JPH0546674B2 - - Google Patents
Info
- Publication number
- JPH0546674B2 JPH0546674B2 JP24049086A JP24049086A JPH0546674B2 JP H0546674 B2 JPH0546674 B2 JP H0546674B2 JP 24049086 A JP24049086 A JP 24049086A JP 24049086 A JP24049086 A JP 24049086A JP H0546674 B2 JPH0546674 B2 JP H0546674B2
- Authority
- JP
- Japan
- Prior art keywords
- heater
- support member
- mosi
- ceramic
- molybdenum silicide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000919 ceramic Substances 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 27
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 13
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- 238000007747 plating Methods 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 239000011812 mixed powder Substances 0.000 claims description 4
- 229910021344 molybdenum silicide Inorganic materials 0.000 claims 6
- 229910016006 MoSi Inorganic materials 0.000 description 34
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000005245 sintering Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- 230000035939 shock Effects 0.000 description 7
- 238000010304 firing Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910020068 MgAl Inorganic materials 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- -1 After stirring Chemical compound 0.000 description 1
- CBECDWUDYQOTSW-UHFFFAOYSA-N 2-ethylbut-3-enal Chemical compound CCC(C=C)C=O CBECDWUDYQOTSW-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Resistance Heating (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はセラミツクヒータ、特にデイーゼル機
関のグロープラグ等に有効に適用されるセラミツ
クヒータに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic heater, and particularly to a ceramic heater that is effectively applied to glow plugs of diesel engines and the like.
デイーゼル機関には低温時の始動用部品として
グロープラグが用いられており、機関の始動性向
上のために速熱性のグロープラグが要求されてい
る。発明者らはこの要求に応えるべく、電気絶縁
性のセラミツク部材の先端外周に、耐酸化性の導
電性セラミツクたる珪化モリブデン(MoSi2)と
低熱膨脹係数の絶縁性セラミツクたる窒化珪素
(Si3N4)の混合粉末を焼結してなるヒータを形
成し、ヒータが燃焼室の雰囲気内に露出するよう
に設置するグロープラグを開発した(特開昭60−
126484号)。このグロープラグではヒータが直接
に燃焼室内を加熱するので速熱性にすぐれてい
る。またヒータの構成要素たるMoSi2はヒータに
耐酸化性を与え、また低熱膨脹係数を有するSi3
N4はヒータに耐熱衝撃性を与える。
Glow plugs are used in diesel engines as starting parts at low temperatures, and glow plugs that heat quickly are required to improve engine starting performance. In order to meet this demand, the inventors added molybdenum silicide (MoSi 2 ), which is an oxidation-resistant conductive ceramic, and silicon nitride (Si 3 N, which is an insulating ceramic with a low coefficient of thermal expansion) to the outer periphery of the tip of the electrically insulating ceramic member. 4 ) A glow plug was developed in which a heater was formed by sintering the mixed powder, and the heater was installed so that it was exposed to the atmosphere of the combustion chamber (Japanese Patent Application Laid-Open No. 1983-1999).
No. 126484). In this glow plug, the heater directly heats the inside of the combustion chamber, so it has excellent heat-up properties. In addition, MoSi 2 , which is a component of the heater, gives the heater oxidation resistance, and Si 3, which has a low coefficient of thermal expansion,
N4 gives the heater thermal shock resistance.
ところで、このヒータでは、ヒータ自体の耐熱
衝撃性は非常にすぐれているが、ヒータを支持す
る絶縁性セラミツク部材とそのまわりに形成した
ヒータの接合部では両者の膨脹係数、熱伝導率等
の諸特性の相異により熱応力が生じ、耐熱衝撃性
を低下させるという問題がある。 By the way, although this heater itself has very good thermal shock resistance, the joint between the insulating ceramic member that supports the heater and the heater formed around it has various coefficients of expansion, thermal conductivity, etc. There is a problem in that thermal stress is generated due to the difference in properties, which reduces thermal shock resistance.
この問題の対策として発明者らは、ヒータを中
心部とこれを断面U字形に包む外周部とで構成
し、中心部および外周部をともに珪化モリブデン
(MoSi2)と窒化珪素(Si3N4)の混合物で、かつ
両成分の配合割合を両部とも同一とし、両部の比
抵抗を両成分の粒子径で調整して外周部のみ通電
されるようにしたセラミツクヒータを開発した
(特開昭60−254586号)。 As a countermeasure to this problem, the inventors constructed a heater with a central part and an outer peripheral part surrounding the central part with a U-shaped cross section, and both the central part and the peripheral part were made of molybdenum silicide (MoSi 2 ) and silicon nitride (Si 3 N 4 ), the mixing ratio of both components is the same in both parts, and the specific resistance of both parts is adjusted by the particle diameter of both components, so that only the outer peripheral part is energized (Unexamined Japanese Patent Publication) (Sho 60-254586).
しかしながら、このセラミツクヒータにおいて
も、窒化珪素およびアルミナ(Al2O2)よりなる
支持部材と、上記ヒータとを一体焼結すると両部
材の最適焼成条件が異るため、両部材のもつすぐ
れた特性が同時に得られない。 However, even in this ceramic heater, when the supporting member made of silicon nitride and alumina (Al 2 O 2 ) and the heater are sintered together, the optimal firing conditions for both members are different, so the excellent characteristics of both members are different. cannot be obtained at the same time.
また、セラミツクヒータの支持部材は金属製造
のハウジング内に収納固定されるが、その固定手
段としては一般に支持部材表面にニツケルメツキ
層を形成し、このメツキ層を介して支持部材をハ
ウジングにロウ付けする手段がとられる。しかる
にSi3N4−Al2O3系焼結体ではニツケルメツキの
固着性が良好でなく、充分な接合強度が得られな
いという問題がある。 Furthermore, the support member of a ceramic heater is housed and fixed in a housing made of metal, and the fixing method is generally to form a nickel plating layer on the surface of the support member and braze the support member to the housing via this plating layer. Measures will be taken. However, Si 3 N 4 --Al 2 O 3 based sintered bodies have a problem in that the adhesion of nickel plating is not good and sufficient bonding strength cannot be obtained.
そこで本発明は、絶縁性セラミツク焼結体より
なる支持部材の先端外周に通電性のセラミツク焼
結体よりなるヒータを一体焼結にて形成したセラ
ミツクヒータにおいて、支持部材とヒータの結合
強度にすぐれ、かつ支持部材とヒータがそれぞれ
その特性を最大限に発揮し得るセラミツクヒータ
を提供し、もつて上記従来の問題点を解決するこ
とを目的とする。
Therefore, the present invention provides a ceramic heater in which a heater made of a conductive ceramic sintered body is integrally sintered on the outer periphery of the tip of a support member made of an insulating ceramic sintered body, which has excellent bonding strength between the support member and the heater. It is an object of the present invention to provide a ceramic heater in which the supporting member and the heater can each exhibit their respective characteristics to the maximum, thereby solving the above-mentioned conventional problems.
また本発明は、支持部材とハウジングが強固に
結合されたセラミツクヒータを提供することを目
的とする。 Another object of the present invention is to provide a ceramic heater in which a support member and a housing are firmly connected.
本発明のセラミツクヒータは、支持部材および
ヒータともにMoSi2とSi3N4よりなり、かつ両成
分の配合比は支持部材およびヒータともに同一と
してあり、支持部材とヒータは一体焼結せしめて
ある。MoSi3とSi3N4の配合重量割合は10〜40:
60〜90程度の範囲とする。
In the ceramic heater of the present invention, both the support member and the heater are made of MoSi 2 and Si 3 N 4 , and the mixing ratio of both components is the same for both the support member and the heater, and the support member and the heater are integrally sintered. The blending weight ratio of MoSi 3 and Si 3 N 4 is 10 to 40:
The range should be between 60 and 90.
支持部材は、導電性のMoSi2粒子が絶縁性の
Si3N4粒子に囲まれて分断され、これにより電気
絶縁とした組織とし、ヒータはSi3N4粒子を
MoSi2粒子が包み、MoSi2粒子が連続する導電性
の組織とする。 The supporting member consists of two conductive MoSi particles and an insulating material.
It is surrounded by Si 3 N 4 particles and divided, creating an electrically insulated structure, and the heater uses Si 3 N 4 particles to
A conductive structure is formed in which two MoSi particles are wrapped and two MoSi particles are continuous.
支持部材において上記の組織を実現する手段と
しては、MoSi2とぬれ性の悪い、あるいは焼結時
に極めて粘度の低いガラス層をなす焼結助剤を添
加して焼結する。この結果、第2図にモデル的に
示すようにMoSi2粒子が凝集してSi3N4粒子で取
囲まれた焼結組織となる。焼結助剤としては例え
ばAl2O3、MgAl2O4、あるいはこれ等とともに
Y2O3が用いられ得る。 A means of achieving the above-mentioned structure in the support member is to add and sinter a sintering aid that has poor wettability with MoSi 2 or forms a glass layer with extremely low viscosity during sintering. As a result, the MoSi 2 particles aggregate to form a sintered structure surrounded by Si 3 N 4 particles, as shown in the model in FIG. Examples of sintering aids include Al 2 O 3 , MgAl 2 O 4 , and others.
Y2O3 may be used .
支持部材の焼結に用いるMoSi2とSi3N4の粉末
は平均粒子径が両成分ほぼ同一か、あるいは
MoSi2粉末の方を大きくする。 The MoSi 2 and Si 3 N 4 powders used for sintering the support member have an average particle diameter of almost the same for both components, or
Make the MoSi 2 powder larger.
ヒータにおいては、Si3N4粉末はMoSi2粉末よ
りも平均粒子径が大きいものを用いる。MoSi2粉
末を充分に小さく、かつ多くすることにより、第
3図にモデル的に示すようにMoSi2粒子がSi3N4
粒子を取囲みMoSi2粒子が連続することにより導
電性が与えられた焼結組織となる。ヒータの比抵
抗はMoSi2、およびSi3N4の相対粒子径、量を調
整することで制御できる。Si3N4の平均粒子径は
MoSi2のそれの2倍程度ないしそれ以上とするこ
とが望ましい。 In the heater, the Si 3 N 4 powder used has a larger average particle diameter than the MoSi 2 powder. By making the MoSi 2 powder sufficiently small and large enough, the MoSi 2 particles become Si 3 N 4 as shown in the model in Figure 3.
The continuous MoSi particles surrounding the particles form a sintered structure with electrical conductivity. The specific resistance of the heater can be controlled by adjusting the relative particle diameters and amounts of MoSi 2 and Si 3 N 4 . The average particle size of Si 3 N 4 is
It is desirable that it be about twice or more than that of MoSi 2 .
このように本発明では支持部材とヒータとを実
質的に同一成分、同一組成としたので、これ等を
一体焼結するときは、支持部材およびヒータ共通
の最適条件で焼結することで両者とも最適の特性
が得られ、かつ両者は強固に一体結合される。ま
た結合部で両者の熱膨脹係数差によるヒビ割れが
発生することはない。
In this way, in the present invention, the support member and the heater have substantially the same components and compositions, so when they are sintered together, both can be sintered under the same optimum conditions for the support member and the heater. Optimum characteristics are obtained, and both are strongly integrated. Furthermore, cracks do not occur at the joint due to the difference in coefficient of thermal expansion between the two.
更に、支持部材はMoSi2の存在によりニツケル
メツキとの固着性が向上し、金属ハウジングとの
結合力が良好となる。 Furthermore, the presence of MoSi 2 improves the adhesion of the support member to the nickel plating, resulting in a good bonding force with the metal housing.
〔実施例 1〕
以下、本発明の詳細をグロープラグに適用した
下記の実施例および実験例により説明する。[Example 1] Hereinafter, the details of the present invention will be explained using the following examples and experimental examples in which the present invention is applied to a glow plug.
(1) 第1図に示すように断面四角形の棒状支持部
材2の先端に形成した板状突出部21にはこれ
を包む断面U字形のヒータ1が形成してある。
支持部材2には先端がヒータ1に接続するタン
グステンの通電線3a,3bが埋設してある。
支持部材2の外周には金属パイプ4を取付け、
該パイプ4に筒状の金属ハウジング5の一端が
接合してある。通電線3aの後端は支持部材2
の基端まで延びて基端に嵌着した金属キヤツプ
6に接続し、キヤツプ6およびニツケル線7を
介して図示しない電源に接続してある。通電線
3bの後端は金属スリーブに接続してある。(1) As shown in FIG. 1, a plate-shaped protrusion 21 formed at the tip of a rod-shaped support member 2 having a square cross section is provided with a heater 1 having a U-shaped cross section surrounding it.
Tungsten conductive wires 3a and 3b whose tips are connected to the heater 1 are embedded in the support member 2.
A metal pipe 4 is attached to the outer periphery of the support member 2,
One end of a cylindrical metal housing 5 is joined to the pipe 4. The rear end of the energizing wire 3a is connected to the support member 2
It is connected to a metal cap 6 that extends to the base end of the cap and is fitted onto the base end, and is connected to a power source (not shown) via the cap 6 and a nickel wire 7. The rear end of the current-carrying wire 3b is connected to a metal sleeve.
ヒータ1と支持部材2はいずれもMoSi230%
(重量%を示す、以下同じ)およびSi3N470%
の混合粉末にY2O3、Al2O3をMoSi2とSi3N4の
総量に対して各々7%、3%添加した混合物の
焼結体であつて、支持部材2とヒータ1は一体
焼結せしめてある。 Heater 1 and support member 2 are both MoSi 2 30%
(indicates weight %, same below) and Si 3 N 4 70%
The support member 2 and the heater 1 are a sintered body of a mixture in which Y 2 O 3 and Al 2 O 3 are added in an amount of 7% and 3 % , respectively, based on the total amount of MoSi 2 and Si 3 N 4 . It is sintered in one piece.
上記MoSi2粉末の平均粒径は支持部材2およ
びヒータ1ともに0.9μmで、Si3N4粉末の平均
粒径は支持部材2においては0.6μm、ヒータ1
においては13μmである。 The average particle size of the MoSi 2 powder is 0.9 μm in both support member 2 and heater 1, and the average particle size of the Si 3 N 4 powder is 0.6 μm in support member 2 and heater 1.
It is 13 μm.
支持部材2とパイプ4とは支持部材2の表面
にニツケルメツキを施した後、ロウ付けを行な
うことにより結合せしめてある。またパイプ4
とハウジング5はロウ付けにより結合せしめて
ある。 The support member 2 and the pipe 4 are joined together by nickel plating the surface of the support member 2 and then brazing. Also pipe 4
and the housing 5 are joined together by brazing.
上記構造の本発明のグロープラグにおいて、
支持部材2とヒータ1を1560℃〜1760℃、500
Kg/mm2にてアルゴン1気圧下でホツトプレスに
より一体焼結したものについてヒータ1および
その結合部の耐熱衝撃性能と、支持部材2およ
びパイプ4の接合強度に関するテストを行なつ
た。 In the glow plug of the present invention having the above structure,
Support member 2 and heater 1 at 1560℃~1760℃, 500℃
Tests were conducted on the thermal shock resistance of the heater 1 and its joints, and the joint strength of the support member 2 and the pipe 4, which were integrally sintered by hot pressing at Kg/mm 2 under 1 atmosphere of argon.
また比較材として、支持部材2を50%Si3N4
−50%Al2O3とし、他は本発明と同一構造とし
たもの(比較例1)、および支持部材2を50%
MoSi2−50%Al2O3とし、かつヒータ1を第1
図における突出部21に対応する中心部分とこ
れを包む部分とで構成するとともに両部分をと
もに共通の配合割合のMoSi2とSi3N4よりなる
焼結体とするとともに成分の粒径操作により中
心部分を絶縁に近い状態とし、このヒータを上
記Al2O3を含む支持部材と一体焼結せしめ、他
は本発明と同一構造としたもの(比較例2、実
開昭60−254586号)についても同様のテストを
行なつた。 In addition, as a comparative material, support member 2 was made of 50% Si 3 N 4
−50% Al 2 O 3 and the other structure was the same as that of the present invention (Comparative Example 1), and supporting member 2 was 50%
MoSi 2 −50% Al 2 O 3 and heater 1 is the first
It is composed of a central part corresponding to the protrusion 21 in the figure and a part surrounding it, and both parts are made into a sintered body made of MoSi 2 and Si 3 N 4 with a common blending ratio, and by manipulating the particle size of the components. The center part is in a state close to insulation, and this heater is integrally sintered with the support member containing Al 2 O 3 , and the other parts have the same structure as the present invention (Comparative Example 2, Utility Model Application No. 60-254586) A similar test was also conducted for
耐熱衝撃性能はスポーリング試験、即ちグロ
ープラグに電圧を印加して所定の温度に飽和発
熱させた後、20℃の水中にパイプ4から突出す
る先端部を浸漬し、表面に発生するクラツクの
有無を調査することにより評価した。また接合
強度は、ヒータ1の先端をパイプ4方向に加圧
し、ヒータ1がパイプ4中へ陥没するに至る限
界点をもつて評価した。結果を第1表および第
2表に示す。第1表において×印はクラツクの
発生を示す。 Thermal shock resistance is tested by a spalling test, in which the glow plug is saturated with heat to a predetermined temperature by applying a voltage, and then the tip protruding from the pipe 4 is immersed in water at 20°C to determine whether or not there are any cracks on the surface. It was evaluated by investigating. The bonding strength was evaluated by applying pressure to the tip of the heater 1 in the direction of the pipe 4 and determining the limit point at which the heater 1 sank into the pipe 4. The results are shown in Tables 1 and 2. In Table 1, the x mark indicates the occurrence of cracks.
第1表より知られるように、本発明ではヒー
タとその支持部材を同一材料で構成したので、
両者間の熱膨脹率、熱伝導率の差から生じる熱
応力を著しく低減でき、従つて耐熱衝撃性は大
きく向上する。また、第2表より知られるよう
に、支持部材中にMoSi2が分散しているので支
持部材へのニツケルメツキの固着性が向上し、
従つて支持部材とこれを含む金属パイプとの接
合強度が著しく向上する。 As is known from Table 1, in the present invention, the heater and its supporting member are made of the same material, so
Thermal stress caused by the difference in coefficient of thermal expansion and thermal conductivity between the two can be significantly reduced, and therefore the thermal shock resistance is greatly improved. In addition, as is known from Table 2, since MoSi 2 is dispersed in the support member, the adhesion of the nickel plating to the support member is improved.
Therefore, the bonding strength between the support member and the metal pipe including the support member is significantly improved.
(2) 支持部材として用いるSi3N4−MoSi2焼結体
の絶縁性を調べるため次の実験を行なつた。(2) The following experiment was conducted to investigate the insulation properties of the Si 3 N 4 -MoSi 2 sintered body used as the support member.
平均粒径が種々異なるSi3N470%、MoSi230
%の混合粉末に焼結助剤をその添加量に変化さ
せて加え、ホツトプレス焼成した。 Si 3 N 4 70%, MoSi 2 30 with different average particle sizes
% of the mixed powder was added with varying amounts of a sintering aid, and then hot press fired.
即ち、Si3N4とMoSi2を上記割合に配合した
混合粉末をエタノール等の溶媒とともに混合、
攪拌した後、可塑剤たるジ−ブチル−フタレー
トを結合剤たるポリ−ビニル−ブチラール(重
合度1000)を添加し、更に混練を行ない、粘度
3×104〜10×104poiseのスラリーを調整し、
ドクターブレード法にて乾燥後の厚さが0.7mm
となるセラミツク・グリーンシートを作成し
た。このシートの複数枚を積層し約120℃でラ
ミネートした後、Ar中1700℃、30分保持、圧
力500Kgf/cm2の条件下でホツトプレス焼成を
行ない、セラミツク焼結体を得た。 That is, a mixed powder containing Si 3 N 4 and MoSi 2 in the above ratio is mixed with a solvent such as ethanol,
After stirring, di-butyl phthalate as a plasticizer and poly-vinyl-butyral (degree of polymerization 1000) as a binder are added and further kneaded to prepare a slurry with a viscosity of 3 x 10 4 to 10 x 10 4 poise. death,
The thickness after drying is 0.7mm using the doctor blade method.
A ceramic green sheet was created. A plurality of these sheets were stacked and laminated at about 120°C, and then hot press firing was performed in Ar at 1700°C for 30 minutes and under a pressure of 500 kgf/cm 2 to obtain a ceramic sintered body.
得られたセラミツク焼結体につき、比抵抗を
測定した。結果を第3表に示す。 The specific resistance of the obtained ceramic sintered body was measured. The results are shown in Table 3.
表より知られるようにSi3N4とMoSi2の粒径
操作により比抵抗の制御は可能であるが、支持
部材として必要な絶縁化は粒径操作では不充分
である。 As is known from the table, it is possible to control the resistivity by controlling the particle size of Si 3 N 4 and MoSi 2 , but controlling the particle size is not sufficient to provide the necessary insulation for the support member.
支持部材としては比抵抗105、好ましくは107
Ω・cmないしそれ以上が必要であり、このよう
な絶縁化はAl2O3を3%ないしそれ以上、また
MgAl2O4を2%ないしそれ以上添加すること
により可能となることがわかる。 As a support member, the resistivity is 10 5 , preferably 10 7
Ω・cm or more is required, and such insulation requires Al 2 O 3 of 3% or more, or
It can be seen that this becomes possible by adding 2% or more of MgAl 2 O 4 .
なお、焼結助剤としては上記のものに限ら
ず、MoSi2とぬれ性が悪く、Si3N4とはぬれ性
のよいものが用いられ得る。 Note that the sintering aid is not limited to the above-mentioned ones, and those that have poor wettability with MoSi 2 and good wettability with Si 3 N 4 may be used.
(3) ヒータおよび支持部材をともにSi3N4−
MoSi2焼結体として一体焼結する本発明のセラ
ミツクヒータにおけるMoSi2−Si3N4焼結体と、
ヒータをMoSi2−Si3N4焼結体とし支持部材を
Si3N4−Al2O3焼結体として一体焼結する従来
のセラミツクヒータにおけるSi3N4−Al2O3焼
結体(比較材)の、焼成条件と焼結体の特性に
ついてテストした。結果を第4表に示す。(3) Both the heater and supporting member are Si 3 N 4 −
A MoSi 2 −Si 3 N 4 sintered body in the ceramic heater of the present invention, which is integrally sintered as a MoSi 2 sintered body;
The heater is a MoSi 2 −Si 3 N 4 sintered body and the support member is
Tested the firing conditions and properties of the Si 3 N 4 - Al 2 O 3 sintered body (comparison material) in a conventional ceramic heater that is integrally sintered as a Si 3 N 4 - Al 2 O 3 sintered body. did. The results are shown in Table 4.
表より知られるように、50%Si3N4−50%
Al2O3焼結体の強度は1600℃以上の焼成にて急
速に低下する。この強度低下は、3Si3N4+
2Al2O3→2Si4Al2O2N6+SiO3なる反応になり
Si3N4とAl2O3の固溶反応が進行し、剩余成分
たるSiO2が粒界層に析出することに起因する
ことが判明した。従つてこの焼結体を支持部材
として用いて必要な強度を得るためには1600℃
以下で焼成すべきである。 As known from the table, 50%Si 3 N 4 −50%
The strength of Al 2 O 3 sintered bodies rapidly decreases when fired at temperatures above 1600°C. This strength decrease is caused by 3Si 3 N 4 +
The reaction becomes 2Al 2 O 3 →2Si 4 Al 2 O 2 N 6 +SiO 3.
It was found that this was caused by the progress of a solid solution reaction between Si 3 N 4 and Al 2 O 3 and the precipitation of SiO 2 , which is an additional component, in the grain boundary layer. Therefore, in order to obtain the necessary strength when using this sintered body as a support member, a temperature of 1600℃ is required.
Should be fired below.
一方、Si3N4−MoSi2焼結体においては、そ
の難焼結性によりホツトプレスによつても1640
℃以上、好ましくは1680℃以上での焼成が必要
である。 On the other hand, the Si 3 N 4 -MoSi 2 sintered body has a hardness of 1640 yen even when hot pressed due to its difficult sinterability.
Firing is required at a temperature of 1680°C or higher, preferably 1680°C or higher.
従つて従来のセラミツクヒータにおいて、
Si3N4−Al2O3の支持部材とSi3N4−MoSi2ヒー
タとを一体焼結して同時に両者のすぐれた特性
を発揮せしめることは極めて困難である。 Therefore, in conventional ceramic heaters,
It is extremely difficult to integrally sinter the Si 3 N 4 -Al 2 O 3 support member and the Si 3 N 4 -MoSi 2 heater and simultaneously exhibit the excellent properties of both.
これに対し、支持部材およびヒータともに
Si3N4−MoSi2よりなり、かつ同一組成とした
本発明のセラミツクヒータでは、一体焼結によ
つて支持部材およびヒータともにすぐれた特性
を最大限に発揮させることができるのである。 On the other hand, both the support member and the heater
In the ceramic heater of the present invention, which is made of Si 3 N 4 --MoSi 2 and has the same composition, the excellent characteristics of both the support member and the heater can be maximized by integral sintering.
以上説明したように本発明によれば、支持部材
およびヒータを一体焼結して、それぞれにすぐれ
た特性を発揮させることができる。また、熱膨脹
率等の支持部材およびヒータのマクロ的諸物性値
を合致せしめることができるから、冷熱が繰返さ
れても熱応力によるクラツクが発生することな
く、すぐれた耐熱衝撃性が得られるのである。 As explained above, according to the present invention, the support member and the heater can be integrally sintered and each can exhibit excellent characteristics. Furthermore, since the macroscopic physical properties of the supporting member and the heater, such as the coefficient of thermal expansion, can be made to match, even when cold and hot temperatures are repeated, cracks do not occur due to thermal stress, and excellent thermal shock resistance can be obtained. .
第1図は本発明のセラミツクヒータを備えたグ
ロープラグの縦断面図、第2図は上記セラミツク
ヒータにおける支持部材の組織をモデル的に示す
図、第3図は上記セラミツクヒータにおけるヒー
タ部の組織をモデル的に示す図である。
1……ヒータ、2……支持部材、4……金属パ
イプ、5……金属ハウジング。
FIG. 1 is a longitudinal cross-sectional view of a glow plug equipped with a ceramic heater of the present invention, FIG. 2 is a model diagram showing the structure of the supporting member in the ceramic heater, and FIG. 3 is a structure of the heater part in the ceramic heater. FIG. 1... Heater, 2... Supporting member, 4... Metal pipe, 5... Metal housing.
【表】【table】
【表】【table】
【表】【table】
Claims (1)
部材と、支持部材の先端外周に形成した導電性の
セラミツク焼結体よりなるヒータと、ヒータに通
電する通電手段と、支持部材を収納保持するハウ
ジングを備え、支持部材とヒータは配合割合を共
通とした珪化モリブデンと窒化珪素の混合粉末の
焼結体であつて両者は一体焼結せしめてあり、支
持部材は珪化モリブデン粒子がこれを包む窒化珪
素粒子により互に分断された組織を有し、ヒータ
は窒化珪素粒子を包む珪化モリブデン粒子が互に
連続する組織を有するセラミツクヒータ。 2 上記支持部材およびヒータにおける珪化モリ
ブデンと窒化珪素の重量比はいずれも10〜40:90
〜60である特許請求の範囲第1項記載のセラミツ
クヒータ。 3 上記ヒータにおける窒化珪素の平均粒子径が
上記珪化モリブデンのそれよりも大である特許請
求の範囲第1項記載のセラミツクヒータ。 4 上記支持部材はその表面に施したニツケルメ
ツキを介してハウジングにロウ着せしめられた特
許請求の範囲第1項記載のセラミツクヒータ。[Scope of Claims] 1. A support member made of an electrically insulating ceramic sintered body, a heater made of a conductive ceramic sintered body formed on the outer periphery of the tip of the support member, an energizing means for energizing the heater, and a support member. The support member and the heater are made of a sintered body of a mixed powder of molybdenum silicide and silicon nitride having the same blending ratio, and are sintered together, and the support member is made of molybdenum silicide particles. The ceramic heater has a structure in which the molybdenum silicide particles surrounding the silicon nitride particles are mutually separated, and the heater has a structure in which molybdenum silicide particles surrounding the silicon nitride particles are continuous. 2 The weight ratio of molybdenum silicide and silicon nitride in the support member and heater is 10 to 40:90.
60. The ceramic heater according to claim 1, wherein the ceramic heater has a diameter of 60 to 60. 3. The ceramic heater according to claim 1, wherein the average particle diameter of the silicon nitride in the heater is larger than that of the molybdenum silicide. 4. The ceramic heater according to claim 1, wherein the support member is soldered to the housing via nickel plating applied to the surface thereof.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24049086A JPS6396883A (en) | 1986-10-09 | 1986-10-09 | Ceramic heater |
US07/106,516 US4814581A (en) | 1986-10-09 | 1987-10-09 | Electrically insulating ceramic sintered body |
DE3734274A DE3734274C2 (en) | 1986-10-09 | 1987-10-09 | Ceramic glow plug and process for its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24049086A JPS6396883A (en) | 1986-10-09 | 1986-10-09 | Ceramic heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6396883A JPS6396883A (en) | 1988-04-27 |
JPH0546674B2 true JPH0546674B2 (en) | 1993-07-14 |
Family
ID=17060287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24049086A Granted JPS6396883A (en) | 1986-10-09 | 1986-10-09 | Ceramic heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6396883A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR9700466A (en) * | 1996-03-29 | 1998-11-03 | Ngk Spark Plug Co | Ceramic heater |
BR9700464A (en) * | 1996-03-29 | 1998-11-03 | Ngk Spark Plug Co | Ceramic heater |
JP3551635B2 (en) * | 1996-07-23 | 2004-08-11 | 宇部興産株式会社 | Ceramic resistance heating element and method of manufacturing the same |
DE19860919C1 (en) * | 1998-12-04 | 2000-02-10 | Bosch Gmbh Robert | Ceramic heater, especially a sintered heater rod e.g. a heater plug, has interior insulation and exterior conductor layers formed from different starting compositions comprising silicon nitride, molybdenum disilicide, alumina and yttria |
US6274079B1 (en) * | 1999-06-23 | 2001-08-14 | Robert Bosch Gmbh | Ceramic pin heating element with integrated connector contacts and method for making same |
JP4562460B2 (en) * | 2004-08-27 | 2010-10-13 | 京セラ株式会社 | Heater and wafer heating apparatus using the same |
JP2005348820A (en) * | 2004-06-08 | 2005-12-22 | Olympus Corp | Heating element, medical treatment tool and apparatus using thereof |
JP2006305236A (en) * | 2005-05-02 | 2006-11-09 | Olympus Medical Systems Corp | Fever treatment tool |
JP6807660B2 (en) * | 2016-06-01 | 2021-01-06 | 日本特殊陶業株式会社 | Ceramic heater element and ceramic glow plug |
-
1986
- 1986-10-09 JP JP24049086A patent/JPS6396883A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6396883A (en) | 1988-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4814581A (en) | Electrically insulating ceramic sintered body | |
US4633064A (en) | Sintered ceramic electric heater with improved thermal shock resistance | |
CN101228396B (en) | Brazed structure, ceramic heater, and glow plug | |
US5264681A (en) | Ceramic heater | |
WO2014175424A1 (en) | Ceramic heater | |
EP1225159B1 (en) | Silicon nitride-tungsten carbide composite sintered material, production process therefor and glow plug comprising the same | |
JPH10300085A (en) | Ceramic heater and ceramic glow plug | |
JPH0546674B2 (en) | ||
JP3137264B2 (en) | New ceramic igniter and its use | |
JP2001064080A (en) | Silicon nitride sintered body and its production | |
JP2616931B2 (en) | Glow plug heater support | |
JP5721584B2 (en) | Heater and glow plug equipped with the same | |
SE524114C2 (en) | Compositions for ceramic ignition devices | |
JP3664567B2 (en) | Ceramic heater and ceramic glow plug | |
JPH0845648A (en) | Ceramic heater | |
JP3807813B2 (en) | Ceramic heater and ceramic glow plug | |
JPH01289089A (en) | Ceramics heating body | |
JP2534847B2 (en) | Ceramic Heater | |
JP2537606B2 (en) | Ceramic Heater | |
JP6224797B2 (en) | Heater and glow plug equipped with the same | |
JP2625710B2 (en) | Ceramic heater | |
JP4038138B2 (en) | Ceramic heater and manufacturing method thereof | |
JPS6086787A (en) | Ceramic heater | |
JP2013008635A (en) | Heater and glow plug equipped with the same | |
JPS58135183A (en) | Metallized ceramic resistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |