[go: up one dir, main page]

JPH0545149A - Straight line position sensor - Google Patents

Straight line position sensor

Info

Publication number
JPH0545149A
JPH0545149A JP20307091A JP20307091A JPH0545149A JP H0545149 A JPH0545149 A JP H0545149A JP 20307091 A JP20307091 A JP 20307091A JP 20307091 A JP20307091 A JP 20307091A JP H0545149 A JPH0545149 A JP H0545149A
Authority
JP
Japan
Prior art keywords
magnetic
movable body
magnetic body
detection
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20307091A
Other languages
Japanese (ja)
Inventor
Eiji Shimomura
英二 霜村
Kazuo Yamada
一夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20307091A priority Critical patent/JPH0545149A/en
Publication of JPH0545149A publication Critical patent/JPH0545149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To obtain a straight line position sensor which can detect a position of a movable body over a wide range accurately in a simple configuration while utilizing advantages of a magnetic acoustic wave propagation system. CONSTITUTION:A plurality of excitation coils 4a and 4b for generating a magnetic acoustic wave whose phase is inverted for a magnetic body 1 with a specified spacing are provided along the magnetic body 1 magnetostriction and continuous length. Detection coils 3a and 3b which detect a magnetic acoustic wave which is generated by the excitation coils 4a and 4b are provided at a same position as that of the excitation coils 4a and 4b. A magnet 5 is provided at a movable body 6 which is provided along the longitudinal direction of the magnetic body 1. The magnet 5 which is provided at the movable body 6 gives a bias magnetic field to the magnetic body 1, thus enabling the acoustic wave to be shut off or attenuated at that position, balance of the acoustic wave which is propagated from both sides to the detection portion to be lost, and then a voltage to be induced at the detection coils 3a and 3b, thus obtaining a position of the movable body 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、NC機器等において可
動体の移動位置を磁気的に検出する直線位置センサに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear position sensor for magnetically detecting the moving position of a movable body in NC equipment and the like.

【0002】[0002]

【従来の技術】この種の直線位置センサとしては、デジ
タル形ではマグネスケールがあり、また、アナグロ形で
は磁気弾性波伝播方式によるものがある。このうち、後
者の磁気弾性波伝播方式のものは、一般に精度よりも速
応性,操作性,簡易性が要求される場合に利用されるこ
とが多く、例えば図4に示すような構成となっている。
即ち、可動体6に対してその移動方向と平行に配置され
た磁歪を有する長尺状の磁性体1を設け、この磁性体1
の一端側に励磁コイル4を配設すると共に可動体6に検
出コイル3を設けて構成したものである。励磁コイル4
に交流電流を与えると磁性体1には磁気弾性波が生じ、
これが磁性体1の他端部に伝播していく。この場合、磁
気弾性波は磁性体1内を4〜5km/sで伝播するため、
励磁コイル4から遠ざかるにつれて位相遅れ及び振幅減
衰が大きくなる。つまり、磁性体1の不特定位置で観測
される磁気弾性波は、その観測位置に応じて振幅及び位
相が異なるようになる。一方、検出コイル3には、磁性
体1内を伝播する磁気弾性波により電圧が誘起される。
従って、例えば図4において、励磁コイルと同じ位置に
相当する(a)と、磁性体2に沿って全体の半分程度隔
った位置に相当する(b)との両者の位置における検出
電圧を比較すると、夫々図5(a),(b)に対応させ
て示すようになる。即ち、励磁コイル4から遠ざかる位
置にある(b)の検出電圧は、(a)に比べて振幅はA
からA´へと減衰し、伝播に要する遅れ時間τが発生し
て位置がずれる。このような関係が生ずることに基き、
検出コイル3に誘起される電圧を励磁コイル4への印加
電圧と比較することにより、可動体6の位置を検出する
ことができるのである。
2. Description of the Related Art As a linear position sensor of this type, a digital type includes a magnescale, and an analog type includes a magnetoelastic wave propagation system. Of these, the latter type of magneto-elastic wave propagation method is often used when quick response, operability, and simplicity are generally required rather than accuracy. For example, the configuration shown in FIG. There is.
That is, the elongated magnetic body 1 having magnetostriction is arranged on the movable body 6 in parallel with the moving direction thereof.
The exciting coil 4 is provided at one end of the movable body 6 and the detection coil 3 is provided on the movable body 6. Excitation coil 4
When an alternating current is applied to, a magnetic elastic wave is generated in the magnetic body 1,
This propagates to the other end of the magnetic body 1. In this case, since the magnetoelastic wave propagates in the magnetic body 1 at 4 to 5 km / s,
The phase delay and the amplitude attenuation increase as the distance from the exciting coil 4 increases. That is, the magnetoelastic wave observed at the unspecified position of the magnetic body 1 has different amplitude and phase depending on the observation position. On the other hand, a voltage is induced in the detection coil 3 by the magnetoelastic wave propagating in the magnetic body 1.
Therefore, for example, in FIG. 4, the detected voltages at both positions (a) corresponding to the same position as the exciting coil and (b) corresponding to a position separated along the magnetic body 2 by about half of the whole are compared. Then, it becomes as shown corresponding to FIGS. 5A and 5B, respectively. That is, the detected voltage in (b) at a position away from the exciting coil 4 has an amplitude of A compared to (a).
From A to A ′, a delay time τ required for propagation occurs, and the position shifts. Based on the occurrence of such a relationship,
By comparing the voltage induced in the detection coil 3 with the voltage applied to the exciting coil 4, the position of the movable body 6 can be detected.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記し
たような従来構成のものは、磁気弾性波が伝播距離の増
加に伴って指数関数的に減衰するため、長距離の伝播が
望めず検出範囲が広く取れなくなり、従って、前述した
ように広い範囲で精度の良い検出が行えないという問題
があった。これは、磁性体1には材質的な限界があるた
め、励磁電流を増加させても磁性体1が飽和現象を起こ
して磁化が比例して増加しなくなることによるものであ
り、単に励磁コイル4への入力を増加させてもそれに比
例して伝播距離つまり検出距離を増やすことができない
ことを意味している。また検出コイル3を可動部分であ
る可動体6に設けているため、検出信号の処理が複雑と
なる問題もある。
However, in the conventional structure as described above, the magnetoelastic wave decays exponentially as the propagation distance increases, so long-distance propagation cannot be expected and the detection range is small. Therefore, there is a problem in that the detection cannot be performed in a wide range, and therefore, accurate detection cannot be performed in a wide range as described above. This is because the magnetic body 1 has a material limit, and even if the exciting current is increased, the magnetic body 1 causes a saturation phenomenon and the magnetization does not increase proportionally. It means that the propagation distance, that is, the detection distance cannot be increased in proportion to the increase of the input to the. Further, since the detection coil 3 is provided on the movable body 6 which is a movable portion, there is a problem that the processing of the detection signal becomes complicated.

【0004】本発明は、上記事情に鑑みてなされたもの
で、その目的は、磁気弾性波伝播方式の利点を生かしな
がら簡単な構成で広い範囲に渡って可動体の位置を精度
良く検出することができる直線位置センサを提供するに
ある。
The present invention has been made in view of the above circumstances, and an object thereof is to accurately detect the position of a movable body over a wide range with a simple structure while taking advantage of the magnetoelastic wave propagation method. It is to provide a linear position sensor capable of

【0005】[0005]

【課題を解決するための手段】本発明の直線位置センサ
は、磁歪を有し長尺状をなす磁性体と、所定間隔を存し
て配置され、夫々前記磁性体に対して位相が反転した磁
気弾性波を発生させる複数個の励磁手段と、これら励磁
手段と同じ位置に配置され、前記励磁手段により発生さ
れた磁気弾性波を検出する検出手段と、前記磁性体の長
手方向に沿って移動可能に配置され、磁性体に対向する
ように磁石を付設した可動体とを具備して構成したとこ
ろに特徴を有する。
A linear position sensor of the present invention is arranged with a long distance between a magnetic body having magnetostriction and a long shape, and a phase is inverted with respect to each of the magnetic bodies. A plurality of exciting means for generating a magnetoelastic wave, a detecting means arranged at the same position as these exciting means for detecting the magnetoelastic wave generated by the exciting means, and moving along the longitudinal direction of the magnetic body. It is characterized in that it is configured so as to include a movable body that is disposed so as to be possible and is provided with a magnet so as to face the magnetic body.

【0006】[0006]

【作用】本発明の直線位置センサによれば、複数個の励
磁手段に励磁電流を与えると、磁性体には磁気弾性波が
生起され、しかも隣り合う励磁手段との間に生ずる磁気
弾性波が互いに位相が反転していることにより、一定の
条件で干渉し合うので、例えば両者の振幅が同じであれ
ば、ちょうど中央部で振幅がゼロになり、且つ励磁手段
を設けた位置ではピークとなるような分布状態が得られ
る。励磁手段と同じ位置に設けた検出手段は、励磁手段
より伝播して来た弾性波を検出し電圧に変換するが、前
記の状態では弾性波が相殺し合うため電圧が誘起されな
い。しかし、可動体に付設した磁石は磁性体にバイアス
磁界を加えるため、弾性波がその位置で遮断ないしは減
衰されて、両側から検出部に伝播する弾性波のバランス
が崩れ、検出手段に電圧が誘起される。この電圧は、可
動体の位置と一対一の対応を持つため可動体の位置を求
めることができる。
According to the linear position sensor of the present invention, when an exciting current is applied to a plurality of exciting means, a magnetic elastic wave is generated in the magnetic body, and a magnetic elastic wave generated between adjacent exciting means is generated. Since the phases are opposite to each other, they interfere with each other under certain conditions. For example, if the amplitudes of both are the same, the amplitude will be zero at the center, and will be the peak at the position where the excitation means is provided. Such a distribution state is obtained. The detecting means provided at the same position as the exciting means detects the elastic waves propagating from the exciting means and converts them into a voltage, but in the above-mentioned state, the elastic waves cancel each other out, so that the voltage is not induced. However, since the magnet attached to the movable body applies a bias magnetic field to the magnetic body, the elastic wave is blocked or attenuated at that position, the balance of the elastic wave propagating from both sides to the detection section is lost, and a voltage is induced in the detection means. To be done. Since this voltage has a one-to-one correspondence with the position of the movable body, the position of the movable body can be obtained.

【0007】[0007]

【実施例】以下、本発明の一実施例について図面を用い
て説明する。図1は直線位置センサの全体の構成を示し
ている。移動可能に配置された可動体6には磁石5が付
設されており、磁石は永久磁石(電磁石でも良い)を用
いている。この可動体6の移動位置に対応して磁歪を有
する長尺状の磁性体1が非接触で配置されている。磁性
体1は例えばFe系のアモルファス薄帯等の材料からな
る。そしてこの磁性体1の両端部に夫々位置して励磁手
段たる励磁コイル4a,4bが配置され、これらは磁性
体1に対して生起させる磁気弾性波の位相を反転させる
ように逆接続状態で直列にして励磁源となる交流電源7
の両端子間に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the overall configuration of the linear position sensor. A magnet 5 is attached to a movable body 6 that is movably arranged, and a permanent magnet (or an electromagnet may be used) is used as the magnet. The elongated magnetic body 1 having magnetostriction is arranged in a non-contact manner corresponding to the moving position of the movable body 6. The magnetic body 1 is made of a material such as Fe-based amorphous ribbon. Exciting coils 4a and 4b serving as exciting means are arranged at both ends of the magnetic body 1, and these are connected in series in reverse connection so as to invert the phase of the magnetoelastic wave generated in the magnetic body 1. AC power supply 7 which becomes the excitation source
Is connected between both terminals.

【0008】また励磁コイル4a,4bと同じ位置に検
出手段たる検出コイル3a,3bが配置されており、こ
れらは直列に接続されて端子c−dが引き出されてい
る。この検出コイル3a,3bは励磁コイル4a,4b
と同軸状に配置してモールド成形して構成することもで
きる。次に本実施例の作用について説明する。
Further, detection coils 3a and 3b as detection means are arranged at the same positions as the excitation coils 4a and 4b, and these are connected in series and terminals c-d are drawn out. The detection coils 3a and 3b are excitation coils 4a and 4b.
It may be arranged coaxially with and molded. Next, the operation of this embodiment will be described.

【0009】交流電源7から励磁コイル4a,4bに対
して励磁周波数fの電流を与えると、同一周波数の磁気
弾性波が磁性体1に発生する。そしてこの磁気弾性波は
互いに位相が反転しているので検出コイル3a,3bで
磁気弾性波が通過した際に誘起される電圧も互いに位相
が反転することになる。従って、直列に接続した検出コ
イル3a,3bの端子c−d間には、弾性波の振幅の差
による誘起電圧分のみ現われる。励磁コイル4a,4b
のコイル巻数を等しくすると発生する弾性波も同じ振幅
を持つため、誘起電圧も等しくなり、検出コイル端子c
−d間には電圧が誘起されないことになる。しかし、可
動体6が図中の可動範囲(励磁コイル4a,4b間)内
に存在すると、可動体6に取付られた磁石5の生じる直
流磁界により磁性体1が局部的にバイアスを受ける形と
なり、その部分で弾性波が遮断ないしは減衰されること
になる、この効果により、夫々の検出コイル3a,3b
で生じる電圧の振幅には差が生じ、検出コイル端子c−
d間には電圧が誘起される。この電圧の位相と振幅は、
磁石5のバイアスを受ける位置すなわち可動体6の位置
により変化し、その位置と一対一の対応を示す。
When a current having an excitation frequency f is applied from the AC power supply 7 to the excitation coils 4a and 4b, magnetoelastic waves of the same frequency are generated in the magnetic body 1. Since the phases of the magnetoelastic waves are opposite to each other, the voltages induced when the magnetoelastic waves pass through the detection coils 3a and 3b are also opposite to each other. Therefore, between the terminals cd of the detection coils 3a and 3b connected in series, only the induced voltage component due to the difference in the amplitude of the elastic wave appears. Exciting coils 4a, 4b
When the number of coil turns is equal, the generated elastic waves also have the same amplitude, so the induced voltages are also equal and the detection coil terminal c
No voltage is induced between −d. However, when the movable body 6 exists within the movable range (between the exciting coils 4a and 4b) in the figure, the magnetic body 1 is locally biased by the DC magnetic field generated by the magnet 5 attached to the movable body 6. The elastic wave is blocked or attenuated at that portion. Due to this effect, the respective detection coils 3a and 3b
A difference occurs in the amplitude of the voltage generated at the detection coil terminal c-
A voltage is induced between d. The phase and amplitude of this voltage is
It changes depending on the position where the magnet 5 is biased, that is, the position of the movable body 6, and shows a one-to-one correspondence with the position.

【0010】ここで、発明者らが実験的に得た結果につ
いて説明する。励磁コイル4a,4bの間の距離Lをパ
ラメータとして、入力電圧に対する出力電圧の大きさの
比を表すと、図2に示すような結果が得られた。即ち、
この場合距離Lを5cm,8cm及び16cmとし、励磁周波
数を5KHz,励磁コイル4a,4bの巻数を3回,検
出コイル3a,3bの巻数を20回としたときの結果で
ある。この図2から明らかなように、入出力電圧比R
(%)は夫々の場合において距離Lの中間点に可動体6
がある場合ゼロとなり、励磁コイル4a,4bと同じ位
置に可動体6がある場合には、互いに位相が反転し、最
大の振幅となるような結果が得られた。そして距離Lに
対しては、距離Lが短くなる程そのピーク値は大きくな
り、分解能が良くなっているが、従来のものでは距離L
が16cmの場合には電圧の変化を検出することが困難で
あったのに対し、本実施例によれば、距離Lが16cmの
場合であっても十分な分解能が得られ、検出距離が増大
していることがわかる。
Here, the results obtained experimentally by the inventors will be described. When the ratio of the magnitude of the output voltage to the input voltage is expressed using the distance L between the exciting coils 4a and 4b as a parameter, the result shown in FIG. 2 is obtained. That is,
In this case, the distance L is 5 cm, 8 cm and 16 cm, the excitation frequency is 5 KHz, the number of turns of the excitation coils 4a and 4b is 3, and the number of turns of the detection coils 3a and 3b is 20. As is apparent from FIG. 2, the input / output voltage ratio R
(%) Is the movable body 6 at the midpoint of the distance L in each case.
When the movable body 6 is located at the same position as the exciting coils 4a and 4b, the phases are mutually inverted and the maximum amplitude is obtained. With respect to the distance L, the shorter the distance L is, the larger the peak value is and the better the resolution is.
When it was 16 cm, it was difficult to detect the change in voltage. On the other hand, according to the present embodiment, sufficient resolution is obtained even when the distance L is 16 cm, and the detection distance is increased. You can see that

【0011】従って本実施例によれば、可動体6の位置
を広い範囲に渡って非接触で精度良く検出できることに
なる。また本実施例によれば、検出コイル3a,3bを
可動部分である可動体6に設けていないので検出信号の
処理が容易となる。しかも検出コイル3a,3bは固定
して設けたことにより増幅器を接続することができ、検
出コイル3a,3bのリードが長くなってもノイズの影
響を受けることが少なくなって精度の低下を防止でき
る。
Therefore, according to the present embodiment, the position of the movable body 6 can be accurately detected in a non-contact manner over a wide range. Further, according to the present embodiment, since the detection coils 3a and 3b are not provided on the movable body 6 which is a movable portion, the processing of the detection signal becomes easy. Moreover, since the detection coils 3a and 3b are fixedly provided, the amplifier can be connected, and even if the leads of the detection coils 3a and 3b are long, the influence of noise is lessened and the deterioration of accuracy can be prevented. ..

【0012】なお、図2にみられるように、可動体6の
位置と検出電圧との間には一対一の対応があるが、この
関係は一般的に比線形であるため、線形関係に補正した
方が良い。検出電圧は位置に対してEXPONENT
(べき指数)的に変化するため、検出電圧を対数変換す
ればかなりの精度(実験では0.01mm)で線形関係に
補正できる。しかし、ある程度(対数変換より1桁落ち
る)の精度で良い場合は1/2乗変換でも十分である。
これはコスト的な関係が左右し、後者の方がかなり安く
なる。図1では検出コイル端子c−dに補正回路9とし
て1/2乗変換回路を接続し、検出電圧と可動体6の位
置との関係を直線関係に補正した場合を示している。
As shown in FIG. 2, there is a one-to-one correspondence between the position of the movable body 6 and the detected voltage, but since this relationship is generally linear, it is corrected to a linear relationship. It is better to do it. The detection voltage is EXPONENT with respect to the position.
Since it changes like a (power exponent), it can be corrected to a linear relationship with a considerable accuracy (0.01 mm in the experiment) by logarithmically converting the detected voltage. However, if the accuracy of a certain degree (one digit lower than the logarithmic conversion) is sufficient, the 1/2 power conversion is also sufficient.
This depends on the cost relationship, and the latter is considerably cheaper. FIG. 1 shows a case where a 1/2 power conversion circuit is connected as the correction circuit 9 to the detection coil terminals cd to correct the relationship between the detected voltage and the position of the movable body 6 into a linear relationship.

【0013】また上記実施例において、検出コイル3
a,3bや励磁コイル4a,4bに代えて図3に示すよ
うな磁気ヘッド8を用いるようにしても良い。この磁気
ヘッド8はギャップGを有する磁性ヨーク8aにコイル
8bを巻回してなり、励磁や磁気弾性波の検出にホール
素子等の磁気検出素子を用いることもできる。
In the above embodiment, the detection coil 3
Instead of a, 3b and exciting coils 4a, 4b, a magnetic head 8 as shown in FIG. 3 may be used. The magnetic head 8 is formed by winding a coil 8b around a magnetic yoke 8a having a gap G, and a magnetic detection element such as a Hall element can be used for excitation and detection of magnetoelastic waves.

【0014】[0014]

【発明の効果】以上説明したように、本発明の直線位置
センサによれば、磁気弾性波伝播方式における検出手段
を励磁手段と同じ位置に固定して設けたことにより、簡
単な構成で広い範囲に渡って可動体の位置を精度良く検
出することができ、また可動体から信号を取出すための
構成が不要となって信号処理が簡単になるという優れた
効果を奏する。
As described above, according to the linear position sensor of the present invention, the detecting means in the magnetoelastic wave propagation method is fixedly provided at the same position as the exciting means, so that the linear position sensor has a simple structure and a wide range. Therefore, it is possible to detect the position of the movable body with high accuracy, and there is no need for a configuration for taking out a signal from the movable body, so that there is an excellent effect that the signal processing is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の全体構成図FIG. 1 is an overall configuration diagram of an embodiment of the present invention.

【図2】入出力電圧比を実験により求めた結果を示す図FIG. 2 is a diagram showing the results of experimentally determining the input / output voltage ratio.

【図3】本発明の他の実施例を示す要部概略図FIG. 3 is a schematic view of a main part showing another embodiment of the present invention.

【図4】従来例を示す図1相当図FIG. 4 is a view corresponding to FIG. 1 showing a conventional example.

【図5】従来例の検出信号波形を示す図FIG. 5 is a diagram showing a detection signal waveform of a conventional example.

【符号の説明】[Explanation of symbols]

1は磁性体,3a,3bは検出コイル,4a,4bは励
磁コイル,5は磁石,6は可動体,7は交流電源,8a
は磁性ヨーク,8bはコイル,9は補正回路を示す。
1 is a magnetic body, 3a and 3b are detection coils, 4a and 4b are excitation coils, 5 is a magnet, 6 is a movable body, 7 is an AC power supply, and 8a
Is a magnetic yoke, 8b is a coil, and 9 is a correction circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 磁歪を有し長尺状をなす磁性体と、所定
間隔を存して配置され、夫々前記磁性体に対して位相が
反転した磁気弾性波を発生させる複数個の励磁手段と、
これら励磁手段と同じ位置に配置され、前記励磁手段よ
り発生された磁気弾性波を検出する検出手段と、前記磁
性体の長手方向に沿って移動可能に配置され、前記磁性
体に対向するように磁石を付設した可動体とを具備して
なる直線位置センサ。
1. An elongated magnetic body having magnetostriction, and a plurality of exciting means arranged at a predetermined interval to generate magnetoelastic waves whose phases are inverted with respect to the magnetic body. ,
Detecting means arranged at the same position as these exciting means, for detecting the magnetoelastic wave generated by the exciting means, and movably arranged along the longitudinal direction of the magnetic body, so as to face the magnetic body. A linear position sensor comprising a movable body provided with a magnet.
JP20307091A 1991-08-14 1991-08-14 Straight line position sensor Pending JPH0545149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20307091A JPH0545149A (en) 1991-08-14 1991-08-14 Straight line position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20307091A JPH0545149A (en) 1991-08-14 1991-08-14 Straight line position sensor

Publications (1)

Publication Number Publication Date
JPH0545149A true JPH0545149A (en) 1993-02-23

Family

ID=16467851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20307091A Pending JPH0545149A (en) 1991-08-14 1991-08-14 Straight line position sensor

Country Status (1)

Country Link
JP (1) JPH0545149A (en)

Similar Documents

Publication Publication Date Title
KR940004825B1 (en) Position detection device
US5412316A (en) Magnetostrictive linear position detector with axial coil torsional strain transducer
JPH10513549A (en) DC and AC current sensors with sub-loop operated current transformers
JPH11230706A (en) Induction type electronic vernier calipers
US4709210A (en) Magnetoacoustic proximity sensor
JP2000101401A (en) Pulse signal generation method and apparatus
JP3177700B2 (en) Measuring device using magnetostrictive wire
Hristoforou et al. Displacement sensors using soft magnetostrictive alloys
Hristoforou et al. Sensors based on eddy currents in a moving disk
JPH0545149A (en) Straight line position sensor
JP3161133B2 (en) Force detection device
JP2000101400A (en) Pulse signal generation method and apparatus
JPH07306030A (en) Displacement detector
JPH03231107A (en) Linear position sensor
JPH0476422B2 (en)
JPH0678899B2 (en) Displacement detection device
SU1504585A1 (en) Apparatus for inspecting mechanical properties of ferromagnetic articles
JPH0412224A (en) Straight line position sensor
JP2002116242A (en) Magnetic detecting device
JPH0215804B2 (en)
SU1613883A1 (en) Method of measuring induction of magnetic field
JPH03252577A (en) Magnetic field detecting method and magnetic field sensor
SU563653A1 (en) Apparatus for measuring ferromagnetic material coercivity force
SU828137A1 (en) Method of measuring specific loss in electric-sheet steel
SU1147968A1 (en) Device for determination of ferromagnetic material energy diagram