[go: up one dir, main page]

JPH0549127A - Gas insulating electric equipment - Google Patents

Gas insulating electric equipment

Info

Publication number
JPH0549127A
JPH0549127A JP3206081A JP20608191A JPH0549127A JP H0549127 A JPH0549127 A JP H0549127A JP 3206081 A JP3206081 A JP 3206081A JP 20608191 A JP20608191 A JP 20608191A JP H0549127 A JPH0549127 A JP H0549127A
Authority
JP
Japan
Prior art keywords
tank
gas
heat
insulating
liquid reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3206081A
Other languages
Japanese (ja)
Inventor
Toshio Horiuchi
敏雄 堀内
Akira Otsuka
明 大塚
Norichika Sotojima
則近 外嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3206081A priority Critical patent/JPH0549127A/en
Publication of JPH0549127A publication Critical patent/JPH0549127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

PURPOSE:To get a gas insulating electric equipment which can evaporate liquefied gas with terrestrial heat without providing a heater requiring heating control, its operation, and maintenance and management. CONSTITUTION:A connection pipe 16, which communicates with the opening 15 provided at the bottom of a tank 2 charged with insulating gas 3, is extended and buried in the ground, and one end of this buried connection pipe 16 is shut to form a reservoir 17, and also in the reservoir 17, the tubular wall of the connection pipe 16 is constituted of a member favorable in heat conductivity, and liquefied gas 4, which is generated, being dewed by the inwall of the tank 2, and is standing in the reservoir 17, is evaporated being heated with terrestrial heat, and is returned into the tank 2 again as insulating gas 3. Thereby, even if the tank 2 dews in the rigoroud winter of a cold district, the liquefied gas 4 is evaporated effectively by terrestrial; heat, so the pressure drop of the insulating gas 3 inside the tank 2 can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、寒冷地で使用される
ガス絶縁電気機器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to gas-insulated electric equipment used in cold regions.

【0002】[0002]

【従来の技術】SF6 ガスは絶縁性、耐熱性、耐アーク
性の優れた不活性なガスであり、これを絶縁、消弧ある
いは冷却媒体とするガス遮断器や変圧器、管路気中送電
線路、ガス絶縁開閉装置などのガス絶縁電気機器が広く
用いられている。しかし、SF6 ガスは低温で液化する
性質があるため、たとえば−40℃の低温では機器内部の
ガス圧が低下して、所要の絶縁性能や消弧性能を満足し
なくなる場合がある。低温時の液化によるガス圧低下現
象は機器内部の充填圧力が高い程顕著に現われる。従っ
て、寒冷地で使用されるガス絶縁電気機器は、機器タン
ク部の温度低下を防止するため、機器全体を建屋内に設
置したり、タンク部を断熱材で覆ったり、機器全体ある
いはタンク部に加熱用ヒータを設けたり、SF6 ガスに
他の絶縁性ガスを混合するなどの対策が行われている。
図6および図7は、実公昭62−9630号公報に示された従
来のガス遮断器の側面図および正面図である。図におい
て、1は各相毎に設けられた遮断部、2はこの遮断部1
をそれぞれ収納するタンク、3はこのタンク2の内部に
大気圧以上の圧力で充填された絶縁性ガス、4は絶縁性
ガス3が低温時タンク2の内壁に結露して生成される液
化ガスである。5はタンク底部で、液化ガス4がタンク
底部5に形成された凹部6に容易に集まるような傾斜を
もった構造となっている。7は3個の各タンク間を連通
する均圧配管、8は各凹部6を加熱するヒータで、電源
9によって付勢される。10は内部に操作装置11を備えた
制御用ハウジングである。
2. Description of the Related Art SF 6 gas is an inert gas having excellent insulation, heat resistance and arc resistance, and it is used as an insulating, arc extinguishing or cooling medium in gas circuit breakers, transformers and pipelines. Gas-insulated electrical equipment such as power transmission lines and gas-insulated switchgear are widely used. However, since SF 6 gas has a property of liquefying at a low temperature, the gas pressure inside the equipment may decrease at a low temperature of −40 ° C., for example, and the required insulation performance and arc extinction performance may not be satisfied. The lowering of the gas pressure due to liquefaction at low temperatures is more pronounced as the filling pressure inside the equipment is higher. Therefore, for gas-insulated electrical equipment used in cold regions, install the entire equipment inside the building, cover the tank with a heat insulating material, or cover the entire equipment or the tank to prevent the temperature of the equipment tank from decreasing. Measures are taken such as providing a heater for heating and mixing SF 6 gas with other insulating gas.
6 and 7 are a side view and a front view of a conventional gas circuit breaker disclosed in Japanese Utility Model Publication No. 62-9630. In the figure, 1 is a blocking section provided for each phase, 2 is this blocking section 1
, 3 is an insulating gas filled inside the tank 2 at a pressure higher than atmospheric pressure, and 4 is a liquefied gas produced by dew condensation of the insulating gas 3 on the inner wall of the tank 2 at a low temperature. is there. Reference numeral 5 denotes a tank bottom, which has a structure such that the liquefied gas 4 is easily collected in a recess 6 formed in the tank bottom 5. Reference numeral 7 is a pressure equalizing pipe that communicates between the three tanks, and 8 is a heater that heats each recess 6, which is energized by a power supply 9. Reference numeral 10 denotes a control housing having an operating device 11 inside.

【0003】次に動作について説明する。寒冷地の冬期
において大気温度が低下するとともに大気圧以上の圧力
で充填された絶縁性ガス3の内部圧力は低下するが、充
填圧力に応じた特定の温度迄低下すると絶縁性ガス3は
タンク2の内壁に結露を始める。この結露により生成さ
れた液化ガス4は、液滴となってタンク内壁に沿って降
下し、タンク底部5の傾斜面を経て凹部6に液体として
溜まる。大気温度が更に低下して、結露開始温度以下に
なるとタンク内部の絶縁性ガス3の圧力が急激に低下す
るので、これを防止するため、タンク底部5の凹部6に
溜った液化ガス4はヒータ8によって局部的に加熱され
温められて、再び気化して絶縁性ガス3に戻される。寒
風による局部冷却で、ある相のタンク2で結露が多めに
生じて液化ガス4の一部が気化せずに残っていても、各
タンク2は均圧配管7で連通されているので各タンク内
部の絶縁性ガス3の圧力はほぼ均一に保たれる。尚、一
般にガス遮断器は、正常時の10%位迄ガス圧が低下して
も支障なく運転できるように設計されているので、上記
のように僅かな量の液化ガス4が気化せずに残っていて
も、ガス遮断器は正常に運転が可能である。
Next, the operation will be described. In the winter in cold regions, the atmospheric temperature decreases and the internal pressure of the insulating gas 3 filled at a pressure higher than the atmospheric pressure decreases. However, when the temperature falls to a specific temperature according to the filling pressure, the insulating gas 3 is filled with the insulating gas 3. Condensation begins on the inner wall of the. The liquefied gas 4 generated by this dew condensation becomes droplets and descends along the inner wall of the tank, and accumulates in the recess 6 as a liquid via the inclined surface of the tank bottom 5. When the atmospheric temperature further decreases and becomes lower than the dew condensation start temperature, the pressure of the insulating gas 3 inside the tank sharply decreases. Therefore, in order to prevent this, the liquefied gas 4 accumulated in the recess 6 of the tank bottom 5 is heated by the heater. It is locally heated and warmed by 8 and again vaporized and returned to the insulating gas 3. Even if a part of the liquefied gas 4 remains without being vaporized due to a large amount of dew condensation in the tank 2 of a certain phase due to local cooling by the cold wind, each tank 2 is connected by the pressure equalizing pipe 7 The pressure of the insulating gas 3 inside is kept substantially uniform. Generally, the gas circuit breaker is designed so that it can be operated without any trouble even if the gas pressure is reduced to about 10% of the normal state, so that a slight amount of liquefied gas 4 does not vaporize as described above. Even if it remains, the gas circuit breaker can operate normally.

【0004】[0004]

【発明が解決しようとする課題】従来のガス遮断器は以
上のように構成されているので、絶縁性ガス3が結露し
て生成される液化ガス4を気化するためには、加熱用の
ヒータ8や、ヒータを制御する制御装置が必要で、それ
らを運転し保守管理する費用も必要となるため、コスト
高になる問題点があった。
Since the conventional gas circuit breaker is constructed as described above, in order to vaporize the liquefied gas 4 produced by the condensation of the insulating gas 3, a heater for heating is used. 8 and a control device for controlling the heater are required, and a cost for operating and maintaining them is also required, resulting in a problem of high cost.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、加熱制御やその運転・保守管理
が必要なヒータを設けることなく、地熱で液化ガスを気
化することができるガス絶縁電気機器を得ることを目的
とする。
The present invention has been made in order to solve the above problems, and is a gas which can vaporize a liquefied gas by geothermal heat without providing a heater which requires heating control and its operation and maintenance management. The purpose is to obtain insulated electrical equipment.

【0006】[0006]

【課題を解決するための手段】この発明に係るガス絶縁
電気機器は、タンク底部に設けた開口部に連通する接続
パイプを延長して地下に埋設し、接続パイプの地下部に
液化ガスの液溜部を配備したものである。
In a gas-insulated electric device according to the present invention, a connecting pipe communicating with an opening provided at a bottom of a tank is extended and buried underground, and a liquid of liquefied gas is underground in the connecting pipe. It has a reservoir.

【0007】また、タンク底部の附近に液溜部を設ける
とともに、この液溜部に地熱を伝達する伝熱手段を備え
たものである。
Further, a liquid reservoir is provided near the bottom of the tank, and a heat transfer means for transmitting geothermal heat to the liquid reservoir is provided.

【0008】[0008]

【作用】この発明においては、タンク内壁の液化ガスは
重力により自然降下してタンク底部を経て、地下に埋設
された液溜部に溜まり、この液溜部の液化ガスが地熱に
よって温められて再び気化し、絶縁性ガスとなってタン
ク内に戻される。
In the present invention, the liquefied gas on the inner wall of the tank naturally descends due to gravity, passes through the bottom of the tank, and collects in the liquid reservoir buried underground, and the liquefied gas in the liquid reservoir is warmed by the geothermal heat and re-heated again. It vaporizes and becomes an insulating gas that is returned to the tank.

【0009】また、タンク底部の附近に設けた液溜部に
地熱を伝達する伝熱手段を備えることにより、タンク内
壁で生成された液化ガスは速やかに液溜部に溜まり、こ
の液溜部で気化された絶縁性ガスは速やかにタンク内に
戻される。
Further, by providing a heat transfer means for transferring geothermal heat to the liquid reservoir provided near the bottom of the tank, the liquefied gas generated on the inner wall of the tank is quickly accumulated in the liquid reservoir, and in this liquid reservoir. The vaporized insulating gas is promptly returned to the tank.

【0010】[0010]

【実施例】実施例1.以下、この発明の実施例1を図1
について説明する。図1において、1〜5は従来例の図
6と同様で、14はこの実施例のガス絶縁電気機器を設置
する地表面、15は遮断部1、絶縁性ガス3および液化ガ
ス4を内蔵するタンク2の底部5に設けられた開口部、
16は開口部15に連通する接続パイプで、その一部が地下
に埋設されている。17は地下に埋設された接続パイプ16
の一端を閉じて形成された液溜部で、液溜部17において
接続パイプ16の管壁は熱伝導度の良好な部材で構成され
る。19は、接続パイプ16の地表面14より上方の部分を大
気温度から遮蔽する断熱部材である。
EXAMPLES Example 1. Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
Will be described. In FIG. 1, 1 to 5 are the same as those in FIG. 6 of the conventional example, 14 is the ground surface on which the gas-insulated electrical equipment of this embodiment is installed, and 15 is a shutoff part 1, an insulating gas 3 and a liquefied gas 4 are incorporated. An opening provided in the bottom 5 of the tank 2,
Reference numeral 16 is a connection pipe that communicates with the opening 15, and part of it is buried underground. 17 is a connecting pipe 16 buried underground
In the liquid reservoir 17 formed by closing one end thereof, the pipe wall of the connection pipe 16 in the liquid reservoir 17 is made of a member having good thermal conductivity. Reference numeral 19 is a heat insulating member that shields a portion of the connecting pipe 16 above the ground surface 14 from atmospheric temperature.

【0011】次に実施例1の動作について説明する。寒
冷地の冬期において、大気温度が0℃以下の特定の温度
まで低下すると、絶縁性ガス3はタンク2の内壁2に結
露する。この結露により生成された液化ガス4は、タン
ク2の底部5、開口部15を経て、底部5よりも下方に配
備された接続パイプ16へと重力作用で降下していき、地
下に埋設された接続パイプ16の液溜部17に到達する。液
溜部17は地下の地熱により温められており、大気温度つ
まりタンク2の温度よりも摂氏10度以上数10度も高温で
あるため、液溜部17に溜った液化ガス4は気化し、再び
絶縁性ガス3となって接続パイプ16を経路してタンク2
の内部へ戻される。この際、タンク2に戻される単位時
間当たりのガス流量Qは、液溜部17とタンク2との間の
ガス圧力差Pと接続パイプ16のコンダクタンスCの積で
与えられる。大気温度が低下するほど、タンク2の内部
圧力は低下するものの、大気と地下との温度差、従って
タンク2と液溜部17とのガス圧力差Pが増大するため、
液溜部17で気化してタンク2に戻される絶縁性ガス3の
ガス流量Qは増大するので、タンク2の内部圧力の低下
が改善できる。尚、接続パイプ16の温度は断熱部材19に
より大気温度よりも高温に維持されているので、液溜部
17で気化した絶縁性ガス3が接続パイプ16の内壁で再び
結露することは少なく、絶縁性ガス3の大部分はタンク
2に戻される。
Next, the operation of the first embodiment will be described. When the atmospheric temperature decreases to a specific temperature of 0 ° C. or less in the winter of a cold region, the insulating gas 3 is condensed on the inner wall 2 of the tank 2. The liquefied gas 4 generated by this dew drops through the bottom portion 5 and the opening portion 15 of the tank 2 to the connection pipe 16 arranged below the bottom portion 5 by gravity, and is buried underground. It reaches the liquid reservoir 17 of the connection pipe 16. Since the liquid reservoir 17 is warmed by underground geothermal heat and is higher than the atmospheric temperature, that is, the temperature of the tank 2 by 10 degrees Celsius or more and several tens of degrees Celsius, the liquefied gas 4 accumulated in the liquid reservoir 17 is vaporized, It becomes insulating gas 3 again and is routed through the connecting pipe 16 to the tank 2
Returned to inside. At this time, the gas flow rate Q returned to the tank 2 per unit time is given by the product of the gas pressure difference P between the liquid reservoir 17 and the tank 2 and the conductance C of the connection pipe 16. Although the internal pressure of the tank 2 decreases as the atmospheric temperature decreases, the temperature difference between the atmosphere and the underground, and hence the gas pressure difference P between the tank 2 and the liquid reservoir 17, increases,
Since the gas flow rate Q of the insulating gas 3 vaporized in the liquid reservoir 17 and returned to the tank 2 increases, the decrease in the internal pressure of the tank 2 can be improved. Since the temperature of the connecting pipe 16 is kept higher than the atmospheric temperature by the heat insulating member 19, the liquid reservoir
The insulating gas 3 vaporized in 17 is rarely condensed again on the inner wall of the connecting pipe 16, and most of the insulating gas 3 is returned to the tank 2.

【0012】従来のガス遮断器(図6、図7)ではタン
ク底部5に凹部6を設けねばならず、厚板で成形された
タンク2に凹部6を形成するのは製作が難しく、通常で
も高価なタンク2がますます高価になる問題点があった
が、実施例1によれば上記のようにタンク底部5に開口
部15を設ければよくタンク2を経済的に製作できる効果
を生じる。
In the conventional gas circuit breaker (FIGS. 6 and 7), the tank bottom 5 must be provided with a recess 6, and it is difficult to form the recess 6 in the tank 2 formed of a thick plate, and it is usually difficult to form the recess 6. Although there is a problem that the expensive tank 2 becomes more and more expensive, according to the first embodiment, it is sufficient to provide the opening 15 in the tank bottom portion 5 as described above, and the tank 2 can be economically manufactured. ..

【0013】実施例2.図2はこの発明の実施例2を示
すもので、同一のタンク2の底部5に開口部15を2個所
に設け、接続パイプ16は地下部において閉じることなく
液溜部17aを形成し、2個所の開口部15を相互に接続し
たものである。この実施例2によれば地熱の伝達面積が
増えるとともに、接続パイプ16のガス流路のコンダクタ
ンスCが実施例1の2倍となるので、より優れた効果を
発揮する。
Embodiment 2. FIG. 2 shows a second embodiment of the present invention, in which the bottom portion 5 of the same tank 2 is provided with two openings 15 at two locations, and the connection pipe 16 forms a liquid reservoir 17a without closing in the underground. The openings 15 at the points are connected to each other. According to the second embodiment, the transfer area of geothermal heat is increased, and the conductance C of the gas flow path of the connection pipe 16 is twice as large as that of the first embodiment, so that a more excellent effect is exhibited.

【0014】実施例3.図3はこの発明の実施例3を示
すもので、3相のタンク2の底部5に開口部15を設け
て、接続パイプ16は実施例2と同様に地下部に液溜部17
bを形成し、3個所の開口部15を相互に接続したもので
ある。この実施例3によれば、従来例(図6、図7)に
おける均圧配管7を省略できるとともに、上記実施例2
と同様に実施例1よりも優れた効果を奏する。
Example 3. FIG. 3 shows Embodiment 3 of the present invention. An opening 15 is provided in the bottom portion 5 of the three-phase tank 2, and the connection pipe 16 has a liquid reservoir 17 in the underground as in Embodiment 2.
b is formed and three openings 15 are connected to each other. According to the third embodiment, the pressure equalizing pipe 7 in the conventional example (FIGS. 6 and 7) can be omitted, and the second embodiment described above can be omitted.
The same effect as that of Example 1 is obtained similarly to.

【0015】実施例4.図4はこの発明の実施例4を示
すもので、地下部にある液溜部17cを金属ベローズで構
成したので地熱の伝達面積が増えるとともに、接続パイ
プ16の地表面14から上方の部分を断熱効果の優れた真空
断熱間19aで遮蔽したので接続パイプ16の内壁での再結
露が改善され、上記実施例2〜3と同様に実施例1より
も優れた効果を発揮する。
Example 4. FIG. 4 shows Embodiment 4 of the present invention, in which the liquid storage portion 17c in the underground portion is made of a metal bellows, so that the transfer area of geothermal heat is increased and the portion above the ground surface 14 of the connection pipe 16 is insulated. Since the vacuum heat insulating space 19a, which has an excellent effect, is used for shielding, recondensation on the inner wall of the connecting pipe 16 is improved, and the same effect as that of the first embodiment is exhibited as in the second to third embodiments.

【0016】実施例5.以上の実施例1〜実施例4では
それぞれ液溜部17〜17cを地下に埋設した場合を示した
が、この発明の実施例5は図5に示すように、液溜部17
dをタンク2の底部5の附近に配備するとともに、この
液溜部17dに地熱を伝達する伝熱手段18を備えたもので
ある。すなわち、図5の伝熱手段18は、真空引きされた
金属管18の内部にフロンなど少量の作動液を密封したヒ
ートパイプであって、下端を地下に埋設し上端を液溜部
17dから接続パイプ16の内部に設けたものである。19a
は液溜部17dを大気温度から遮蔽するための真空断熱
管、19bは伝熱手段18であるヒートパイプの地表面14か
ら上方の部分を大気温度から遮蔽するための断熱部材、
20はヒートパイプの地下部に地熱を有効に伝達するフィ
ンである。
Embodiment 5. Although the liquid reservoirs 17 to 17c are buried underground in the above-described Embodiments 1 to 4, Embodiment 5 of the present invention, as shown in FIG.
d is arranged near the bottom 5 of the tank 2 and a heat transfer means 18 for transferring geothermal heat to the liquid reservoir 17d is provided. That is, the heat transfer means 18 in FIG. 5 is a heat pipe in which a small amount of working fluid such as CFC is sealed inside a vacuumed metal tube 18, the lower end is buried underground and the upper end is a liquid reservoir.
It is provided inside the connection pipe 16 from 17d. 19a
Is a vacuum heat insulation tube for shielding the liquid reservoir 17d from the ambient temperature, 19b is a heat insulation member for shielding the portion above the ground surface 14 of the heat pipe which is the heat transfer means 18 from the ambient temperature,
20 is a fin that effectively transfers the geothermal heat to the underground part of the heat pipe.

【0017】実施例5は上記のように構成されているの
で、寒冷地の冬期において絶縁性ガス3が結露すると、
液化ガス4はタンクの底部5の附近に配備された液溜部
17dに溜まる。一方、伝熱手段18であるヒートパイプの
地下部は地熱で加熱されているので、ヒートパイプ内部
の作動液は沸騰し、その蒸気圧は圧力波となり音速で液
溜部17dの方へ移動し、液溜部17dに溜った液化ガス4
により冷却されるとヒートパイプ内部の作動液は凝縮し
て潜熱を放出し、液化して重力作用でヒートパイプの地
下部へ還流する。このためヒートパイプで構成された伝
熱手段18は同じ寸法の金属棒よりも大量の地熱を非常に
小さな温度差で液化ガス4に伝達することができる。実
施例5では、液溜部17dをタンク底部5の附近に配備し
たので、実施例1〜実施例4に較べて接続パイプ16の長
さを大幅に短くできる。このことは、タンク2の内壁で
生じた液化ガス4が液溜部17dに溜まるまでの時間を大
幅に短縮するとともに、接続パイプ16のコンダクタンス
Cが大幅に増加する結果、液溜部17dで気化してタンク
2に戻される絶縁性ガス3の単位時間当たりの流量Qを
大幅に増加するという2つの新しい作用を生じる。この
2つの新しい作用のため、実施例5によれば、結露によ
るタンク2内部の絶縁性ガス3の圧力低下をより一層効
果的に改善することができる。
Since the fifth embodiment is configured as described above, when the insulating gas 3 is condensed in the cold season in winter,
Liquefied gas 4 is a liquid reservoir located near the bottom 5 of the tank.
It collects in 17d. On the other hand, since the underground portion of the heat pipe, which is the heat transfer means 18, is heated by geothermal heat, the hydraulic fluid inside the heat pipe boils, and its vapor pressure becomes a pressure wave and moves toward the liquid reservoir 17d at the speed of sound. , Liquefied gas 4 accumulated in the liquid reservoir 17d
When cooled by, the working fluid inside the heat pipe condenses and releases latent heat, liquefies and returns to the underground part of the heat pipe by the action of gravity. Therefore, the heat transfer means 18 composed of a heat pipe can transfer a large amount of geothermal heat to the liquefied gas 4 with a very small temperature difference compared with a metal rod of the same size. In the fifth embodiment, since the liquid storage portion 17d is arranged near the tank bottom portion 5, the length of the connecting pipe 16 can be significantly shortened as compared with the first to fourth embodiments. This significantly shortens the time until the liquefied gas 4 generated on the inner wall of the tank 2 is accumulated in the liquid reservoir 17d, and the conductance C of the connection pipe 16 is significantly increased. There are two new effects of significantly increasing the flow rate Q of the insulating gas 3 returned to the tank 2 after being converted into the tank 2. Due to these two new effects, according to the fifth embodiment, the pressure drop of the insulating gas 3 inside the tank 2 due to dew condensation can be improved more effectively.

【0018】実施例6.実施例5を示す図5ではタンク
2の底部5には凹部6を設けない場合を示したが、従来
例図6、図7と同様のタンク底部の凹部6を液溜部とし
て用いるとともに、この凹部6にヒートパイプの一端を
設けて地熱の伝熱手段18として構成することができる。
Example 6. In FIG. 5 showing the fifth embodiment, the case where the recess 6 is not provided in the bottom 5 of the tank 2 is shown, but the same recess 6 in the bottom of the tank as in the conventional example shown in FIGS. 6 and 7 is used as the liquid reservoir. One end of a heat pipe may be provided in the recess 6 to serve as the heat transfer means 18 for geothermal heat.

【0019】以上の実施例1〜実施例6は、SF6 ガス
を充填したガス遮断器について述べたが、低温時に液化
する可能性のある絶縁性ガス、たとえば弗化カーボン系
のガスについても同様に適用できるとともに、ガス絶縁
変圧器などのガス絶縁電気機器に適用できるものであ
る。
Although the above-mentioned Examples 1 to 6 describe the gas circuit breaker filled with SF 6 gas, the same applies to an insulating gas which may be liquefied at a low temperature, for example, a carbon fluoride gas. It can be applied to gas-insulated transformers and other gas-insulated electrical equipment.

【0020】[0020]

【発明の効果】以上のように、この発明によればタンク
底部に設けた開口部に連通する接続パイプを延長して地
下に埋設し、この接続パイプの地下部に液化ガスの液溜
部を構成したので、加熱制御やその運転・保守管理が必
要なヒータを設けることなく、地熱により液化ガスを気
化させることができ、寒冷地の厳冬期におけるタンクの
内部圧力低下を改善したガス絶縁電気機器を得ることが
できる。
As described above, according to the present invention, the connection pipe communicating with the opening provided at the bottom of the tank is extended and buried underground, and the liquefied gas reservoir is provided in the underground of the connection pipe. Since it is configured, it is possible to vaporize liquefied gas by geothermal heat without installing a heater that requires heating control and its operation and maintenance management, and gas insulated electrical equipment that has improved the internal pressure drop of the tank in the severe winter of cold regions Can be obtained.

【0021】また、タンク底部の附近に液溜部を配備す
るとともにこの液溜部に地熱を伝達する伝熱手段を設け
たので、タンク内壁で生成された液化ガスは速やかに液
溜部に溜まり、液溜部で気化された絶縁性ガスは速やか
にタンク内に戻される結果、タンクの内部圧力低下を一
層改善できる効果がある。
Further, since the liquid reservoir is provided near the bottom of the tank and the heat transfer means for transmitting the geothermal heat to the liquid reservoir is provided, the liquefied gas generated on the inner wall of the tank quickly accumulates in the liquid reservoir. The insulating gas vaporized in the liquid reservoir is promptly returned to the inside of the tank, which has the effect of further improving the internal pressure drop of the tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す側面図である。FIG. 1 is a side view showing a first embodiment of the present invention.

【図2】この発明の実施例2を示す側面図である。FIG. 2 is a side view showing a second embodiment of the present invention.

【図3】この発明の実施例3を示す正面図である。FIG. 3 is a front view showing a third embodiment of the present invention.

【図4】この発明の実施例4の主要部を示す正面図であ
る。
FIG. 4 is a front view showing a main part of a fourth embodiment of the present invention.

【図5】この発明の実施例5の主要部を示す正面図であ
る。
FIG. 5 is a front view showing a main part of a fifth embodiment of the present invention.

【図6】従来のガス絶縁電気機器の側面図である。FIG. 6 is a side view of a conventional gas-insulated electric device.

【図7】従来のガス絶縁電気機器の正面図である。FIG. 7 is a front view of a conventional gas-insulated electric device.

【符号の説明】[Explanation of symbols]

2 タンク 3 絶縁性ガス 4 液化ガス 5 タンクの底部 14 地下部 15 開口部 16 接続パイプ 17、17a〜17d 液溜部 18 伝熱手段 2 Tank 3 Insulating gas 4 Liquefied gas 5 Bottom of tank 14 Underground 15 Opening 16 Connection pipe 17, 17a to 17d Liquid reservoir 18 Heat transfer means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性ガスを充填するタンクの底部に設
けた開口部に連通する接続パイプを延長して地下に埋設
し、前記接続パイプの地下部に前記タンクの内壁に結露
して生成される液化ガスの液溜部を配備したことを特徴
とするガス絶縁電気機器。
1. A connection pipe communicating with an opening provided at the bottom of a tank filled with an insulating gas is extended to be buried underground, and condensation is formed on the inner wall of the tank in the underground portion of the connection pipe. A gas-insulated electric device having a liquid reservoir for liquefied gas.
【請求項2】 絶縁性ガスを充填するタンクの底部の附
近に前記タンクの内壁に結露して生成される液化ガスの
液溜部を配備するとともに、この液溜部に地熱を伝達す
る伝熱手段を備えたことを特徴とするガス絶縁電気機
器。
2. A heat transfer for transferring a geothermal heat to a liquid reservoir for liquefied gas generated by dew condensation on the inner wall of the tank near the bottom of the tank filled with the insulating gas. A gas-insulated electric device comprising means.
JP3206081A 1991-08-19 1991-08-19 Gas insulating electric equipment Pending JPH0549127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3206081A JPH0549127A (en) 1991-08-19 1991-08-19 Gas insulating electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3206081A JPH0549127A (en) 1991-08-19 1991-08-19 Gas insulating electric equipment

Publications (1)

Publication Number Publication Date
JPH0549127A true JPH0549127A (en) 1993-02-26

Family

ID=16517512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3206081A Pending JPH0549127A (en) 1991-08-19 1991-08-19 Gas insulating electric equipment

Country Status (1)

Country Link
JP (1) JPH0549127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289624A (en) * 2008-05-30 2009-12-10 Japan Ae Power Systems Corp Gas insulated electric appliance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289624A (en) * 2008-05-30 2009-12-10 Japan Ae Power Systems Corp Gas insulated electric appliance

Similar Documents

Publication Publication Date Title
KR101317325B1 (en) An electrical bushing for a superconductor element
CN101656406B (en) The high-voltage switch gear of band cooling
US3371298A (en) Cooling system for electrical apparatus
US8711550B2 (en) Cooling method and device for cooling a medium-voltage electrical installation in a protective sheath
US20050099775A1 (en) Pumped liquid cooling for computer systems using liquid metal coolant
US3955042A (en) Cooling of power cables by a closed-cycle evaporation-condensation process
JP2013508669A (en) Cooling device for cooling medium voltage devices by utilizing insulated heat pipes
CN104335310A (en) Dual port heat pipe structure for switchgear
CN102299491A (en) Vapor chamber for heat radiation of large-current switch cabinet
US7708577B2 (en) Electrical connection structure for a superconductor element
JPS6248444B2 (en)
JP3623823B2 (en) Superconductor transmission line
JPH0549127A (en) Gas insulating electric equipment
BRPI0901728A2 (en) gas insulated electrical appliance
US5598710A (en) Superconducting apparatus and method for operating said superconducting apparatus
GB1595094A (en) Method and system for cooling electrical apparatus
RU2563575C1 (en) Sf6-insulated device operated at low temperatures
JPH07180982A (en) Heat pipe type cooling device
US4321422A (en) Busbar installation
JPS629630Y2 (en)
KR20220159425A (en) Cooling units for medium or high voltage switchgear
JPH0479114A (en) Multiphase separation type gas insulating electric equipment
EP3588707A1 (en) A two-phase cooling device for an encapsulated electrical device
JPH0549126A (en) Gas insulating electric equipment
JPH0562550A (en) Gas insulated electric apparatus