JPH05503750A - Acoustic transmission method of well drilling data - Google Patents
Acoustic transmission method of well drilling dataInfo
- Publication number
- JPH05503750A JPH05503750A JP3514944A JP51494491A JPH05503750A JP H05503750 A JPH05503750 A JP H05503750A JP 3514944 A JP3514944 A JP 3514944A JP 51494491 A JP51494491 A JP 51494491A JP H05503750 A JPH05503750 A JP H05503750A
- Authority
- JP
- Japan
- Prior art keywords
- drilling mud
- pipe string
- drilling
- string
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/14—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
- E21B47/18—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/14—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
- E21B47/16—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the drill string or casing, e.g. by torsional acoustic waves
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Remote Sensing (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Geophysics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 r の振作データの音響式伝送方法 本発明は、坑井の掘削データを坑底から地表に伝送する方法に係わり、特にその ような方法で、坑底と地表とを結ぶ二つの並列伝送チャネルを用いる方法に係わ る。[Detailed description of the invention] Acoustic transmission method of vibration data of r The present invention relates to a method of transmitting well drilling data from the bottom of a well to the surface of the earth, and in particular, This method involves the use of two parallel transmission channels connecting the bottom of the mine and the surface. Ru.
坑井、即ち例えば油井を掘削する際、掘削パラメータをより良く制御するために は掘削作業を指揮する者が坑底に存在する諸条件(偏向要因、ビット回転速度、 ビットに掛かる重量、ビットのトルク、温度、加速度等)を認識することが望ま しい、この条件認識はリアルタイムに行なわれることが好ましく、そのために坑 底から地表にデータを伝送する手段が必要となる。In order to better control the drilling parameters when drilling wells, i.e. oil wells, for example. means that the person directing the drilling operation should check the conditions existing at the bottom of the hole (deflection factors, bit rotation speed, It is desirable to recognize the weight on the bit, bit torque, temperature, acceleration, etc.) This condition recognition is preferably done in real time, so A means of transmitting data from the bottom to the surface is needed.
坑底の諸条件を認識することによって、掘削をより迅速に、かつより低コストで 行なうことができる。そのうえ、掘削指揮者が、例えば岩石の種層の変化やビッ トの摩耗といった任意の条件変化に敏速に対応することも可能となる6坑底から 地表へのデータ伝送を実現する手段はこれまでに幾つか提案されている。それら の手段の中に、導電体による伝送、及び音波または電磁波による伝送が有る。ま た、掘削泥水中の圧力波によるデータ伝送も既に提案されている。このシステム では、バイブストリングに沿って移動する泥水の圧力が、例えばバイアストリン グのビットに近接する箇所に配置されたサブアセンブリ内に取り付けられたサー ボバルブを介して変更される。Awareness of bottomhole conditions allows for faster and less costly drilling. can be done. Moreover, the drilling director may be able to detect, for example, changes in the rock seed layer, 6. From the bottom of the hole, it is possible to quickly respond to arbitrary changes in conditions such as wear on the bottom of the hole. Several means for realizing data transmission to the earth's surface have been proposed so far. those Among these methods, there are transmission by electrical conductors and transmission by sound waves or electromagnetic waves. Ma Data transmission using pressure waves in drilling mud has also been proposed. this system In this example, the pressure of muddy water moving along the vibe string is A service installed in a subassembly located close to the bit of the plug. Modified via Bobalve.
このようなシステムの信号伝送速度はさほど大きくなく、圧力波は約1500m /sでしか伝播しない。坑底と地表との間での波の減衰と、泥水の圧力変更に内 在する限界と、地表でデータの品質を維持する必要性とを勘案して、データの速 度は低く維持される。The signal transmission speed of such a system is not very high, and the pressure wave is about 1500 m. It propagates only at /s. This is due to the attenuation of waves between the bottom of the mine and the surface, and the change in pressure of muddy water. The speed of data should be The temperature is kept low.
本発明は、掘削泥水中の圧力波によるデータ伝送の欠点を、単純でかつ信頼性の 向上したデータ伝送方法の提供によって克服することを目的とする。The present invention overcomes the drawbacks of data transmission by pressure waves in drilling mud in a simple and reliable manner. The objective is to overcome this by providing improved data transmission methods.
上記目的達成のために、本発明は、坑井の掘削条件に関するデータを坑底から地 表に伝送する方法であって、−掘削泥水の坑井内への進入口において掘削泥水の 圧力を連続的に測定する作業と、 ・−坑底において少なくとも一つの作業条件をセンサで測定する作業と、 一伝送を、前記センサでの測定の結果に則して符号化して掘削泥水中に発生され るパルスの形態で実現する作業と、−掘削泥水中のパルスを掘削泥水の坑井内へ の進入口における圧力測定によって検出する作業と を含み、 掘削泥水中のパルスによって惹起されるバイブストリングの振動を同時に検出す る付加的作業を含むことを特徴とする データ伝送方法を提供する。In order to achieve the above object, the present invention transmits data regarding the drilling conditions of a well from the bottom of the well to the ground. A method for transmitting drilling mud into a wellbore at an entrance of the drilling mud into the wellbore. Continuously measuring pressure; - Measuring at least one working condition at the bottom of the mine with a sensor; A transmission is encoded according to the measurement result of the sensor and generated in the drilling mud. - Pulses in the drilling mud into the wellbore of the drilling mud. Detection by pressure measurement at the entrance of including; Simultaneously detects the vibration of the vibe string caused by pulses in the drilling mud. characterized by including additional work Provides a data transmission method.
本発明の他の特徴及び利点は、添付図面を参照しての以下の説明分読めば明らか となってこよう。添付図面の第1図は掘削アセンブリの概略的断面図であり、第 2図は処理回路の概略的説明図である。Other features and advantages of the invention will become apparent from the following description with reference to the accompanying drawings. Let's come. Figure 1 of the accompanying drawings is a schematic cross-sectional view of the drilling assembly; FIG. 2 is a schematic explanatory diagram of the processing circuit.
第1図に示した掘削アセンブリはマスト10を含み、マスト10がそれ自体公知 であるように具備したフック12には、その全体に符号14を付して示したバイ ブストリングが吊下されている。バイブストリング14は1個のドリルとット1 6と、複数のドリルカラー18と、複数のドリルバイブ20とを含む0図示例で は、バイブストリング14はロータリーテーブル22によってか、または“パワ ースイベル”と呼称されるモータ駆動式のヘッドによって回転される。加圧され た掘削泥水はホース24を通って供給源(図示せず)からバイブ20内部に達す る。この泥水は管26を経て循環し、貯蔵タンク(図示せず)に戻る。ビット1 6近傍に配置されたサブアセンブリ2日内に取り付けられたサーボバルブが、加 圧泥水中に圧力波を発生するべく該泥水の流れを選択的に中断するのに用いられ る。坑底で得られた測定値を表わす圧力波を泥水中に公知のように発生し得るサ ブアセンブリ28は、測定装置及び制御装置を具備している。上記圧力波は地表 において、ホース24に取り付けられた圧力センサ32によって検出される。The excavation assembly shown in FIG. 1 includes a mast 10, which is known per se. The hook 12 equipped with Brass strings are hanging. Vibrator string 14 includes 1 drill bit 1 6, a plurality of drill collars 18, and a plurality of drill vibes 20. The vibe string 14 is connected to the rotary table 22 or - rotated by a motor-driven head called a ``swivel''. The drilling mud reaches the inside of the vibrator 20 from a supply source (not shown) through a hose 24. Ru. This slurry is circulated through pipe 26 and returned to a storage tank (not shown). Bit 1 6. A servo valve installed within 2 days of the subassembly located near the Used to selectively interrupt the flow of muddy water to generate pressure waves in the muddy water. Ru. A pressure wave representative of the measurements taken at the bottom of the well can be generated in muddy water in a known manner. The tube assembly 28 is equipped with measuring and control equipment. The above pressure wave is on the ground surface. is detected by a pressure sensor 32 attached to the hose 24.
泥水中に発生された圧力波はバイブストリング14に、対応する振動をも生じさ せる。本発明によって、バイブストリングに第二のセンサを取り付ければデータ をより良く読み取れることが判明した。The pressure waves generated in the muddy water also cause corresponding vibrations in the vibe string 14. let According to the present invention, if a second sensor is attached to the vibe string, the data can be It turns out that it can be read better.
第1図に示したように、掘削アセンブリはバイブストリング14上端に取り付け られた加速度計34も含み、この加速度計34はバイブ20の長手方向加速度の 測定に用いられる。As shown in FIG. 1, the digging assembly is attached to the upper end of the vibe string 14. The accelerometer 34 also includes an accelerometer 34 that measures the longitudinal acceleration of the vibrator 20. Used for measurement.
第2図に、センサ32及び加速度計34によって発せられた信号を処理する回路 を概略的に示す。FIG. 2 shows a circuit for processing the signals emitted by sensor 32 and accelerometer 34. is schematically shown.
バイブストリング14上端に配置された軸線方向張力(もしくは歪み)計を加速 度計34に替えて、または付加的なデータを得るべく用いることも可能である。Accelerate the axial tension (or strain) meter placed at the upper end of the vibe string 14 It can also be used in place of the meter 34 or to obtain additional data.
後者の場合、付加した計器によってもたらされるデータは、寄生雑音の影響を一 層低減するうえで有用である。このデータは第2図に示した並列チャネルによっ て処理される。In the latter case, the data provided by the attached instrumentation is free from parasitic noise effects. This is useful for reducing layers. This data is transmitted through the parallel channels shown in Figure 2. will be processed.
寄生雑音の影響を最小限とするために、例えばバイブストリングの上端の半径方 向加速度を検出するような他の計器を付加することも可能であろう。To minimize the effects of parasitic noise, for example, It would also be possible to add other instruments such as detecting directional acceleration.
いずれの場合も、様々なセンサによって発せられた信号は第2区の回路で処理さ れる。波の、パイプストリング材中を伝播する速度は掘削泥水中を伝播する速度 の3倍以上であるので、処理回路は信号を、タイミングを取って再配列できなけ ればならない。In both cases, the signals emitted by the various sensors are processed in the second district circuit. It will be done. The speed at which waves propagate through the pipe string material is the speed at which they propagate through drilling mud. , so the processing circuit must be able to rearrange the signals in a timely manner. Must be.
この再配列は、信号同士の相関によって行なっても、また二つの媒質中ての速度 に関する知識に基づいて行なってしい。例えば地表クロンク分参照して各データ チャネルに間して確立された品質指数が適用される。このことは個々の重みを各 データチャネルに割り当てることを可能にし、その結果一方のチャネルが放棄さ れ得る。総合的な品質指数は、別個に復号された信号同士の非コヒーレンスから 算出することも可能である6 そのうえ、データチャネルを再配列しながら同時に寄生地表信号、特にポンプに 起因する雑音の変位を実現することが可能である。上記寄生雑音は次に、加重平 均がめられることによって減少する。This rearrangement can be done by correlation between signals, or by changing the velocity in the two media. Do this based on your knowledge of For example, each data by referring to the ground surface Kronk The quality index established for the channel is applied. This means that the individual weights data channel, resulting in one channel being relinquished. It can be done. The overall quality index is determined by the noncoherence between separately decoded signals. It is also possible to calculate6 Moreover, while reordering the data channels, at the same time the parasitic surface signals, especially the pumps, It is possible to realize a displacement of the resulting noise. The above parasitic noise is then Decreased by being evened out.
芝」1 坑井掘削条件に関するデータを坑底がら地表に伝送する方法であって、掘削泥水 の坑井内進入時の圧力を連続的に測定し、少なくとも一つの坑底作業条件をセン サで測定し、センサでの測定の結果を表わす符号化パルスを掘削泥水を介して伝 送し、かつ掘削泥水中のパルスを掘削泥水の坑井内進入時の圧力測定によって検 出するデータ伝送方法、この方法は、掘削泥水中のパルスによって惹起されるド リルパイプストリングの振動を同時に検出する付加的ステップを含む。Shiba” 1 A method of transmitting data regarding well drilling conditions from the bottom of the well to the surface, Continuously measure the pressure at the time of entry into the wellbore, and detect at least one bottomhole working condition. and transmit encoded pulses through the drilling mud that represent the results of the sensor measurements. The pulses in the drilling mud are detected by measuring the pressure when the drilling mud enters the well. This method is based on the data transmission method caused by pulses in drilling mud. Includes an additional step of simultaneously detecting vibrations of the lil pipe string.
国際調査報告 lRlemalla、、、l Aeslcslk+n N。 PCT/FR91 10069Binternational search report lRlemalla,,,l Aeslcslk+n N. PCT/FR91 10069B
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR90/10910 | 1990-08-31 | ||
FR9010910A FR2666419B1 (en) | 1990-08-31 | 1990-08-31 | METHOD FOR TRANSMITTING WELL DRILLING DATA FROM BOTTOM TO SURFACE. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05503750A true JPH05503750A (en) | 1993-06-17 |
JP3109741B2 JP3109741B2 (en) | 2000-11-20 |
Family
ID=9400012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03514944A Expired - Lifetime JP3109741B2 (en) | 1990-08-31 | 1991-08-30 | Acoustic transmission of well drilling data. |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0499635A1 (en) |
JP (1) | JP3109741B2 (en) |
CA (1) | CA2072128A1 (en) |
FR (1) | FR2666419B1 (en) |
OA (1) | OA09544A (en) |
WO (1) | WO1992004644A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112565725B (en) * | 2020-12-09 | 2022-09-13 | 成都极米科技股份有限公司 | Projection picture anti-shake method and device, projection equipment and storage medium |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3252225A (en) * | 1962-09-04 | 1966-05-24 | Ed Wight | Signal generator indicating vertical deviation |
US3845837A (en) * | 1972-10-30 | 1974-11-05 | Texaco Inc | Gravity force operated apparatuses for generation of longitudinal pulse data from the bottom of a well |
US4027282A (en) * | 1974-10-18 | 1977-05-31 | Texas Dynamatics, Inc. | Methods and apparatus for transmitting information through a pipe string |
NO162881C (en) * | 1983-06-23 | 1990-02-28 | Teleco Oilfield Services Inc | PROCEDURE AND APPARATUS FOR DETECTION OF FLUIDUM FLOW DRAWINGS IN DRILL. |
US4992997A (en) * | 1988-04-29 | 1991-02-12 | Atlantic Richfield Company | Stress wave telemetry system for drillstems and tubing strings |
US4878206A (en) * | 1988-12-27 | 1989-10-31 | Teleco Oilfield Services Inc. | Method and apparatus for filtering noise from data signals |
-
1990
- 1990-08-31 FR FR9010910A patent/FR2666419B1/en not_active Expired - Lifetime
-
1991
- 1991-08-30 EP EP91916546A patent/EP0499635A1/en not_active Withdrawn
- 1991-08-30 CA CA002072128A patent/CA2072128A1/en not_active Abandoned
- 1991-08-30 WO PCT/FR1991/000698 patent/WO1992004644A1/en not_active Application Discontinuation
- 1991-08-30 JP JP03514944A patent/JP3109741B2/en not_active Expired - Lifetime
-
1992
- 1992-04-30 OA OA60200A patent/OA09544A/en unknown
Also Published As
Publication number | Publication date |
---|---|
FR2666419A1 (en) | 1992-03-06 |
WO1992004644A1 (en) | 1992-03-19 |
FR2666419B1 (en) | 1993-02-19 |
JP3109741B2 (en) | 2000-11-20 |
CA2072128A1 (en) | 1992-03-01 |
EP0499635A1 (en) | 1992-08-26 |
OA09544A (en) | 1992-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5289354A (en) | Method for acoustic transmission of drilling data from a well | |
US6078868A (en) | Reference signal encoding for seismic while drilling measurement | |
US2524031A (en) | Apparatus for logging wells | |
US5969638A (en) | Multiple transducer MWD surface signal processing | |
US9891335B2 (en) | Wireless logging of fluid filled boreholes | |
US4046220A (en) | Method for distinguishing between single-phase gas and single-phase liquid leaks in well casings | |
US8689904B2 (en) | Detection of gas influx into a wellbore | |
US4003017A (en) | Continuous bit positioning system | |
US5163029A (en) | Method for detection of influx gas into a marine riser of an oil or gas rig | |
US4449208A (en) | Lithologic studies utilizing acoustic wave attenuation | |
CA2200246C (en) | Method for estimating the hydraulic conductivity of a borehole sidewall fracture | |
US2787759A (en) | Apparatus for logging wells | |
CA2395098C (en) | A system and methods for detecting pressure signals generated by a downhole actuator | |
NO156702B (en) | PROCEDURE AND DEVICE FOR TRANSFERING DATA THROUGH A PIPE STRING IN A BORROW HOLE. | |
CA2483592A1 (en) | Method of detecting signals in acoustic drill string telemetry | |
EP0454771A1 (en) | Method for reducing noise in drill string signals. | |
US5639997A (en) | Acoustic noise cancelling apparatus for well logging and method of well logging | |
US2978634A (en) | Apparatus for logging wells | |
US6208585B1 (en) | Acoustic LWD tool having receiver calibration capabilities | |
US4829489A (en) | Method of determining drill string velocity | |
CA1061592A (en) | Fluid interface measuring device for use in earth boreholes | |
US3345867A (en) | Method and apparatus for measuring rock bit wear while drilling | |
US8077545B2 (en) | Method for detecting gas influx in wellbores and its application to identifying gas bearing formations | |
US5372038A (en) | Probe to specifically determine the injectivity or productivity of a petroleum well and measuring method implementing said probe | |
US5758539A (en) | Logging method and system for measuring mechanical parameters of the formations crossed through by a borehole |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070914 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080914 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090914 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |