[go: up one dir, main page]

JPH0547791A - Fabrication of thin film transistor - Google Patents

Fabrication of thin film transistor

Info

Publication number
JPH0547791A
JPH0547791A JP22367991A JP22367991A JPH0547791A JP H0547791 A JPH0547791 A JP H0547791A JP 22367991 A JP22367991 A JP 22367991A JP 22367991 A JP22367991 A JP 22367991A JP H0547791 A JPH0547791 A JP H0547791A
Authority
JP
Japan
Prior art keywords
gate electrode
gate
insulating film
etching
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22367991A
Other languages
Japanese (ja)
Other versions
JP3122177B2 (en
Inventor
Kunio Masushige
邦雄 増茂
Masaki Yuki
正記 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AG Technology Co Ltd
Original Assignee
AG Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AG Technology Co Ltd filed Critical AG Technology Co Ltd
Priority to JP03223679A priority Critical patent/JP3122177B2/en
Publication of JPH0547791A publication Critical patent/JPH0547791A/en
Application granted granted Critical
Publication of JP3122177B2 publication Critical patent/JP3122177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To suppress leak current of TFT even when the source.drain voltage is high. CONSTITUTION:After patterning of a gate electrode 5, a gate insulation film 4 is etched without peeling off a photo resist formed on the gate electrode 5 and then etching is further proceeded from the side part of the gate electrode 5 thus forming the end part of the gate electrode 5 on the inside of the gate insulation film 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は画像表示装置等の駆動に
使用される薄膜トランジスタの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor used for driving an image display device or the like.

【0002】[0002]

【従来の技術】近年平面ディスプレイ等の画像表示素子
への応用を目的とした薄膜トランジスタ(TFT)の開
発が活発に行われている。ディスプレイの大型化、さら
には周辺駆動回路のTFT化に対応するためTFT動作
速度の向上が望まれている。TFTの動作速度を向上さ
せるためにゲート・ドレイン間の寄生容量を減少させる
試みが行われているが、ソース・ドレイン電極をゲート
電極と自己整合的に形成する方法はきわめて有効な方法
である。
2. Description of the Related Art In recent years, a thin film transistor (TFT) has been actively developed for application to an image display device such as a flat panel display. It is desired to improve the operation speed of the TFT in order to cope with the increase in the size of the display and the use of the TFT in the peripheral drive circuit. Although attempts have been made to reduce the parasitic capacitance between the gate and drain in order to improve the operation speed of the TFT, the method of forming the source and drain electrodes in a self-aligned manner with the gate electrode is a very effective method.

【0003】ソース・ドレイン領域をイオン注入法によ
りゲート電極と自己整合的に形成する従来の自己整合型
TFTの製造方法を、レーザー多結晶化半導体TFTを
例にとって、従来のTFTの断面図である図4を参照し
ながら説明する。絶縁性の基板41上にパッシベーショ
ン膜42、非晶質半導体層を積層し、この非晶質半導体
層にレーザー光を照射して多結晶化を行い、フォトリソ
グラフィーにより多結晶半導体薄膜43のパターンを形
成し、その上にゲート絶縁膜44、ゲート電極材料を積
層し、再びフォトリソグラフィーによりゲート電極のパ
ターン45を形成し、ゲート絶縁膜44もゲート電極と
同じパターンにエッチングする。
FIG. 1 is a cross-sectional view of a conventional self-aligned TFT manufacturing method in which a source / drain region is formed in a self-aligned manner with a gate electrode by an ion implantation method, taking a laser polycrystalline semiconductor TFT as an example. This will be described with reference to FIG. A passivation film 42 and an amorphous semiconductor layer are stacked on an insulating substrate 41, the amorphous semiconductor layer is irradiated with laser light to be polycrystallized, and the pattern of the polycrystalline semiconductor thin film 43 is formed by photolithography. A gate insulating film 44 and a gate electrode material are stacked on the gate insulating film 44, and a pattern 45 of the gate electrode is formed again by photolithography. The gate insulating film 44 is also etched in the same pattern as the gate electrode.

【0004】ここでイオン注入法によりゲート電極をマ
スクに多結晶半導体層に不純物イオンをドーピングし、
不純物イオン活性化のための熱処理を行いソース・ドレ
イン領域47を形成する。さらに層間絶縁膜48を堆積
し、ソース・ドレイン領域上にコンタクトホールを形成
し、その上にソース電極・ドレイン電極49を形成す
る。
Here, the polycrystalline semiconductor layer is doped with impurity ions by ion implantation using the gate electrode as a mask,
Source / drain regions 47 are formed by performing heat treatment for activating the impurity ions. Further, an interlayer insulating film 48 is deposited, contact holes are formed on the source / drain regions, and source / drain electrodes 49 are formed thereon.

【0005】[0005]

【発明が解決しようとする課題】従来の半導体層上のゲ
ート絶縁膜44もゲート電極と同じパターンにエッチン
グした後、ゲート電極をイオン注入のマスクとする方法
では、ゲート電極の下のチャネル領域とソース・ドレイ
ン領域とが接する構造となる。この構造ではチャネル−
ドレイン境界付近に電界が集中し、ソース・ドレイン間
電圧が大きい条件ではリーク電流が異常に大きくなると
いう欠点がある。この現象は多結晶半導体薄膜トランジ
スタにおいて特に顕著である。これは駆動電圧の大きい
ノーマリ白型液晶、ポリマー分散型液晶等の駆動にはこ
のようなTFTは使用できないことを意味する。
In the conventional method in which the gate insulating film 44 on the semiconductor layer is also etched in the same pattern as the gate electrode, and the gate electrode is used as a mask for ion implantation, a channel region below the gate electrode is formed. The structure is such that the source / drain regions are in contact with each other. In this structure the channel −
The electric field is concentrated near the drain boundary, and the leak current becomes abnormally large under the condition that the source-drain voltage is large. This phenomenon is particularly remarkable in the polycrystalline semiconductor thin film transistor. This means that such a TFT cannot be used for driving normally white liquid crystal, polymer dispersed liquid crystal, or the like, which has a large driving voltage.

【0006】また、ゲート電極とソース・ドレイン領域
との間に1μm程度の長さの不純物イオンのドーピング
がなされない領域を設けることにより異常なリーク電流
の増大を防ぐことができることが知られている。しかし
ゲート電極のパターンとイオン注入のマスクとをそれぞ
れ通常のフォトリソグラフィーにより形成する方法では
1μm程度の距離を再現性良く実現することは極めて難
しく、また工程数も増えるという問題があった。
Further, it is known that an abnormal increase in leak current can be prevented by providing a region of about 1 μm, which is not doped with impurity ions, between the gate electrode and the source / drain region. .. However, it is extremely difficult to realize a distance of about 1 μm with good reproducibility by the method of forming the pattern of the gate electrode and the mask for ion implantation by ordinary photolithography, and the number of steps is increased.

【0007】[0007]

【課題を解決するための手段】本発明は上記の問題点を
解決すべくなされたものであり、絶縁性の基板上に非単
結晶半導体層、ゲート絶縁膜、ゲート電極をこの順に形
成し、このゲート電極をマスクとして半導体層に不純物
イオンを注入することにより、ゲート電極に対して自己
整合的にソース・ドレイン領域を形成する薄膜トランジ
スタの製造方法において、上記ゲート電極をパターン化
後、該ゲート電極上に形成されたフォトレジストを剥離
することなく、上記ゲート絶縁膜をエッチングし、さら
に該ゲート電極の側部よりエッチングを進行させること
により、該ゲート電極の端部を該ゲート絶縁膜より内側
に形成することを特徴とする薄膜トランジスタの製造方
法を提供するものである。
The present invention has been made to solve the above problems, and a non-single crystal semiconductor layer, a gate insulating film, and a gate electrode are formed in this order on an insulating substrate, A method of manufacturing a thin film transistor, wherein source / drain regions are formed in a self-aligned manner with respect to a gate electrode by implanting impurity ions into a semiconductor layer using the gate electrode as a mask. The gate insulating film is etched without peeling off the photoresist formed above, and etching is further advanced from the side portion of the gate electrode so that the end portion of the gate electrode is located inside the gate insulating film. The present invention provides a method for manufacturing a thin film transistor, which is characterized by forming the thin film transistor.

【0008】以下にレーザー多結晶化半導体TFTを例
にとり、図1〜図3に従って本発明を詳細に説明する。
まず、ガラス、セラミック、プラスチック等の絶縁性の
基板1上にプラズマCVD、スパッタリング、減圧CV
D,常圧CVD等によりSiOx 、SiNx 、SiOx
y 、TaOx 等の単層または多層膜からなるパッシベ
ーション膜2(膜厚可能範囲50〜1000nm)、シ
リコン(Si)、ゲルマニウム(Ge)等の非単結晶半
導体たる非晶質半導体層3( 膜厚可能範囲10〜200
0nm)を形成する。
The present invention will be described in detail below with reference to FIGS. 1 to 3 by taking a laser polycrystalline semiconductor TFT as an example.
First, plasma CVD, sputtering, depressurization CV is performed on an insulating substrate 1 such as glass, ceramic, or plastic.
D, SiO x , SiN x , SiO x by atmospheric pressure CVD, etc.
A passivation film 2 (a film thickness possible range of 50 to 1000 nm) composed of a single layer or a multilayer film of N y , TaO x, etc., an amorphous semiconductor layer 3 (a non-single crystal semiconductor such as silicon (Si), germanium (Ge), etc. Possible film thickness range 10-200
0 nm) is formed.

【0009】必要に応じて薄膜トランジスタのしきい値
電圧を制御するため、非晶質半導体層3中にホウ素
(B)あるいはリン(P)などの不純物を数十から数百
ppm程度膜厚方向に均一あるいは不均一にドープす
る。
In order to control the threshold voltage of the thin film transistor as necessary, impurities such as boron (B) or phosphorus (P) in the amorphous semiconductor layer 3 are tens to hundreds of ppm in the film thickness direction. Dope uniformly or non-uniformly.

【0010】レーザー光を照射し、非晶質半導体層3の
多結晶化を行い、フォトリソグラフィーにより該多結晶
半導体層をパターン化し、その上にプラズマCVD、ス
パッタリング、減圧CVD、常圧CVD等によりSiO
x 、SiNx 、SiOxy、TaOx 等の単層または
多層膜からなるゲート絶縁膜4( 膜厚可能範囲50〜2
000nm)、更に真空蒸着法、スパッタリング法等に
よりクロム(Cr)、タンタル(Ta)、アルミニウム
(Al)等の単層または多層膜からなるゲート材料を形
成し、再びフォトリソグラフィーによりゲートのパター
ンにゲート電極5を形成する。即ち、ゲートのパターン
化を行う。
The amorphous semiconductor layer 3 is polycrystallized by irradiating a laser beam, the polycrystal semiconductor layer is patterned by photolithography, and then plasma CVD, sputtering, low pressure CVD, atmospheric pressure CVD or the like is performed thereon. SiO
x , SiN x , SiO x N y , TaO x, or the like, which is a gate insulating film 4 (thickness range 50 to 2).
000 nm), and a gate material composed of a single layer or a multilayer film of chromium (Cr), tantalum (Ta), aluminum (Al) or the like is further formed by a vacuum vapor deposition method, a sputtering method or the like, and a gate pattern is again formed by photolithography. The electrode 5 is formed. That is, the gate is patterned.

【0011】ここでフォトレジスト6を剥離することな
く、C26 をエッチングガスとして使用してゲート絶
縁膜4をエッチングした後、さらにゲート電極5の側部
よりエッチングを進行させることにより、ゲート電極5
の端部をゲート絶縁膜4より距離d(0.5乃至2.0
μm程度)だけ内側に形成する(図1)。
Here, without removing the photoresist 6, the gate insulating film 4 is etched using C 2 F 6 as an etching gas, and then the etching is further advanced from the side of the gate electrode 5 to form a gate. Electrode 5
Of the edge of the gate insulating film 4 from the distance d (0.5 to 2.0
It is formed on the inside only by about μm (FIG. 1).

【0012】なお、図1に示す製造工程の前において、
エッチングガスとして酸素ガスを含んだドライエッチン
グにより上記ゲート絶縁膜4のエッチングを行う場合は
ゲート絶縁膜4のエッチングと同時にゲート電極5上の
フォトレジストが減少し、ゲート電極5のパターン端の
ゲート電極5表面が露出するため(図2)、ゲート電極
5の側部よりの追加のエッチングについてはゲート電極
5の端部付近および側部よりエッチングが進行すること
になる。
Before the manufacturing process shown in FIG.
When the gate insulating film 4 is etched by dry etching containing oxygen gas as an etching gas, the photoresist on the gate electrode 5 is reduced simultaneously with the etching of the gate insulating film 4, and the gate electrode at the pattern end of the gate electrode 5 is reduced. Since the surface of the gate electrode 5 is exposed (FIG. 2), the additional etching from the side portion of the gate electrode 5 proceeds from the vicinity of the end portion and the side portion of the gate electrode 5.

【0013】イオン注入法によりゲート電極5をマスク
に多結晶半導体層のソース・ドレイン領域になる部分7
に、P、B、ヒ素(As)等の不純物イオンを加速電圧
1〜40kVで5×1014〜1×1016個/cm2 ドー
ピングする。このとき水素(H)、弗素(F)等のイオ
ンが同時に注入されてもよいし、PHx 、Bxy 、B
x などの分子イオンが同時に注入されてもよい。
A portion 7 which becomes the source / drain region of the polycrystalline semiconductor layer is formed by ion implantation using the gate electrode 5 as a mask.
Then, impurity ions such as P, B and arsenic (As) are doped at 5 × 10 14 to 1 × 10 16 ions / cm 2 at an acceleration voltage of 1 to 40 kV. At this time, ions such as hydrogen (H) and fluorine (F) may be implanted at the same time, or PH x , B x H y , and B ions may be implanted.
Molecular ions such as F x may be implanted at the same time.

【0014】ゲート電極5をマスクとしているが、ゲー
ト電極5の端部より0.5乃至2.0μm程度ゲート絶
縁膜4がはみだしており、この下の部分の多結晶半導体
層には、P、B等がドープされないために、ソース・ド
レイン領域とゲート電極5との間には0.5乃至2.0
μm程度の間隔が設けられ、この位置関係は位置合わせ
不要であり、必然的に(自己整合的に)決定される。
Although the gate electrode 5 is used as a mask, the gate insulating film 4 protrudes from the edge of the gate electrode 5 by about 0.5 to 2.0 μm, and P, P, and Since B or the like is not doped, 0.5 to 2.0 is provided between the source / drain region and the gate electrode 5.
An interval of approximately μm is provided, and this positional relationship does not require alignment, and is necessarily (self-aligned) determined.

【0015】ゲート電極5の側部よりの追加のエッチン
グおよびゲート電極パターンのフォトレジストの除去は
イオン注入の前に行ってもよいし、後に行ってもよい。
必要に応じ不純物イオン活性化のための熱処理を行った
後、層間絶縁膜8を堆積し、ソース・ドレイン領域上に
コンタクトホールを形成し、その上にソース・ドレイン
9を形成する(図3)。
The additional etching from the side of the gate electrode 5 and the removal of the photoresist of the gate electrode pattern may be performed before or after the ion implantation.
After performing heat treatment for activating impurity ions as necessary, an interlayer insulating film 8 is deposited, contact holes are formed on the source / drain regions, and source / drain 9 are formed thereon (FIG. 3). ..

【0016】なお、ゲート絶縁膜4のエッチングは、エ
ッチングガスとして酸素ガスを含んだドライエッチング
がより望ましい。フォトレジスト6をもわずかに減少し
て、ゲート電極5のエッチングを促進し易くなるからで
ある。以上レーザー多結晶化半導体の場合を例にとって
説明したが、半導体層は非晶質半導体であっても、多結
晶半導体であっても本発明は適用可能である。また、非
単結晶半導体とは非晶質半導体、微結晶半導体、多結晶
半導体を含む概念である。
The etching of the gate insulating film 4 is more preferably dry etching containing oxygen gas as an etching gas. This is because the photoresist 6 is also slightly reduced and the etching of the gate electrode 5 is facilitated. The case of the laser polycrystallized semiconductor has been described above as an example, but the present invention can be applied regardless of whether the semiconductor layer is an amorphous semiconductor or a polycrystalline semiconductor. In addition, a non-single crystal semiconductor is a concept including an amorphous semiconductor, a microcrystalline semiconductor, and a polycrystalline semiconductor.

【0017】[0017]

【実施例】以下、本発明の実施例を説明する。ガラス基
板(旭硝子(株)製AN)上にプラズマCVD法により
200nm厚のSiOx によるパッシベーション膜およ
び100nm厚のa−Siによる非晶質半導体層をガラ
ス基板の温度450℃で形成した。
EXAMPLES Examples of the present invention will be described below. A 200 nm thick passivation film of SiO x and a 100 nm thick amorphous semiconductor layer of a-Si were formed on a glass substrate (AN manufactured by Asahi Glass Co., Ltd.) by a plasma CVD method at a temperature of 450 ° C. of the glass substrate.

【0018】13Wのアルゴンイオンレーザー光を約5
0μm径に集光、照射し、a−Siの多結晶化を行っ
た。フォトリソグラフィーにより多結晶Siを島状にパ
ターン化し、その上にプラズマCVD法によりSiNx
200nmからなるゲート絶縁膜を300℃にて堆積
し、さらにゲート材料としてCr150nmを電子線加
熱蒸着法により300℃で蒸着した。
About 13 W of argon ion laser light is used.
The a-Si was polycrystallized by condensing and irradiating the light with a diameter of 0 μm. Polycrystalline Si is patterned into an island shape by photolithography, and SiN x is formed on the island by plasma CVD.
A gate insulating film made of 200 nm was deposited at 300 ° C., and Cr 150 nm as a gate material was vapor-deposited at 300 ° C. by an electron beam heating vapor deposition method.

【0019】フォトリソグラフィーによりゲートのパタ
ーンにゲート電極となる導体部分を形成した。フォトレ
ジストは東京応化工業(株)製OFPR−800、Cr
のエッチング液は硝酸第2セリウムアンモニウム0.3
モル/リットル、過塩素酸2.6%の組成のものを室温
で用いた。ここでフォトレジストを剥離することなくゲ
ート絶縁膜をエッチングした。このエッチングはリアク
ティブイオンエッチングにより行い、エッチングガスは
フロン14を5SCCM、酸素を5SCCMとした。こ
の後、再び上述のCrのエッチング液に上記ガラス基板
を60秒間浸漬しゲート電極の側部よりエッチングを進
行させ、ゲート電極の端部を1.0(±0.15)μm
ゲート絶縁膜より内側に形成した。なお、この場合はフ
ォトレジストの幅は図1に示す幅よりも狭くなる。
A conductor portion to be a gate electrode was formed on the gate pattern by photolithography. The photoresist is OFPR-800, Cr manufactured by Tokyo Ohka Kogyo Co., Ltd.
The etching solution is 0.3mm ceric ammonium nitrate.
A composition having a composition of mol / liter and perchloric acid of 2.6% was used at room temperature. Here, the gate insulating film was etched without peeling off the photoresist. This etching was performed by reactive ion etching, and the etching gas was CFCs of 5 SCCM and oxygen of 5 SCCM. After that, the glass substrate is again immersed in the above-mentioned Cr etching solution for 60 seconds to allow the etching to proceed from the side of the gate electrode, and the edge of the gate electrode is 1.0 (± 0.15) μm.
It was formed inside the gate insulating film. In this case, the width of the photoresist is narrower than that shown in FIG.

【0020】上記ゲート絶縁膜のエッチングガスは酸素
ガスを含んでいるため、ゲート絶縁膜のエッチングと同
時にゲート電極上のフォトレジストが減少し、ゲート電
極端部表面が露出しており(図2)、ゲート電極の側部
よりの追加のエッチングについてはゲート電極の端部表
面および側部よりエッチングを進行したことになる。C
rのエッチング液への浸漬時間を10 0秒間とすると
ゲート電極の端部は1.3(±0.20)μmゲート絶
縁膜より内側に形成された。
Since the etching gas for the gate insulating film contains oxygen gas, the photoresist on the gate electrode is reduced simultaneously with the etching of the gate insulating film, and the end surface of the gate electrode is exposed (FIG. 2). As for the additional etching from the side portion of the gate electrode, the etching proceeds from the end surface and the side portion of the gate electrode. C
When the immersion time of r in the etching solution was 100 seconds, the end of the gate electrode was formed inside the 1.3 (± 0.20) μm gate insulating film.

【0021】Cr上のフォトレジストを除去した後、イ
オン注入法によりゲートのCrをマスクに多結晶Siの
島のソース・ドレイン領域になる部分7に、Pイオンを
加速電圧10kV、ドーズ量2×1015個/cm2の条
件でドーピングした。ゲート電極をマスクとしている
が、ゲート電極の端部より1.0μmゲート絶縁膜がは
みだしており、この下の部分の多結晶半導体層には、P
イオンがドープされないために、ソース・ドレイン領域
とゲート電極との間には1.0μmの間隔が設けられ
る。不純物イオン活性化のための熱処理を行った後、層
間絶縁膜8を堆積し、ソース・ドレイン領域上にコンタ
クトホールを形成し、その上にソース・ドレインを形成
した。
After removing the photoresist on Cr, P ions are accelerated into the source / drain region 7 of the polycrystalline Si island by ion implantation using Cr as a mask, and the acceleration voltage is 10 kV and the dose is 2 ×. Doping was performed under the condition of 10 15 pieces / cm 2 . Although the gate electrode is used as a mask, a 1.0 μm gate insulating film protrudes from the end of the gate electrode, and the polycrystalline semiconductor layer below the gate insulating film has P
Since the ions are not doped, a gap of 1.0 μm is provided between the source / drain region and the gate electrode. After heat treatment for activating the impurity ions, an interlayer insulating film 8 was deposited, contact holes were formed on the source / drain regions, and source / drain were formed thereon.

【0022】図5は実施例にかかるTFT(a)と従来
のソース・ドレイン領域とゲート電極の下のチャネル領
域とが接した構造の多結晶SiTFT(b)のドレイン
電流−ゲート電圧特性曲線である。ゲートを逆バイアス
したときのリーク電流が大きく減少していることがわか
る。
FIG. 5 is a drain current-gate voltage characteristic curve of a polycrystalline Si TFT (b) having a structure in which the TFT (a) according to the embodiment is in contact with the conventional source / drain region and the channel region under the gate electrode. is there. It can be seen that the leakage current when the gate is reverse biased is greatly reduced.

【0023】[0023]

【発明の効果】本発明の製造方法によれば、エッチング
工程を1回追加するだけでソース・ドレイン間に高い電
圧を印加してもリーク電流が少なく、好特性のTFTを
製造することができる。
According to the manufacturing method of the present invention, even if a high voltage is applied between the source and the drain, a leak current is small and a TFT having favorable characteristics can be manufactured by adding only one etching step. ..

【0024】ゲート絶縁膜のエッチングをエッチングガ
スとして酸素ガスを含んだドライエッチングにより行
い、ゲート絶縁膜のエッチングと同時にゲート電極上の
フォトレジストを減少させてパターン端のゲート電極表
面が露出させ、ゲート電極の側部よりの追加のエッチン
グをゲート電極の端部および側部よりエッチングを進行
させる場合は、ゲート電極側部よりのエッチング時間を
短縮し、ゲート電極端部の直線性の悪化を最小限に抑え
る効果を奏する。
The etching of the gate insulating film is performed by dry etching containing oxygen gas as an etching gas, and at the same time as the etching of the gate insulating film, the photoresist on the gate electrode is reduced to expose the gate electrode surface at the pattern end, If additional etching from the side of the electrode proceeds from the edge and side of the gate electrode, the etching time from the side of the gate electrode should be shortened to minimize the deterioration of the linearity of the edge of the gate electrode. It has the effect of suppressing

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法におけるゲート電極エッチン
グ後の段階を示すTFTの断面図
FIG. 1 is a sectional view of a TFT showing a stage after etching a gate electrode in a manufacturing method of the present invention.

【図2】本発明の製造方法におけるドライエッチングに
よるゲート絶縁膜のエッチング後の段階を示すTFTの
断面図
FIG. 2 is a cross-sectional view of a TFT showing a stage after etching a gate insulating film by dry etching in the manufacturing method of the present invention.

【図3】本発明の製造方法の最終段階を示すTFTの断
面図
FIG. 3 is a sectional view of a TFT showing the final stage of the manufacturing method of the present invention.

【図4】従来例のTFTの断面図FIG. 4 is a sectional view of a conventional TFT.

【図5】本発明にかかるTFTと従来のTFTのドレイ
ン電流−ゲート電圧特性図
FIG. 5 is a drain current-gate voltage characteristic diagram of a TFT according to the present invention and a conventional TFT.

【符号の説明】[Explanation of symbols]

1 基板 3 非晶質半導体層 4 ゲート絶縁膜 5 ゲート電極 6 フォトレジスト 1 substrate 3 amorphous semiconductor layer 4 gate insulating film 5 gate electrode 6 photoresist

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁性の基板上に非単結晶半導体層、ゲー
ト絶縁膜、ゲート電極をこの順に形成し、このゲート電
極をマスクとして半導体層に不純物イオンを注入するこ
とにより、ゲート電極に対して自己整合的にソース・ド
レイン領域を形成する薄膜トランジスタの製造方法にお
いて、上記ゲート電極をパターン化後、該ゲート電極上
に形成されたフォトレジストを剥離することなく、上記
ゲート絶縁膜をエッチングし、さらに該ゲート電極の側
部よりエッチングを進行させることにより、該ゲート電
極の端部を該ゲート絶縁膜より内側に形成することを特
徴とする薄膜トランジスタの製造方法。
1. A non-single-crystal semiconductor layer, a gate insulating film, and a gate electrode are formed in this order on an insulating substrate, and impurity ions are implanted into the semiconductor layer using this gate electrode as a mask, whereby the gate electrode is formed. In a method of manufacturing a thin film transistor in which source / drain regions are formed in a self-aligned manner, after patterning the gate electrode, the gate insulating film is etched without stripping the photoresist formed on the gate electrode, A method of manufacturing a thin film transistor, characterized in that an end portion of the gate electrode is formed inside the gate insulating film by further advancing etching from a side portion of the gate electrode.
JP03223679A 1991-08-09 1991-08-09 Thin film transistor and manufacturing method thereof Expired - Fee Related JP3122177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03223679A JP3122177B2 (en) 1991-08-09 1991-08-09 Thin film transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03223679A JP3122177B2 (en) 1991-08-09 1991-08-09 Thin film transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0547791A true JPH0547791A (en) 1993-02-26
JP3122177B2 JP3122177B2 (en) 2001-01-09

Family

ID=16801953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03223679A Expired - Fee Related JP3122177B2 (en) 1991-08-09 1991-08-09 Thin film transistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3122177B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120249A (en) * 1991-12-24 1994-04-28 Semiconductor Energy Lab Co Ltd MOS transistor manufacturing method and structure thereof
US5462885A (en) * 1992-10-15 1995-10-31 Fujitsu Limited Method of manufacturing thin film transistors in a liquid crystal display apparatus
US6337231B1 (en) 1993-05-26 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US7145209B2 (en) 2003-05-20 2006-12-05 Tpo Displays Corp. Thin film transistor and fabrication method thereof
US7238963B2 (en) 2003-04-28 2007-07-03 Tpo Displays Corp. Self-aligned LDD thin-film transistor and method of fabricating the same
US8101952B2 (en) 2008-03-27 2012-01-24 Samsung Mobile Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic lighting emitting diode display device including the same
US8253141B2 (en) 2008-07-14 2012-08-28 Samsung Mobile Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic light emitting diode display device including the thin film transistor
US8283668B2 (en) 2007-08-23 2012-10-09 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic light emitting diode display device including the same
US8318523B2 (en) 2008-04-11 2012-11-27 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same and organic light emitting diode display device having the same
US8513669B2 (en) 2007-08-22 2013-08-20 Samsung Display Co., Ltd. Thin film transistor including metal or metal silicide structure in contact with semiconductor layer and organic light emitting diode display device having the thin film transistor
US8790967B2 (en) 2007-05-31 2014-07-29 Samsung Display Co., Ltd. Method of fabricating polycrystalline silicon layer, TFT fabricated using the same, method of fabricating TFT, and organic light emitting diode display device having the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933436B2 (en) * 2012-09-07 2018-04-03 Shiseido Company, Ltd. Method of evaluating cellulite and method of evaluating cellulite-effective drug using fibulin-3 and/or sarcoglycan gamma as an indicator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120249A (en) * 1991-12-24 1994-04-28 Semiconductor Energy Lab Co Ltd MOS transistor manufacturing method and structure thereof
US7087962B1 (en) 1991-12-24 2006-08-08 Semiconductor Energy Laboratory Co., Ltd. Method for forming a MOS transistor having lightly dopped drain regions and structure thereof
US5462885A (en) * 1992-10-15 1995-10-31 Fujitsu Limited Method of manufacturing thin film transistors in a liquid crystal display apparatus
US6337231B1 (en) 1993-05-26 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US7897445B2 (en) 2003-04-28 2011-03-01 Tpo Displays Corp. Fabrication methods for self-aligned LDD thin-film transistor
US7238963B2 (en) 2003-04-28 2007-07-03 Tpo Displays Corp. Self-aligned LDD thin-film transistor and method of fabricating the same
US7388265B2 (en) 2003-05-20 2008-06-17 Tfo Displays Corp. Thin film transistor and fabrication method thereof
US7145209B2 (en) 2003-05-20 2006-12-05 Tpo Displays Corp. Thin film transistor and fabrication method thereof
US8790967B2 (en) 2007-05-31 2014-07-29 Samsung Display Co., Ltd. Method of fabricating polycrystalline silicon layer, TFT fabricated using the same, method of fabricating TFT, and organic light emitting diode display device having the same
US8513669B2 (en) 2007-08-22 2013-08-20 Samsung Display Co., Ltd. Thin film transistor including metal or metal silicide structure in contact with semiconductor layer and organic light emitting diode display device having the thin film transistor
US8283668B2 (en) 2007-08-23 2012-10-09 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic light emitting diode display device including the same
US8101952B2 (en) 2008-03-27 2012-01-24 Samsung Mobile Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic lighting emitting diode display device including the same
US8436360B2 (en) 2008-03-27 2013-05-07 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic lighting emitting diode display device including the same
US8318523B2 (en) 2008-04-11 2012-11-27 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same and organic light emitting diode display device having the same
US8253141B2 (en) 2008-07-14 2012-08-28 Samsung Mobile Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic light emitting diode display device including the thin film transistor

Also Published As

Publication number Publication date
JP3122177B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
US5512494A (en) Method for manufacturing a thin film transistor having a forward staggered structure
KR100222319B1 (en) Thin film transistor and its manufacturing method
KR100402845B1 (en) Manufacturing method of liquid crystal display device
JPH06120249A (en) MOS transistor manufacturing method and structure thereof
US7871872B2 (en) Method of manufacturing thin film transistor having lightly doped drain regions
KR19980016968A (en) Self-aligned thin film transistor manufacturing method
JP3122177B2 (en) Thin film transistor and manufacturing method thereof
US20070224740A1 (en) Thin-film transistor and method of fabricating the same
JPH06163401A (en) Formation of polycrystalline silicon layer and polycrystalline silicon thin film transistor using same
JPH11307777A (en) Top gate type thin-film transistor and manufacture thereof
CN100590818C (en) Thin film transistor and method of manufacturing the same
JP3528422B2 (en) Method for manufacturing thin film transistor
JP3358284B2 (en) Method for manufacturing thin film transistor
JP2630195B2 (en) Thin film field effect transistor and method of manufacturing the same
JPH11135797A (en) Shape processing method of laminated film and method of manufacturing thin film transistor using the same
JP2004336073A (en) Top gate type thin film transistor and its manufacturing method
JP3331642B2 (en) Method for manufacturing thin film transistor
JP3312541B2 (en) Method for manufacturing thin film semiconductor device
JPH04328872A (en) Method for manufacturing polycrystalline thin film transistor and polycrystalline thin film transistor
JPH06252402A (en) Manufacture of thin film transistor
JP2716035B2 (en) Thin film field effect transistor
JP2002190606A (en) Method for manufacturing top gate thin-film transistor
JPH11340469A (en) Thin film transistor
KR100307458B1 (en) Method for manufacturing Thin Film Transistor
KR100290919B1 (en) Thin Film Transistor Manufacturing Method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees