【発明の詳細な説明】[Detailed description of the invention]
産業上の利用分野
本発明は自動車エンジン部材、耐摩耗性部材、
耐食部材、切削工具等として好適な窒化珪素焼結
体の製造方法に関する。
従来の技術 発明が解決すべき問題点
窒化珪素は単昧では焼結が困難であるために、
種々の添加物を加えて焼結することが考えられて
おり、例えばY2O3+Al2O3は強度、耐熱衝撃性に
於て優れたものが得られるが、耐熱性に劣つてい
たり大型製品の場合均質性に欠けるものができ易
い等の欠点を有している。
この欠点を防止するものとして1)希土類酸化
物−Al2O3−SiO2−AlN、2)希土類酸化物−
Al2O3−AlNなどを添加する焼結することも試み
られているが、緻密化、強度の向上、耐熱性の改
善等に効果が認められているが、靱性の低さを飛
躍的に改善するには至つていなかつた。
問題点を解決するための手段
本発明は上記の如き実情に鑑み鋭意研究の結果
なされたもので、Si3N4と、Al2O3と、AlNと、
希土類酸化物とからなる配合で、重量比でSi3N4
が88%〜94%含むようにし、さらに希土類酸化物
を重量比で4%以上含有し、かつ
0.2Al2O3/AlN2でAl2O3+AlN/稀土類酸化物0
.8
を満足する混合物を成形し焼結することにより優
れた窒化珪素焼結体を得ることができた。
作 用
Si3N4が重量にて88%より少なく、添加助剤の
量が多量になると窒化珪素材料として機体されて
いる耐熱性が低下し、靱性及び強度が低下する。
逆に94%を越えて多いと、相対的に添加助剤の
量が減少し、緻密化が困難になるとともに適性な
粒成長を促進する液相量が不足するため、アスペ
クト比の高いSi3N4粒は得られなくなり、靱性の
低下のみならず、強度も低下する。又、Si3N4量
が94%を越えて多い場合は、Si3N4原料中に存在
する酸素の量の影響で耐熱性が低下し、高温強度
が低下する。
Al2O3,AlN及び希土類酸化物は焼結助剤とし
て作用し、焼結過程に於て液相を生成する。液相
の組成及び粘度はSi3N4粒子の溶解析出に伴なう
α→β相変態、又粒成長の度合に大きく影響を及
ぼすことが考えられ、高靱性を与える組織を得る
為には焼結助剤の配合比を制御する必要がある。
特に希土類酸化物は4重量%以上、好ましくは
4重量%〜7重量%を添加する必要があるが、そ
の添加量が4重量%未満では緻密化に寄与する液
相量は少なく、緻密化は促進されず、又、粒成長
も生じないために、室温強度・靱性は低くなる。
一方7重量%を超えた場合は耐熱性が低下する傾
向が大きいので、前記の範囲に止めるのが好まし
い。
すなわち高靱性化にはアスペクト比の大きい針
状粒子が均一に分散した組織が好ましく、上記組
成域にした場合、所望の組織が得られ、靱性が向
上することが確認された。Al2O3/AlNの比が2
より大きくなると、アスペクト比が充分に大きく
ならないと共に、組織の均質性が損なわれる。又
Al2O3/AlNの比が0.2より小さいと、焼結体中に
α′相の生成が顕著となり、高アスペクト比の粒子
が得られなくなる。又(Al2O3+AlN)/希土類
酸化物の比が0.8を超えた場合にもα′相が多量に
生成したり、α′相が生じなくても高アスペクト比
粒子が得られなくなる。(Al2O3+AlN)/希土
類酸化物の比は好ましくは0.2〜0.6である。
次にSi3N4粉末について考察すると、Si3N4粉
末には通常0.5〜3%程度の酸素が不可避不純物
として含まれているが、この酸素の一部は粒子表
面に酸化珪素及び或いは酸窒化珪素として存在
し、残部はSi3N4中に固溶して存在する。
酸素量は焼結性に影響を及ぼすが、上記範囲内
にある粉末を用いれば、高靱性化は達成できる。
ただし、高温強度の高い焼結体を得る為には、酸
素量の少ない粉末、好ましくは酸素量2%以下の
粉末を使用するのが望ましい。一方添加された酸
化珪素粉末は焼結時に組織の正常な成長に悪影響
を及ぼし、アスペクト比の低下及び組織の不均質
性をもたらす為、酸化珪素粉末の添加は許容され
ない。
実施例
以下実施例及び比較例について述べる。
実験例 1
Si3N4粉末(比表面積13cm2/g、酸素含有量1.4
%)と、Al2O3粉末(比表面積10m2/g)と、
AlN粉末(比表面積3m2/g)と、Y2O3粉末
(比表面積10m2/g)とを表1に掲載した組成で
用い、エタノール中で24時間湿式混合した後乾燥
し、2ton/cm2の圧力でプレスして焼成し、厚さ10
mm長さ45mm幅45mmの板状の焼結体を作成し、これ
を切断、研磨して厚さ3mm、長さ4mm、幅40mmの
試験片を作成した。
No.1〜No.6は本発明の実施例にして、No.7〜No.
11は比較例である。なおNo.8では平均粒径0.5μm
のSiO2粉末を添加してある。
以上の試料についての焼結条件、室温強度、
1200℃強度、破壊靱性を測定し表示してある。
室温強度及び1200℃強度はスパン30mm、3点曲
げにて測定、破壊靱性はインデンテーシヨン法に
より測定した。
又、X線回折により相の同定を行なつたところ
No.1〜No.6の本発明の実施例に係る試料及びNo.
7,8,9,11の試料は、ほゞ100%β−Si3N4
であることが確認されたが、No.10の試料では、β
−Si3N4の他にα′−Si3N4が認められた。
実験例 2
前記実験例1と同じSi3N4粉末、Al2O3粉末、
AlN粉末と、表2に示す希土類酸化物粉末とを
90:1.5:1.5:7(重量比)の組成とし、実験例
(1)と同様な手法で試験片を作製した。
ただし、焼成条件はN2ガス雰囲気下で20気圧
下、1850℃×5hrとした。その試料についての室
温強度、1200℃強度及び破壊靱性を測定し表示し
てある。
以上の実験例1,2から判るように本発明の実
施例によるものは室温強度も1200℃強度も格段に
優れており破壊靱性も極めてよいが、比較例に該
当する試料では表1中No.9が室温強度が僅かに
100を越えているものの他はいづれの特性も悪く、
本発明の実施例の試料No.1〜6より劣ることが確
認された。
比較例15,16のようにSi3N4の量が94%を越え
て多いと、耐熱性が下がり、高温強度が低下する
ことが、又比較例17のようにSi3N4の量が88%未
満では靱性も強度も低下することが判る。
なお本発明を実施するに当り、焼結技術として
は公知の各種方法即ち、常圧焼結、ホツトプレ
ス、熱間静水圧法等が採用できる。又成形技術と
してはスリツプキヤステイング、金型プレス、射
出成形、押出成形等が採用される。
発明の効果
本発明によれば上記の如く焼結が容易で、かつ
信頼性が大きく、耐衝撃性が改良され、取扱い時
に欠けの発生を生じ難い窒化珪素焼結体を得るこ
とができる。
Industrial Application Field The present invention is applicable to automobile engine parts, wear-resistant parts,
The present invention relates to a method of manufacturing a silicon nitride sintered body suitable for use as corrosion-resistant members, cutting tools, etc. Prior Art Problems to be Solved by the Invention Since silicon nitride is difficult to sinter in isolation,
Sintering with the addition of various additives has been considered. For example, Y 2 O 3 + Al 2 O 3 can provide excellent strength and thermal shock resistance, but it may have poor heat resistance. In the case of large-sized products, there are drawbacks such as the possibility of producing products that lack homogeneity. To prevent this drawback, 1) rare earth oxide - Al 2 O 3 -SiO 2 -AlN, 2) rare earth oxide -
Sintering with the addition of Al 2 O 3 -AlN has been attempted, but it has been found to be effective in increasing densification, improving strength, and improving heat resistance. There was no improvement. Means for Solving the Problems The present invention has been made as a result of intensive research in view of the above-mentioned circumstances, and it is based on Si 3 N 4 , Al 2 O 3 , AlN,
A composition consisting of rare earth oxides, with a weight ratio of Si 3 N 4
contains 88% to 94% of rare earth oxide, and contains 4% or more of rare earth oxide by weight, and 0.2Al 2 O 3 /AlN2, Al 2 O 3 + AlN / rare earth oxide 0.
By molding and sintering a mixture satisfying .8, an excellent silicon nitride sintered body could be obtained. Effect If Si 3 N 4 is less than 88% by weight and the amount of added auxiliary agent is large, the heat resistance of the silicon nitride material will decrease, and the toughness and strength will decrease. On the other hand, if it exceeds 94%, the amount of added auxiliary agent decreases relatively, making densification difficult and lacking the amount of liquid phase that promotes appropriate grain growth . It becomes impossible to obtain N4 grains, and not only the toughness but also the strength decreases. Furthermore, if the amount of Si 3 N 4 is more than 94%, the heat resistance will be lowered due to the effect of the amount of oxygen present in the Si 3 N 4 raw material, and the high temperature strength will be lowered. Al 2 O 3 , AlN and rare earth oxides act as sintering aids and generate a liquid phase during the sintering process. The composition and viscosity of the liquid phase are considered to have a large effect on the α→β phase transformation accompanying the dissolution precipitation of Si 3 N 4 particles, and the degree of grain growth. It is necessary to control the blending ratio of the sintering aid. In particular, it is necessary to add rare earth oxides in an amount of 4% by weight or more, preferably 4% to 7% by weight, but if the amount added is less than 4% by weight, the amount of liquid phase that contributes to densification will be small, and densification will not occur. Since grain growth is not promoted and grain growth does not occur, room temperature strength and toughness become low.
On the other hand, if it exceeds 7% by weight, there is a strong tendency for heat resistance to decrease, so it is preferable to keep it within the above range. In other words, a structure in which acicular particles with a large aspect ratio are uniformly dispersed is preferable for high toughness, and it has been confirmed that when the composition is within the above range, the desired structure is obtained and the toughness is improved. The ratio of Al 2 O 3 /AlN is 2
If it becomes larger, the aspect ratio will not be large enough and the homogeneity of the structure will be impaired. or
If the ratio of Al 2 O 3 /AlN is less than 0.2, the formation of α' phase becomes significant in the sintered body, making it impossible to obtain particles with a high aspect ratio. Furthermore, when the ratio of (Al 2 O 3 +AlN)/rare earth oxide exceeds 0.8, a large amount of α' phase is generated, and even if no α' phase is generated, high aspect ratio particles cannot be obtained. The ratio of (Al 2 O 3 +AlN)/rare earth oxide is preferably 0.2 to 0.6. Next, considering Si 3 N 4 powder, Si 3 N 4 powder usually contains about 0.5 to 3% oxygen as an unavoidable impurity, but some of this oxygen is absorbed by silicon oxide and/or acid on the particle surface. It exists as silicon nitride, and the remainder exists as a solid solution in Si 3 N 4 . Although the amount of oxygen affects sinterability, high toughness can be achieved by using powder within the above range.
However, in order to obtain a sintered body with high high-temperature strength, it is desirable to use a powder with a low oxygen content, preferably a powder with an oxygen content of 2% or less. On the other hand, the addition of silicon oxide powder is not permissible because the added silicon oxide powder adversely affects the normal growth of the structure during sintering, resulting in a decrease in aspect ratio and non-uniformity of the structure. Examples Examples and comparative examples will be described below. Experimental example 1 Si 3 N 4 powder (specific surface area 13 cm 2 /g, oxygen content 1.4
%), Al 2 O 3 powder (specific surface area 10 m 2 /g),
AlN powder (specific surface area: 3 m 2 /g) and Y 2 O 3 powder (specific surface area: 10 m 2 /g) were used in the composition listed in Table 1, wet-mixed in ethanol for 24 hours, dried, and mixed at 2 tons/g. Pressed and fired with a pressure of cm 2 , thickness 10
A plate-shaped sintered body with a length of 45 mm and a width of 45 mm was prepared, and this was cut and polished to prepare a test piece with a thickness of 3 mm, a length of 4 mm, and a width of 40 mm. No. 1 to No. 6 are examples of the present invention, and No. 7 to No. 6 are examples of the present invention.
11 is a comparative example. Note that No. 8 has an average particle size of 0.5 μm.
of SiO 2 powder is added. Sintering conditions, room temperature strength,
1200℃ strength and fracture toughness are measured and displayed. Room temperature strength and 1200°C strength were measured by three-point bending with a span of 30 mm, and fracture toughness was measured by the indentation method. In addition, the phase was identified by X-ray diffraction.
Samples No. 1 to No. 6 according to Examples of the present invention and No.
Samples 7, 8, 9, and 11 are almost 100% β-Si 3 N 4
However, in sample No. 10, β
In addition to -Si 3 N 4 , α′-Si 3 N 4 was observed. Experimental Example 2 The same Si 3 N 4 powder and Al 2 O 3 powder as in Experimental Example 1,
AlN powder and rare earth oxide powder shown in Table 2.
Experimental example with a composition of 90:1.5:1.5:7 (weight ratio)
A test piece was prepared using the same method as in (1). However, the firing conditions were 1850° C. for 5 hours under 20 atmospheres in an N 2 gas atmosphere. The room temperature strength, 1200°C strength, and fracture toughness of the sample are measured and displayed. As can be seen from Experimental Examples 1 and 2 above, the samples according to the examples of the present invention have significantly superior strength at room temperature and 1200°C, and have extremely good fracture toughness, but the samples corresponding to the comparative examples are No. 1 in Table 1. 9 has slightly room temperature strength
Other than those with over 100, all the characteristics are bad,
It was confirmed that these samples were inferior to Samples Nos. 1 to 6 of Examples of the present invention. If the amount of Si 3 N 4 exceeds 94% as in Comparative Examples 15 and 16, the heat resistance and high temperature strength will decrease, and as in Comparative Example 17, if the amount of Si 3 N 4 It can be seen that if it is less than 88%, both toughness and strength decrease. In carrying out the present invention, various known methods such as pressureless sintering, hot pressing, hot isostatic pressing, etc. can be employed as the sintering technique. In addition, slip casting, mold pressing, injection molding, extrusion molding, etc. are employed as molding techniques. Effects of the Invention According to the present invention, as described above, it is possible to obtain a silicon nitride sintered body that is easy to sinter, has high reliability, has improved impact resistance, and is less prone to chipping during handling.
【表】【table】
【表】【table】