端に突出して光導入口6が設けられている。その光導入口6の先端 に光導入窓5がOリングを介しフランジにより取り付けられている。この光導入 窓は合成石英でできている。また、この光導入口には光導入窓への成膜防止用ガ スの吹き出し口8があり、その成膜防止用ガスを排出するための排気口9が吹き 出し口の対面に設けられている。また、反応ガス11の光導入口6への混入を避 けるため、リング状の拡散防止板7が光導入口の内面に数枚設けられている。 このリングを数枚設けたことで、反応ガスの真空槽内への混入を避けられる。 An embodiment of this invention will be described below with reference to FIG. A light inlet 6 is provided so as to project from one end of the vacuum chamber 1. A light introducing window 5 is attached to the tip of the light inlet 6 by a flange via an O-ring. This light introduction window is made of synthetic quartz. In addition, there is a film formation preventing gas outlet 8 to the light introducing window at the light inlet, and an exhaust port 9 for discharging the film forming preventing gas is provided on the opposite side of the outlet. There is. Further, in order to prevent the reaction gas 11 from mixing into the light inlet 6, several ring-shaped diffusion prevention plates 7 are provided on the inner surface of the light inlet. By providing several rings, it is possible to avoid the reaction gas from entering the vacuum chamber.
【0010】 本考案を用いてのタングステンの成膜方法について説明する。まず、基板導入 口から、基板ホルダ上にシリコン基板3を設置し、その後所定の1×10-6torr まで排気する。その後、基板ホルダ4内のヒータを加熱し200℃にセットする 。 次に、成膜防止用ガス、マスフローコントローラにより制御し、光導入窓に成 膜防止用ガスを噴射する。その際、成膜防止用ガスの排気系を稼働し、光導入窓 の前で成膜防止用のガスのフローを形成する。成膜防止用のガスはヘリウムガス を用い300SCCM流す。この時、排気量をコントロールするため排気量制御用バ ルブを用いる。A method for forming a tungsten film using the present invention will be described. First, the silicon substrate 3 is placed on the substrate holder through the substrate inlet, and then the silicon substrate 3 is evacuated to a predetermined 1 × 10 −6 torr. After that, the heater in the substrate holder 4 is heated and set to 200 ° C. Next, the film formation preventing gas is controlled by the mass flow controller to inject the film forming prevention gas into the light introduction window. At that time, an exhaust system of the film formation prevention gas is operated to form a film formation prevention gas flow in front of the light introduction window. Helium gas is used as a gas for preventing film formation, and 300 SCCM is supplied. At this time, an exhaust volume control valve is used to control the exhaust volume.
【0011】 次に、反応ガスを真空槽1に導入するため、反応ガスをマスフローコントロー ラ12を介して導入する。反応ガスの導入量はWF6(六弗化タングステン)が 20SCCM、水素を200SCCM導入する。真空槽内での圧力をバルブを一定にしな がら、1.0torrに保つ。この真空槽に、外部より解離エネルギー源2のArF エキシマレーザを発振させ、真空槽内に光導入窓を介して導入する。このArF エキシマレーザの波長は、193nmであり、反応ガスのWF6は解離できる。 このような条件下で、180分成膜を行ったが、光導入窓5への膜生成もなく1 80分間の成膜で240nm成膜できた。Next, in order to introduce the reaction gas into the vacuum chamber 1, the reaction gas is introduced through the mass flow controller 12. The amount of reaction gas introduced is 20 SCCM for WF6 (tungsten hexafluoride) and 200 SCCM for hydrogen. Keep the pressure in the vacuum chamber at 1.0 torr while keeping the valve constant. An ArF excimer laser of a dissociation energy source 2 is oscillated from the outside into this vacuum chamber and introduced into the vacuum chamber through a light introduction window. The wavelength of this ArF excimer laser is 193 nm, and WF6 of the reaction gas can be dissociated. Film formation was carried out for 180 minutes under such conditions, but no film was formed on the light introduction window 5 and film formation of 240 nm was possible in 180 minutes.
【0012】 次に、本考案の光CVD装置を用いて、X線多層膜反射鏡を作製した。このX 線多層膜反射鏡の構成物質として、タングステンと炭素の組合せを選び作製した 。 X線多層膜反射鏡は、多層化し重元素層と軽元素層の各界面より反射するX線 の位相を揃えることにより多くのX線を反射するためのものである。そのため、 各層の膜厚を正確にコントロールすることが必要である。Next, an X-ray multilayer reflecting mirror was manufactured using the photo-CVD apparatus of the present invention. As a constituent material of this X-ray multilayer mirror, a combination of tungsten and carbon was selected and manufactured. The X-ray multilayer film reflecting mirror is for reflecting a large number of X-rays by making them multilayer and aligning the phases of the X-rays reflected from the interfaces of the heavy element layer and the light element layer. Therefore, it is necessary to accurately control the film thickness of each layer.
【0013】 基板にはシリコン基板を選び、基板導入口から基板ホルダ上にシリコン基板を 設置し、その後1×10-6torrまで減圧した。基板は200℃に加熱し、まずタ ングステンの成膜を行った。タングステンの成膜は、上記した条件と同じ条件で 行った。なお、成膜時間は5分で行った。タングステン層上に炭素層の成膜を行 った。原料ガスとしてアセチレンガスを用いた。アセチレンガスの流量は50SC CM、成膜防止用のガスは50SCCMで行った。成膜時間は5分、基板温度は200 ℃で行った。この条件で10層積層した。周期は炭素層50Å、タングステン層 50Åの周期100Åで積層した。このX線多層膜を0.154nmの波長のX 線で、反射率の測定を行った。その結果、高次のピークも確認され周期性の向上 が確認できた。A silicon substrate was selected as the substrate, the silicon substrate was placed on the substrate holder from the substrate inlet, and then the pressure was reduced to 1 × 10 −6 torr. The substrate was heated to 200 ° C., and tungsten film was formed first. The tungsten film was formed under the same conditions as described above. The film formation time was 5 minutes. A carbon layer was formed on the tungsten layer. Acetylene gas was used as a raw material gas. The flow rate of acetylene gas was 50 SCCM, and the gas for film formation prevention was 50 SCCM. The film formation time was 5 minutes, and the substrate temperature was 200 ° C. Ten layers were laminated under these conditions. As for the cycle, 50 Å of carbon layer and 50 Å of tungsten layer were laminated with a cycle of 100 Å. The reflectance of this X-ray multilayer film was measured with X-rays having a wavelength of 0.154 nm. As a result, higher-order peaks were also confirmed and improvement in periodicity was confirmed.
【0014】[0014]
この考案は、以上説明したように光導入窓に解離エネルギー源の光に吸収のな い、成膜防止用ガスを照射させ、その近傍に排気する機構を取り付ける構成で、 真空槽の原料ガスの分子数およびフローに影響を与えず、膜厚を正確に制御し均 一な膜厚を得ることができるという効果がある。 As described above, this device has a structure in which the film introduction prevention gas that does not absorb the light of the dissociation energy source is irradiated to the light introduction window and the mechanism for exhausting the gas is attached in the vicinity of the light, so that the source gas of the vacuum chamber There is an effect that a uniform film thickness can be obtained by accurately controlling the film thickness without affecting the number of molecules and the flow.
【図1】本考案の光CVD装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an optical CVD apparatus of the present invention.
【図2】従来の光CVD装置の概略構成図である。FIG. 2 is a schematic configuration diagram of a conventional photo CVD apparatus.
【符号の説明】 1 真空槽 2 解離エネルギー源 3 基板 4 基板ホルダ 5 光導入窓 6 光導入口 7 拡散防止板 8 噴射口 9 排気口 10 光透過口 11 反応ガス 12 マスフローコントローラ 13 真空ポンプ[Explanation of reference symbols] 1 vacuum chamber 2 dissociation energy source 3 substrate 4 substrate holder 5 light introduction window 6 light inlet 7 diffusion prevention plate 8 injection port 9 exhaust port 10 light transmission port 11 reaction gas 12 mass flow controller 13 vacuum pump
Claims (1)
光により解離し薄膜を形成する光CVD装置であって、
真空槽と真空槽に設けられた光導入のための導入口に、
解離エネルギー源に吸収のない成膜防止用ガスを噴射す
るための噴射口と、前記成膜防止用ガスを排気するため
の排気口を前記噴射口の対面にもち、前記光導入窓への
成膜および前記成膜防止用ガスの前記真空槽内の混入を
防止する構成であることを特徴とする光CVD装置。1. An optical CVD apparatus for introducing a reaction gas into a vacuum chamber and dissociating the reaction gas by light to form a thin film.
In the vacuum tank and the inlet for introducing light provided in the vacuum tank,
The dissociation energy source has an injection port for injecting a film formation preventing gas which is not absorbed, and an exhaust port for exhausting the film formation preventing gas on the opposite side of the injection port, and is formed on the light introducing window. An optical CVD apparatus having a structure for preventing a film and the film formation preventing gas from mixing in the vacuum chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10255091U JPH0551950U (en) | 1991-12-12 | 1991-12-12 | Optical CVD device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10255091U JPH0551950U (en) | 1991-12-12 | 1991-12-12 | Optical CVD device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0551950U true JPH0551950U (en) | 1993-07-09 |
Family
ID=14330358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10255091U Pending JPH0551950U (en) | 1991-12-12 | 1991-12-12 | Optical CVD device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0551950U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08213344A (en) * | 1995-02-03 | 1996-08-20 | Nec Corp | Semiconductor production device and manufacture |
-
1991
- 1991-12-12 JP JP10255091U patent/JPH0551950U/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08213344A (en) * | 1995-02-03 | 1996-08-20 | Nec Corp | Semiconductor production device and manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4581248A (en) | Apparatus and method for laser-induced chemical vapor deposition | |
Ott et al. | Al3O3 thin film growth on Si (100) using binary reaction sequence chemistry | |
JPS61231716A (en) | Film forming equipment | |
JPH049369B2 (en) | ||
KR100425449B1 (en) | Method and apparatus for forming multiple layers of thin film by using photolysis chemical vapor deposition | |
US5112647A (en) | Apparatus for the preparation of a functional deposited film by means of photochemical vapor deposition process | |
JPH0551950U (en) | Optical CVD device | |
JPH0456314A (en) | Manufacture of semiconductor substrate | |
GB2089377A (en) | Improved photochemical vapor deposition apparatus and method | |
EP0288108B1 (en) | Electronic device manufacture | |
JP2758247B2 (en) | Organic metal gas thin film forming equipment | |
JPS59129774A (en) | Selective formation of nitrided film | |
JPS63317675A (en) | Plasma vapor growth device | |
Hess | IR and UV laser-induced chemical vapor deposition: Chemical mechanism for a-Si: H and Cr (O, C) film formation | |
JP2726149B2 (en) | Thin film forming equipment | |
JPS6152231B2 (en) | ||
JP2654456B2 (en) | Manufacturing method of high quality IGFET | |
JPH01138713A (en) | Device for formation of film by optical pumping | |
JPH0427136A (en) | Thin film formation device utilizing organic metal gas | |
JPS629189B2 (en) | ||
JPS61183920A (en) | Semiconductor and metal processing equipment using laser or light | |
JPH0294430A (en) | Photo-assisted cvd apparatus | |
JPS6118125A (en) | Thin film forming apparatus | |
JPH03271372A (en) | Method for forming oxide thin film using excimer laser | |
JPS63312978A (en) | Thin film forming device |