JPH0548856B2 - - Google Patents
Info
- Publication number
- JPH0548856B2 JPH0548856B2 JP60120508A JP12050885A JPH0548856B2 JP H0548856 B2 JPH0548856 B2 JP H0548856B2 JP 60120508 A JP60120508 A JP 60120508A JP 12050885 A JP12050885 A JP 12050885A JP H0548856 B2 JPH0548856 B2 JP H0548856B2
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- temperature
- increase rate
- cooling water
- temperature increase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000498 cooling water Substances 0.000 claims description 33
- 230000005856 abnormality Effects 0.000 claims description 30
- 238000011156 evaluation Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 239000010687 lubricating oil Substances 0.000 claims description 8
- 230000002159 abnormal effect Effects 0.000 claims description 5
- 239000003921 oil Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000001514 detection method Methods 0.000 description 9
- 238000012937 correction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
【発明の詳細な説明】
A 産業上の利用分野
本発明は軸受の温度異常を検出する方法に関
し、水温等の外乱に影響されずに確実に軸受の温
度異常が検出できるように企図したものである。[Detailed Description of the Invention] A. Field of Industrial Application The present invention relates to a method for detecting temperature abnormalities in bearings, and is intended to be able to reliably detect temperature abnormalities in bearings without being affected by external disturbances such as water temperature. be.
B 発明の概要
本発明は軸受の温度異常を検出する方法におい
て、潤滑油冷却水温度と軸受温度とから軸受換算
温度を定め、この軸受換算温度から求めた軸受評
価温度上昇率と、軸受温度から求めた軸受温度上
昇率を比べて軸受の温度異常を検出するようにし
たもので、潤滑油冷却水温度の変化に係わらず全
ての温度範囲にわたり軸受の温度異常が検出でき
るようにしたものである。B. Summary of the Invention The present invention provides a method for detecting temperature abnormalities in a bearing, in which a bearing conversion temperature is determined from the lubricating oil cooling water temperature and the bearing temperature, and a bearing evaluation temperature increase rate determined from the bearing conversion temperature and the bearing temperature are determined. This system detects bearing temperature abnormalities by comparing the determined bearing temperature rise rates, and allows bearing temperature abnormalities to be detected over the entire temperature range regardless of changes in lubricating oil cooling water temperature. .
C 従来の技術
一般に、水力発電所に発電機や水車の軸受に
は、軸受保護のために温度検出装置が取り付けら
れ、その軸受の温度が異常温度となつた場合に警
報を発して水車等の運転を停止させて機器の損傷
を防止している。C. PRIOR TECHNOLOGY In general, temperature detection devices are attached to the bearings of generators and water turbines in hydroelectric power plants to protect the bearings, and if the temperature of the bearing reaches an abnormal temperature, an alarm is issued and the water turbine, etc. Operation is stopped to prevent damage to equipment.
従来、この軸受温度検出装置による軸受温度の
検出監視は、第4図で示すように許容される最高
温度θ2を設定し、検出される軸受温度θ1が許容最
高温度θ2を越えた時警報を発するようにしてい
る。ところがこの検出方法では軸受が低温時(始
動直後)に異常上昇した場合、軸受温度の上昇は
線01の如く、軸受温度θ1が異常上昇開始時点か
ら許容最高温度θ2に達するまでに時間t1を要し、
t1時間経過後に始めて軸受温度θ1が異常状態であ
ることが確認できる。このため、警報が出た時は
すでに軸受部の焼付等重大な故障に発展してしま
うことがある。 Conventionally, in the detection and monitoring of bearing temperature using this bearing temperature detection device, the maximum allowable temperature θ 2 is set as shown in Fig. 4, and when the detected bearing temperature θ 1 exceeds the maximum allowable temperature θ 2 I'm trying to issue a warning. However, with this detection method, if the bearing temperature rises abnormally when it is cold (immediately after startup), the bearing temperature will rise as shown by line 01, and it will take time t for the bearing temperature θ 1 to reach the maximum allowable temperature θ 2 from the start of the abnormal rise. costs 1 ,
Only after 1 hour has elapsed can it be confirmed that the bearing temperature θ 1 is in an abnormal state. Therefore, by the time the alarm is issued, a serious failure such as seizure of the bearing may already occur.
そこで上記方法の欠点を解消するため軸受温度
の上昇過程の異常を監視することに着目し、第5
図で示すように軸受温度の関数として正常な軸受
温度θ3の温度上昇率dθ3/dtを定め、この温度上昇率
dθ3/dtを基準に許容温度上昇率dθ4/dtを設定し、軸
受
の温度上昇率がこの許容温度上昇率dθ4/dtを越えた
時警報を発するようにしたものが提案されてい
る。この方法によると温度上昇率により異常判断
を行なうため応答性が良好であり、しかも軸受温
度θの変化に応じて適確な異常判断値としての温
度上昇率を変化させるため、起動時あるいは長時
間運転後にかからわず適切な温度異常判断を行な
うことができる。 Therefore, in order to eliminate the drawbacks of the above method, we focused on monitoring abnormalities in the process of increasing bearing temperature, and
As shown in the figure, the temperature increase rate dθ 3 /dt of the normal bearing temperature θ 3 is determined as a function of the bearing temperature, and the allowable temperature increase rate dθ 4 /dt is set based on this temperature increase rate dθ 3 /dt, It has been proposed to issue an alarm when the temperature increase rate of the bearing exceeds this allowable temperature increase rate dθ 4 /dt. According to this method, the abnormality is judged based on the temperature rise rate, so the response is good.Moreover, since the temperature rise rate is changed as an accurate abnormality judgment value according to changes in the bearing temperature θ, it is possible to Appropriate temperature abnormality judgment can be made even after operation.
ところで、潤滑油冷却水の温度が季節により変
化すると第6図の如く軸受温度θにも変化が生じ
る。即ち、夏場の水温Bと冬場の水温Aには△tC
の差があり、軸受飽和温度にも△tBの差が生じ、
軸受温度曲線を温度上昇率と軸受温度の関係で表
わす第7図で示すように軸受温度の上昇率は冷却
水温度によつて異なつた値となる。ここで軸受飽
和温度差△tBは一般的に冷却水温度差△tCの約半
分になることが判明しており、冷却水温の年間変
化はおおむね20℃であるので、軸受温度の変化は
約10℃となる。尚、第6図において、冷却水温度
がAの場合の各時間に対する軸受温度θは下式で
表わすことができる。 By the way, when the temperature of the lubricating oil cooling water changes depending on the season, the bearing temperature θ also changes as shown in FIG. In other words, for water temperature B in summer and water temperature A in winter, △t C
There is a difference in the bearing saturation temperature, and a difference in △ tB occurs.
As shown in FIG. 7, which shows the bearing temperature curve as a relationship between the temperature increase rate and the bearing temperature, the bearing temperature increase rate has different values depending on the cooling water temperature. Here, it is known that the bearing saturation temperature difference △t B is generally about half of the cooling water temperature difference △t C , and the annual change in cooling water temperature is approximately 20°C, so the bearing temperature change is The temperature will be approximately 10℃. In FIG. 6, when the cooling water temperature is A, the bearing temperature θ for each time can be expressed by the following formula.
θ=θA(1−ε-t/TA) ……(1)
(1)式より
dθ/dt=θA/TAε-t/TA ……(2)
また(1)式より
θ=θA−θAε-t/TA
∴ε-t/TA=1−θ/θA ……(3)
(2)、(3)式より軸受温度の変化率は、
dθ/dt=θA/TA×(1−θ/θA)
∴dθ/dt=θA/TA×θA−θ/θA=1/TA(θA−θ
)
∴dθ/dt=−1/TAθ+θA/TA ……(4)
となる。 θ=θ A (1−ε -t/TA ) ...(1) From equation (1), dθ/dt=θ A /T A ε -t/TA ...(2) Also, from equation (1), θ= θ A −θ A ε -t/TA ∴ε -t/TA = 1−θ/θ A ...(3) From equations (2) and (3), the rate of change in bearing temperature is: dθ/dt=θ A /T A × (1-θ/θ A ) ∴dθ/dt=θ A /T A ×θ A −θ/θ A =1/T A (θ A −θ
) ∴dθ/dt=-1/T A θ+θ A /T A ...(4).
上式においてtは時間、TAは時間常数(タイ
ムコンスタント)である。 In the above equation, t is time and T A is a time constant.
また冷却水温がBの場合も同様に計算すること
ができる。 Further, when the cooling water temperature is B, calculation can be made in the same way.
D 発明が解決しようとする問題点
上述した方法では軸受温度上昇率を異常判断の
基準としているため、始動時に軸受温度が急上昇
した場合は速やかに異常判断を行なうことができ
る等、運転状態に合わせた異常判断が可能である
が、軸受温度に無視できない影響を与える潤滑油
冷却水温に対する考慮がない。その結果、特に夏
と冬で冷却水温の差が大きい場所で使用される発
電機等の軸受の温度異常検出は精度良く行なうこ
とが不可能であつた。D Problems to be Solved by the Invention In the method described above, the rate of increase in bearing temperature is used as the standard for abnormality judgment, so if the bearing temperature suddenly rises during startup, abnormality judgment can be quickly made. However, there is no consideration given to the lubricating oil cooling water temperature, which has a non-negligible effect on the bearing temperature. As a result, it has been impossible to accurately detect temperature abnormalities in bearings of generators and the like used in places where there is a large difference in cooling water temperature between summer and winter.
本発明は上述した欠点を解決するためなされた
もので、軸受温度と潤滑油冷却水温度を基にして
軸受温度の異常を検出する方法を提供し、もつて
全ての温度範囲にわたつて短時間に軸受温度異常
を検出できるようにすると共に、冷却水温度変化
などの外乱を防止して精度良く軸受温度異常を検
出できるようにすることを目的とする。 The present invention has been made to solve the above-mentioned drawbacks, and provides a method for detecting abnormalities in bearing temperature based on bearing temperature and lubricating oil cooling water temperature, and can detect abnormalities in bearing temperature over all temperature ranges in a short period of time. It is an object of the present invention to make it possible to detect an abnormality in bearing temperature, and to detect an abnormality in bearing temperature with high accuracy by preventing disturbances such as changes in cooling water temperature.
E 問題点を解決するための手段・作用
上記のような欠点を解決する本発明は、潤滑油
冷却水温度に軸受構造毎に定められる定数を乗じ
た値と軸受温度とを演算して軸受換算温度を定
め、この軸受換算温度から軸受評価温度上昇率を
求めると共に軸受温度から軸受温度上昇率を求
め、この軸受温度上昇率と前記軸受評価温度上昇
率とを比べ軸受温度上昇率がその時点の軸受評価
温度上昇率を越えた場合に軸受温度異常とみなす
ようにしたものである。E Means/action for solving the problem The present invention, which solves the above-mentioned drawbacks, calculates the value obtained by multiplying the lubricating oil cooling water temperature by a constant determined for each bearing structure and the bearing temperature to convert it into a bearing. Determine the temperature, find the bearing evaluation temperature rise rate from this bearing conversion temperature, calculate the bearing temperature rise rate from the bearing temperature, compare this bearing temperature rise rate with the bearing evaluation temperature rise rate, and find out whether the bearing temperature rise rate at that point is If the temperature rise rate exceeds the bearing evaluation temperature increase rate, it is assumed that the bearing temperature is abnormal.
F 実施例
以下本発明の一実施例を図面に基づき詳細に説
明する。F. Embodiment An embodiment of the present invention will be described below in detail based on the drawings.
第1図は本発明の一実施例に係る軸受温度異常
検出方法を示すグラフ、第2図は本発明方法を適
用した立形水車発電機の推力軸受の部分縦断面、
第3図は本発明の示すフローチヤートである。推
力軸受の回転軸1は回転子2と一体となつてお
り、又回転軸1には回転部材(スラストボス)3
が一体的に取付けられている。回転部材3の周面
はラジアルジヤーナル部4となつており、又回転
部材3にはリング状の回転板5が取付けられ、回
転板5の下面はスラストジヤーナル部6となつて
いる。一方、枠体7には回転板5及び回転部材3
を収容し且つ潤滑用の油8が貯えられた油槽9が
設けられている。油槽9の上部には前記ラジサル
ジヤーナル部4を囲繞するラジアル軸受(ガイド
メタル)10が設けられ、回転部材3には油8を
前記ラジアルジヤーナル部4とラジアル軸受10
との間に導くための導油孔11が設けられてい
る。油槽9の底部には前記スラストジヤーナル部
6と面するスラスト軸受(セクターメタル)12
が固定されて、スラスト軸受12には図示しない
抵抗温度計が設けられている。又、油槽9内の油
8中には多数の冷却水管13が配管され、その中
を冷却水が通されるようになつており、冷却水管
13の入口側には図示しない抵抗温度計が設けら
れている。 FIG. 1 is a graph showing a bearing temperature abnormality detection method according to an embodiment of the present invention, and FIG. 2 is a partial longitudinal section of a thrust bearing of a vertical water turbine generator to which the method of the present invention is applied.
FIG. 3 is a flowchart showing the present invention. A rotating shaft 1 of the thrust bearing is integrated with a rotor 2, and a rotating member (thrust boss) 3 is attached to the rotating shaft 1.
are integrally installed. The peripheral surface of the rotating member 3 is a radial journal part 4, and a ring-shaped rotating plate 5 is attached to the rotating member 3, and the lower surface of the rotating plate 5 is a thrust journal part 6. On the other hand, the frame body 7 includes a rotating plate 5 and a rotating member 3.
An oil tank 9 is provided in which oil 8 for lubrication is stored. A radial bearing (guide metal) 10 surrounding the radial journal part 4 is provided in the upper part of the oil tank 9, and the rotating member 3 is provided with oil 8, which is connected to the radial journal part 4 and the radial bearing 10.
An oil guide hole 11 is provided to guide the oil between the two. A thrust bearing (sector metal) 12 is provided at the bottom of the oil tank 9 facing the thrust journal portion 6.
is fixed, and the thrust bearing 12 is provided with a resistance thermometer (not shown). Further, a large number of cooling water pipes 13 are piped into the oil 8 in the oil tank 9, through which cooling water is passed, and a resistance thermometer (not shown) is provided on the inlet side of the cooling water pipes 13. It is being
この装置では、回転軸1と共に回転部材3が回
転し、その遠心力により油8がスラストジヤーナ
ル部6とスラスト軸受12との間並びに導油管1
1を通つてラジアルジヤーナル部4とラジアル軸
受10と間に供給され、各軸受部がそれぞれ冷却
されると共に、冷却に供された油8は冷却水管1
3内を流れる水によつて冷却される。 In this device, the rotating member 3 rotates together with the rotating shaft 1, and the centrifugal force of the rotating member 3 causes oil 8 to flow between the thrust journal portion 6 and the thrust bearing 12 as well as the oil guide pipe 1.
The oil 8 is supplied between the radial journal part 4 and the radial bearing 10 through the cooling water pipe 1, and each bearing part is cooled.
It is cooled by the water flowing inside 3.
スラスト軸受12と冷却水の温度はスラスト軸
受12と冷却水管13の入口側に設けられた抵抗
温度計によつて計測され、計測された温度を基に
して下式の如く軸受評価温度上昇率Dを軸受温度
に冷却水温の補正を加えた軸受評価温度θXの関数
として表わす。 The temperatures of the thrust bearing 12 and the cooling water are measured by resistance thermometers installed on the inlet sides of the thrust bearing 12 and the cooling water pipe 13, and based on the measured temperatures, the bearing evaluation temperature increase rate D is calculated as shown in the following formula. is expressed as a function of bearing evaluation temperature θX , which is the bearing temperature plus cooling water temperature correction.
θX=θN−θCN−K(θCO−θCN) ……(5)
D=−AθX+B ……(6)
θX:軸受換算温度
θN:刻々の軸受温度
θCN:刻々の冷却水温度
K:冷却水温変化の補正係数
θCO:初期値(基準値)の冷却水温度
D:軸受評価温度上昇率
A、B:それぞれ軸受の大きさ、構造によつて決
まる係数及び定数。単位はそれぞれ1/min及び
℃/min。 θ _ _ _ _ _ _ _ _ Cooling water temperature K: Correction coefficient for cooling water temperature change θ CO : Initial value (reference value) cooling water temperature D: Bearing evaluation temperature increase rate A, B: Coefficients and constants determined by the size and structure of the bearing, respectively . Units are 1/min and °C/min, respectively.
尚、(5)式中の補正係数Kは軸受構造及びその冷
却構造などにより異なつた値となる。水車発電機
の軸受例では0.4〜0.8程度でる。このKの値を軸
受構造の異なつた実測例毎に用意しておけば類似
機の冷却水温度変化の補正係数Kは事前に推定す
ることが可能である。 Note that the correction coefficient K in equation (5) has different values depending on the bearing structure and its cooling structure. The bearing example for a water turbine generator is about 0.4 to 0.8. If the value of K is prepared for each actual measurement example with a different bearing structure, it is possible to estimate in advance the correction coefficient K for cooling water temperature changes of similar machines.
この(5)(6)式により第6図で示した冷却水温度
A、Bそれぞれの軸受温度上昇率Dと軸受評価温
度θXとの関係を表わすと第1図で示したようにな
る。即ち冷却水温度に大きな差があつても軸受温
度θAとθBの特性がほとんど一致しているので軸受
換算温度θXに対して軸受評価温度上昇率Dは略同
じ値となり、軸受温度の異常を正確に検出するこ
とができる。尚、冷却水温度に△tCになる大きな
差があつても極くわずかな差△tBXの範囲の誤差
となることは軸受温度θAとθBが略一致しているの
で当然の結果である。 Using equations (5) and (6), the relationship between the bearing temperature increase rate D for each of the cooling water temperatures A and B shown in FIG. 6 and the bearing evaluation temperature θX is expressed as shown in FIG. 1. In other words, even if there is a large difference in cooling water temperature, the characteristics of bearing temperatures θ A and θ B are almost the same, so the bearing evaluation temperature increase rate D is approximately the same value with respect to the bearing equivalent temperature θ Abnormalities can be detected accurately. Furthermore, even if there is a large difference in the cooling water temperature of △t C , the error will be within the range of a very small difference △t BX , which is a natural result since the bearing temperatures θ A and θ B are almost the same. It is.
次に具体的な異常検出について第3図のフロー
チヤートを参照して説明する。まず軸受温度と冷
却水温度がコンピユータに入力され軸受評価温度
θXが(5)式に基づき演算され、この軸受評価温度θX
から(6)に基づき軸受評価温度上昇率Dが演算され
る。また実際の軸受温度上昇率dθ/dtも演算され
る。次に軸受温度上昇率dθ/dtと軸受評価温度上昇
率Dが比較され、軸受温度上昇率dθ/dtが軸受評価
温度上昇率Dよりも大きくなつた場合には異常警
報が発せられ、軸受温度上昇率dθ/dtが軸受評価温
度上昇率Dよりも小さいかあるいは等しい場合に
は軸受温度と冷却水温度の検出が続けられる。 Next, specific abnormality detection will be explained with reference to the flowchart of FIG. First, the bearing temperature and cooling water temperature are input into the computer , and the bearing evaluation temperature θ X is calculated based on equation (5).
Based on (6), the bearing evaluation temperature increase rate D is calculated. The actual bearing temperature increase rate dθ/dt is also calculated. Next, the bearing temperature increase rate dθ/dt and the bearing evaluation temperature increase rate D are compared, and if the bearing temperature increase rate dθ/dt becomes larger than the bearing evaluation temperature increase rate D, an abnormality alarm is issued and the bearing temperature If the rate of increase dθ/dt is smaller than or equal to the bearing evaluation temperature increase rate D, detection of the bearing temperature and cooling water temperature is continued.
尚上記一実施例は水車発電機の軸受に適用した
ものであるが、軸受潤滑油を水で冷却する型の軸
受であれば上記一実施例に限定されるものではな
い。 Although the above embodiment is applied to a bearing of a water turbine generator, the present invention is not limited to the above embodiment as long as the bearing is of a type in which the bearing lubricating oil is cooled with water.
G 発明の効果
本発明に係る軸受温度異常検出方法において
は、軸受温度と冷却水温度に基づき軸受換算温度
を求めこの軸受換算温度から軸受評価温度上昇率
を演算し、この軸受評価温度上昇率と実際の軸受
温度上昇率を比較して軸受温度の異常を検出して
いるので、全ての温度範囲にわたつて短時間に軸
受温度異常の検出ができる。更に冷却水温度変化
などの外乱を防止して精度良く軸受温度異常の検
出ができる。G. Effect of the Invention In the bearing temperature abnormality detection method according to the present invention, a bearing conversion temperature is obtained based on the bearing temperature and the cooling water temperature, a bearing evaluation temperature increase rate is calculated from this bearing conversion temperature, and the bearing evaluation temperature increase rate and the bearing evaluation temperature increase rate are calculated from the bearing conversion temperature. Since an abnormality in the bearing temperature is detected by comparing the actual bearing temperature increase rate, an abnormality in the bearing temperature can be detected in a short time over the entire temperature range. Furthermore, disturbances such as changes in cooling water temperature are prevented, and bearing temperature abnormalities can be detected with high accuracy.
第1図は本発明の一実施例に係る軸受温度異常
検出方法を示すグラフ、第2図は本発明方法を適
用した立形水車発電機の推力軸受の部分縦断面
図、第3図は本発明方法を示すフローチヤート、
第4図は許容最高温度を決めて軸受温度の異常検
出を行なう方法を示すグラフ、第5図は軸受温度
上昇率に基づいて軸受温度の異常検出を行なう方
法を示すグラフ、第6図は冷却水温度と軸受温度
の変化を示すグラフ、第7図は第6図で示した軸
受温度曲線を温度上昇率と軸受温度の関係で表わ
すグラフである。
図面中、1は回転軸、10はラジアル軸受、1
2はスラスト軸受、13は冷却水管、θXは軸受換
算温度、Dは軸受評価温度上昇率である。
Fig. 1 is a graph showing a bearing temperature abnormality detection method according to an embodiment of the present invention, Fig. 2 is a partial vertical cross-sectional view of a thrust bearing of a vertical water turbine generator to which the method of the present invention is applied, and Fig. 3 is a graph showing the method of detecting an abnormality in bearing temperature according to an embodiment of the present invention. A flowchart showing the invention method,
Figure 4 is a graph showing a method for detecting bearing temperature abnormalities by determining the maximum allowable temperature. Figure 5 is a graph showing a method for detecting bearing temperature abnormalities based on the bearing temperature increase rate. Figure 6 is a graph showing a method for detecting bearing temperature abnormalities based on the bearing temperature increase rate. FIG. 7 is a graph showing changes in water temperature and bearing temperature, and is a graph showing the bearing temperature curve shown in FIG. 6 in terms of the relationship between temperature increase rate and bearing temperature. In the drawing, 1 is a rotating shaft, 10 is a radial bearing, 1
2 is a thrust bearing, 13 is a cooling water pipe, θX is a bearing equivalent temperature, and D is a bearing evaluation temperature increase rate.
Claims (1)
定数を乗じた値と実際の軸受温度とを基にして軸
受換算温度を定め、該軸受換算温度から軸受評価
温度上昇率を求めると共に、実際の軸受温度から
軸受温度上昇率を求め、当該軸受温度上昇率と前
記軸受評価温度上昇率を比較し、軸受温度上昇率
が軸受評価温度上昇率よりも高くなつた場合に軸
受温度の異常と判定することを特徴とする軸受温
度の異常検出方法。1. Determine the bearing conversion temperature based on the value obtained by multiplying the lubricating oil cooling water temperature by a constant determined for each bearing structure and the actual bearing temperature, calculate the bearing evaluation temperature increase rate from the bearing conversion temperature, and calculate the actual bearing temperature increase rate. Find the bearing temperature increase rate from the bearing temperature, compare the bearing temperature increase rate with the bearing evaluation temperature increase rate, and determine that the bearing temperature is abnormal if the bearing temperature increase rate becomes higher than the bearing evaluation temperature increase rate. A method for detecting abnormality in bearing temperature, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60120508A JPS61280552A (en) | 1985-06-05 | 1985-06-05 | Method for detecting temperature abnormality of bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60120508A JPS61280552A (en) | 1985-06-05 | 1985-06-05 | Method for detecting temperature abnormality of bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61280552A JPS61280552A (en) | 1986-12-11 |
JPH0548856B2 true JPH0548856B2 (en) | 1993-07-22 |
Family
ID=14787940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60120508A Granted JPS61280552A (en) | 1985-06-05 | 1985-06-05 | Method for detecting temperature abnormality of bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61280552A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011089786A (en) * | 2009-10-20 | 2011-05-06 | Toyota Motor Corp | Lubrication system |
CN111521427A (en) * | 2020-05-30 | 2020-08-11 | 华能澜沧江水电股份有限公司 | Method for detecting abnormity of guide bearing cooler in real time based on heat transfer coefficient change |
-
1985
- 1985-06-05 JP JP60120508A patent/JPS61280552A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61280552A (en) | 1986-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oh et al. | A novel method and its field tests for monitoring and diagnosing blade health for wind turbines | |
US7632059B2 (en) | Systems and methods for detecting undesirable operation of a turbine | |
US4376389A (en) | Method of diagnosis of operating conditions of bearing and apparatus therefor | |
KR0139213B1 (en) | Shrouded turbine blade vibration monitor | |
US10151301B2 (en) | Control of wind turbines | |
RU2451825C2 (en) | Method and device for measurements, inspection and/or continuous monitoring of turbine functioning | |
CN1043187A (en) | The turbine blade shroud temp monitor unit | |
KR102252858B1 (en) | Variable guide bearing | |
CN107527667A (en) | A kind of nuclear power station Important Auxiliary equipment protects system | |
JPH0548856B2 (en) | ||
JPS588823A (en) | Diagnosis method for abnormality in bearing | |
JPS5813221A (en) | Tailing pad bearing monitoring device | |
JPS6324170B2 (en) | ||
JPH05225474A (en) | Abnormality diagnosis method and device for plant equipment | |
CN114526806A (en) | Rotary machine vibration climbing feature extraction method based on quadratic exponential smoothing method | |
JPH0816563B2 (en) | Surge detector for turbo refrigerator | |
JPS6346242B2 (en) | ||
JPS6216329B2 (en) | ||
JPH026296B2 (en) | ||
Petty | Analysis of bearing vibration monitoring | |
JPH0310036B2 (en) | ||
Karassik et al. | Monitoring and Performance Testing | |
Hodowanec et al. | Motor field protection and recommended settings and monitoring | |
CN113970432B (en) | Method for detecting severe damage of large-scale hydraulic mechanical energy conversion component | |
Matías et al. | Torsional vibration analysis applied for centrifugal pump condition monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |