[go: up one dir, main page]

JPH0544155A - Surface treatment of carbon fiber - Google Patents

Surface treatment of carbon fiber

Info

Publication number
JPH0544155A
JPH0544155A JP3219369A JP21936991A JPH0544155A JP H0544155 A JPH0544155 A JP H0544155A JP 3219369 A JP3219369 A JP 3219369A JP 21936991 A JP21936991 A JP 21936991A JP H0544155 A JPH0544155 A JP H0544155A
Authority
JP
Japan
Prior art keywords
carbon fiber
oxygen
treatment
fiber
electrolytic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3219369A
Other languages
Japanese (ja)
Inventor
Tomimori Hosotsubo
富守 細坪
Hiroshi Ejiri
宏 江尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PETOCA KK
Original Assignee
PETOCA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PETOCA KK filed Critical PETOCA KK
Priority to JP3219369A priority Critical patent/JPH0544155A/en
Publication of JPH0544155A publication Critical patent/JPH0544155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

PURPOSE:To obtain a carbon fiber having improved adhesivity to a matrix resin and giving a composite material having excellent interlaminar shear strength by carrying out electrolytic oxidation of a carbon fiber under severe condition and heating the fiber in an oxygen-containing atmosphere. CONSTITUTION:A carbon fiber is subjected to electrolytic oxidation treatment by using the carbon fiber as an anode in an electrolytic solution preferably containing inorganic strong electrolyte such as nitric acid, sulfuric acid and phosphoric acid as an electrolyte at 10-90 deg.C for about 1-10min under a severe condition to pass an electricity of >=50 coulomb/g, especially 150-1,000 coulomb/g through the fiber. The objective carbon fiber having increased surface unevenness is produced by washing the treated fiber with water, drying the fiber and heating in an oxygen-containing atmosphere, thereby eliminating the formed anion or adsorbed gas molecule while essentially leaving the oxygen-containing functional groups on the surface of the carbon fiber. The heat-treatment is carried out at <=350 deg.C under reduced pressure and an oxygen partial pressure of >=1Torr or at <=350 deg.C under ordinary pressure at an oxygen concentration of >=20vol.%. The above treatment is especially effective for the treatment of highly oriented pitch-based carbon fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維の新規な表面
処理方法、特に炭素繊維表面に凹凸を増加させる表面処
理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel surface treatment method for carbon fibers, and more particularly to a surface treatment method for increasing irregularities on the surface of carbon fibers.

【0002】特に、本発明は、複合材料を構成する樹脂
マトリックスや強化繊維との接着性を向上させることの
出来る、炭素繊維の表面処理方法に関する。
[0002] In particular, the present invention relates to a surface treatment method for carbon fibers, which can improve the adhesiveness with a resin matrix or reinforcing fibers constituting a composite material.

【0003】更に、本発明は、PAN系炭素繊維に比較
して電解酸化処理による表面改質が難しいピッチ系炭素
繊維に特に好適な表面処理方法に関する。また、本発明
は、炭素繊維の電解酸化により表面を非晶質化した後、
酸素含有雰囲気で熱処理することにより適切な表面特性
を形成できる、炭素繊維の表面処理方法に関する。
Furthermore, the present invention relates to a surface treatment method which is particularly suitable for pitch-based carbon fibers which are difficult to be surface-modified by electrolytic oxidation treatment as compared with PAN-based carbon fibers. In addition, the present invention, after amorphizing the surface by electrolytic oxidation of carbon fibers,
The present invention relates to a carbon fiber surface treatment method capable of forming appropriate surface characteristics by heat treatment in an oxygen-containing atmosphere.

【0004】また、本発明は、複合材の層間剪断強度の
より優れた補強用炭素繊維を与える、炭素繊維の表面処
理方法に関する。
The present invention also relates to a surface treatment method for carbon fibers, which gives reinforcing carbon fibers having more excellent interlaminar shear strength of the composite material.

【0005】[0005]

【従来の技術】従来から炭素繊維は、その力学的、化学
的、電気的諸特性及び軽量性などにより、各種の用途、
例えば航空、宇宙用構造材料、船舶、自動車、スポーツ
用品などに広く使用されている。
2. Description of the Related Art Conventionally, carbon fiber has been used for various purposes due to its mechanical, chemical and electrical characteristics and lightness.
For example, it is widely used in structural materials for aviation and space, ships, automobiles, sports equipment and the like.

【0006】これらの用途において、炭素繊維は、一般
に該炭素繊維と各種樹脂マトリックスとの複合材料の補
強材として用いられるが、特にその力学的性質を複合材
料に反映させるためには、複合材料を構成する樹脂マト
リックスと炭素繊維との接着性、一体化が重要である。
In these applications, carbon fibers are generally used as a reinforcing material for composite materials of the carbon fibers and various resin matrices. In order to reflect the mechanical properties of the composite materials, the composite materials should be used. The adhesiveness and integration of the constituent resin matrix and the carbon fiber are important.

【0007】ただし、炭素繊維に予め何らかの表面処理
を施してないと、マトリックスに対する接着性が十分で
なく、マトリックスからの繊維の引き抜けを生じ易く、
補強効果を十分に発揮できない。
However, if the carbon fiber is not subjected to any surface treatment in advance, the adhesiveness to the matrix is insufficient and the fiber is easily pulled out from the matrix.
The reinforcing effect cannot be fully exerted.

【0008】その表面処理としては、各種の方法、例え
ば酸化剤による液相酸化法、ヒートクリーニング法、気
相酸化法、ウイスカライジング法や電解酸化法等が知ら
れているが、特に、電解酸化法はその操業性が優れてい
ることから、広く採用されている。
As the surface treatment, various methods are known, for example, a liquid phase oxidation method using an oxidizing agent, a heat cleaning method, a gas phase oxidation method, a whiskerizing method, an electrolytic oxidation method, etc. The method is widely adopted because of its excellent operability.

【0009】しかしながら、従来の電解酸化法では、特
にメソフェーズピッチ系の高弾性率炭素繊維の場合に
は、接着性が悪く、得られた複合材の層間剪断強度が劣
る問題点があると共に、結晶構造が発達しているため
に、従来のPAN系炭素繊維に用いられた条件では表面
処理効果に乏しい問題点があり、このような高弾性率炭
素繊維にも十分に有効である表面処理法、特に電解酸化
法の改善が早急に求められている。
However, in the conventional electrolytic oxidation method, particularly in the case of mesophase pitch type high elastic modulus carbon fiber, there is a problem that the adhesiveness is poor and the interlaminar shear strength of the obtained composite material is inferior, and the crystal is crystallized. Since the structure is developed, there is a problem that the surface treatment effect is poor under the conditions used for the conventional PAN-based carbon fiber, and the surface treatment method which is sufficiently effective for such high elastic modulus carbon fiber, In particular, improvement of the electrolytic oxidation method is urgently required.

【0010】[0010]

【発明が解決しようとする課題】本発明は、炭素繊維、
特に高弾性率のピッチ系炭素繊維の電解酸化による表面
処理効果が乏しくマトリックスに対する接着性が十分で
ない問題点を解決することを目的としている。
DISCLOSURE OF THE INVENTION The present invention provides a carbon fiber,
In particular, the object is to solve the problem that the surface treatment effect of the pitch-based carbon fiber having a high elastic modulus by electrolytic oxidation is poor and the adhesiveness to the matrix is not sufficient.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
を種々検討した結果、炭素繊維の電解酸化処理に、
(イ)黒鉛構造の炭素繊維の表面を非晶質構造に変え
る、苛酷な条件で行う電解酸化工程と、(ロ)その後、
酸素含有雰囲気中で加熱処理して、表面層をクリアにす
る工程からなる複数工程を採用することにより、炭素繊
維の表面に凹凸の増加とOH基などの官能基を効率良く
導入することが可能となることを見出し、本発明を完成
するに至った。
Means for Solving the Problems As a result of various studies on the above problems, the present inventors have found that in electrolytic oxidation treatment of carbon fiber,
(A) An electrolytic oxidation step performed under harsh conditions for changing the surface of the graphite-structured carbon fiber to an amorphous structure, and (b) after that,
By adopting multiple processes consisting of heat treatment in an oxygen-containing atmosphere to clear the surface layer, it is possible to efficiently introduce irregularities and functional groups such as OH groups on the surface of carbon fiber. The present invention has been completed and the present invention has been completed.

【0012】すなわち、本発明は: 炭素繊維を電解酸化により表面処理する方法におい
て、(a) 初めに炭素繊維を陽極としかつ電解液中で5
0c/g以上の電気量を通す苛酷な条件下で電解酸化処
理を行い、(b) 次いで、水洗・乾燥した後に、酸素含
有雰囲気下で加熱処理を行うことを特徴とする、炭素繊
維の表面処理方法であり、さらに、
That is, the present invention is: In a method of surface-treating carbon fibers by electrolytic oxidation, the method comprises: (a) first using carbon fibers as an anode and
Surface of carbon fiber characterized in that electrolytic oxidation treatment is carried out under harsh conditions in which an electric quantity of 0 c / g or more is passed, (b) then, after being washed with water and dried, heat treatment is carried out in an oxygen-containing atmosphere. Processing method, and

【0013】 電解酸化に用いる電解質が硝酸、硫酸
及びリン酸等の無機強電解質である点にも特徴を有し、
また、 加熱処理が350℃以下でかつ減圧下で酸素圧が1
Torr以上で行われるか、或いは350℃以下でかつ
常圧下、酸素濃度約20重量%以上の雰囲気下で行われ
るかの何れかによる点にも特徴を有する。
It is also characterized in that the electrolyte used for electrolytic oxidation is a strong inorganic electrolyte such as nitric acid, sulfuric acid and phosphoric acid,
Also, the heat treatment is performed at 350 ° C or lower and the oxygen pressure is 1 under reduced pressure.
It is also characterized in that it is performed at a temperature of not less than Torr, or at a temperature of 350 ° C. or less and under atmospheric pressure and an oxygen concentration of about 20 wt% or more.

【0014】以下、本発明を詳細に具体的に説明する。
本発明は、基本的には、炭素繊維の表面構造を黒鉛質で
ある高結晶化状態から非晶質状態に変える苛酷な条件下
で電解酸化処理を行い、次いで、酸素含有雰囲気下で常
圧又は減圧下で加熱処理を行うことが重要であり、この
加熱処理により、電解酸化処理で得られた非晶質表面に
残存する陰イオン等の不要成分を、酸素含有雰囲気下で
の常圧又は減圧下での加熱処理により効率良く除去(ク
リア)し、表面の酸素含有官能基のみを実質的に残存さ
せる点に特徴がある。
The present invention will be described in detail below.
The present invention basically performs electrolytic oxidation treatment under harsh conditions in which the surface structure of carbon fiber is changed from a highly crystallized state, which is a graphite, to an amorphous state, and then, under atmospheric pressure in an oxygen-containing atmosphere. Alternatively, it is important to perform heat treatment under reduced pressure, and by this heat treatment, unnecessary components such as anions remaining on the amorphous surface obtained by electrolytic oxidation treatment are treated under atmospheric pressure or under atmospheric pressure. It is characterized in that it is efficiently removed (cleared) by heat treatment under reduced pressure, and only the oxygen-containing functional groups on the surface are substantially left.

【0015】そして、このような特定の複数工程の処理
によって、マトリックス樹脂との接着性の向上に有効
な、炭素繊維表面の凹凸の増加によるアンカー効果増加
と不要成分の除去による、主として酸素含有官能基の導
入とが効率的に果たせるのである。
By such a specific multi-step treatment, the anchor effect is increased due to the increase in the unevenness of the carbon fiber surface, which is effective for improving the adhesiveness with the matrix resin, and the removal of unnecessary components mainly results in the oxygen-containing functional group. The introduction of the group can be efficiently performed.

【0016】本発明の複数工程による表面処理法は、い
ずれのタイプの炭素繊維の電解酸化法にも有利に適用で
きるが、特に結晶構造が発達していて、有効な電解酸化
の難しいとされてきた高配向のピッチ系炭素繊維の電解
酸化処理に有効である。
The multi-step surface treatment method of the present invention can be advantageously applied to any type of electrolytic oxidation method of carbon fibers, but it is said that effective electrolytic oxidation is difficult due to the particularly developed crystal structure. It is effective for electrolytic oxidation treatment of highly oriented pitch-based carbon fiber.

【0017】本発明の方法に有効なピッチ系炭素繊維と
しては、例えば、石炭ピッチ、石油ピッチ等から精製さ
れたメソフェーズピッチを前駆体として製造された高配
向のピッチ系炭素繊維を挙げることができる。
Examples of pitch-based carbon fibers effective for the method of the present invention include highly-oriented pitch-based carbon fibers produced by using mesophase pitch purified from coal pitch, petroleum pitch, etc. as a precursor. ..

【0018】(a) 電解酸化処理;本発明の電解酸化
方法は、例えば、連続法に又はバッチ法などのいずれの
タイプの電解酸化手法にも適用できる。具体的には、バ
ッチ法では、所定の濃度の電解質水溶液を満たした電解
処理槽内に炭素繊維を浸漬させ、該炭素繊維に陽電圧を
印加し、所定量の電流を流して電解酸化処理する。
(A) Electrolytic oxidation treatment: The electrolytic oxidation method of the present invention can be applied to any type of electrolytic oxidation method such as a continuous method or a batch method. Specifically, in the batch method, carbon fibers are immersed in an electrolytic treatment tank filled with an electrolyte aqueous solution having a predetermined concentration, a positive voltage is applied to the carbon fibers, and a predetermined amount of current is passed to perform electrolytic oxidation treatment. ..

【0019】また、連続法では、代表的には特開昭63
−282364号公報に開示の方法、すなわち、電解液
槽から電解液をオーバーフローさせたものを陰・陽の極
とし、該陰極と陽極とを多数交互に並べた上に、該陰・
陽の極の液面の脹れ上がった部分を通して炭素繊維を走
らせ、該炭素繊維が実質的に液槽の縁取りで曲げられな
いようにして、該陰極と陽極との間にある炭素繊維及び
炭素繊維に付着した電解液に直流電流を流して電解酸化
処理する。
Further, in the continuous method, a representative method is JP-A-63 / 63.
The method disclosed in Japanese Patent Laid-Open No. 282364, that is, a method in which an electrolytic solution overflows from an electrolytic solution tank is used as a negative and positive electrode, and a large number of the cathode and the anode are alternately arranged, and
The carbon fibers and carbon between the cathode and the anode are run by running carbon fibers through the swollen portion of the liquid surface of the positive pole so that the carbon fibers are not substantially bent by the edging of the bath. A direct current is applied to the electrolytic solution adhering to the fibers for electrolytic oxidation.

【0020】この場合に、該陰・陽の極の繊維走行方向
の長さを3〜300mm、該陰・陽の極の数を5〜10
0個以下とすることが好ましい。電解酸化処理において
は、電解液として、硝酸、硫酸及び燐酸などの無機酸を
主体とし、必要に応じて少量のギ酸、シュウ酸、酒石酸
などの有機酸、あるいはそれらのアンモニウム塩、カル
シウム塩、アルミニウム塩などの塩類をも組合せた強電
解質の水溶液を用いることが好ましく、無機酸の使用が
より好ましい。
In this case, the length of the negative and positive poles in the fiber running direction is 3 to 300 mm, and the number of the negative and positive poles is 5 to 10 mm.
It is preferable that the number is 0 or less. In the electrolytic oxidation treatment, the electrolytic solution is mainly composed of an inorganic acid such as nitric acid, sulfuric acid and phosphoric acid, and if necessary, a small amount of formic acid, oxalic acid, an organic acid such as tartaric acid, or their ammonium salts, calcium salts and aluminum. It is preferable to use an aqueous solution of a strong electrolyte in which salts such as salts are also combined, and it is more preferable to use an inorganic acid.

【0021】この場合に、特に無機酸を用いると、炭素
繊維表面の黒鉛構造の層間に入り込み易くてその構造を
歪ませると同時に、黒鉛構造自体を破壊し非晶質に変え
る作用を有効に行うと考えられるが、理論的根拠は明確
ではない。
In this case, in particular, when an inorganic acid is used, it easily penetrates into the graphite structure layers on the surface of the carbon fiber and distorts the structure, and at the same time, it effectively destroys the graphite structure itself and changes it to an amorphous state. However, the rationale is not clear.

【0022】さらに、この電解酸化に際し、50c/g
以上の通電気量で行うことが必要であり、このように強
電解質の使用と高通電気量の適用と言う苛酷な条件の設
定により、効率的に炭素繊維表面への凹凸を増加させる
ことができる。
Furthermore, during this electrolytic oxidation, 50 c / g
It is necessary to carry out the above-mentioned amount of electricity passed, and by setting severe conditions such as the use of a strong electrolyte and the application of a high amount of electricity, it is possible to efficiently increase the unevenness on the carbon fiber surface. ..

【0023】なお、通電気量の単位は、炭素繊維1g当
たりに流した電気量(クーロン;c)を表す。ここで、
電解酸化に用いる通電気量は50c/g以上でないと、
炭素繊維表面に十分な凹凸を発現させることができず、
好ましくは50c/g〜1200c/g、より好ましく
は150〜1000c/gが操作上好都合である。
The unit of the amount of electricity flowing represents the amount of electricity (coulomb; c) applied to 1 g of carbon fiber. here,
If the amount of electricity used for electrolytic oxidation is 50 c / g or more,
It is not possible to develop sufficient unevenness on the carbon fiber surface,
It is preferably 50 c / g to 1200 c / g, more preferably 150 to 1000 c / g in terms of operation convenience.

【0024】なお、1200c/gを超えた通電気量で
は、それ以上に通電気量を上げても炭素繊維の表面処理
の面での向上は見込めないし、むしろ処理が強すぎて複
合材としての強度を損なう恐れがある。
When the amount of electricity supplied exceeds 1200 c / g, no improvement in the surface treatment of the carbon fiber can be expected even if the amount of electricity supplied is further increased. May impair strength.

【0025】また、電解酸化に用いる電解質は、水溶液
中の溶質として存在させるのが取扱いなどの面で好まし
いが、必要に応じて少量のジメチルホルムアミド、ジメ
チルアセトアミド、エチルセロソルブなどの親水性有機
溶媒を混合しても良い。電解質の水溶液の濃度は特に制
限されないが、通常0.1〜数10重量%の範囲の量を
用いるのが好ましい。
The electrolyte used for electrolytic oxidation is preferably present as a solute in an aqueous solution from the viewpoint of handling, but if necessary, a small amount of a hydrophilic organic solvent such as dimethylformamide, dimethylacetamide, ethyl cellosolve or the like may be used. You may mix. The concentration of the electrolyte aqueous solution is not particularly limited, but it is usually preferable to use an amount in the range of 0.1 to several tens% by weight.

【0026】処理時間については特に限定されないが、
約1分〜10分間程度が良い。また、処理温度は特に制
限されないが、室温以上、好ましくは10〜90℃が操
作上などの理由で望ましい。
The processing time is not particularly limited,
About 1 to 10 minutes is good. The treatment temperature is not particularly limited, but is preferably room temperature or higher, preferably 10 to 90 ° C. for reasons such as operation.

【0027】(b) 酸素含有雰囲気中での加熱処理:電
解酸化処理(a) に引き続いて、水洗、乾燥した後に、酸
素含有雰囲気中で加熱処理する必要がある。この処理に
より、炭素繊維表面に残存する陰イオン或いはCO、C
2、H2Oなどの吸着ガス分子を除去する。
(B) Heat treatment in an oxygen-containing atmosphere: Following the electrolytic oxidation treatment (a), it is necessary to wash with water and dry, and then heat-treat in an oxygen-containing atmosphere. By this treatment, anions or CO, C remaining on the carbon fiber surface
Adsorbed gas molecules such as O 2 and H 2 O are removed.

【0028】加熱処理温度は350℃以下、好ましくは
200〜300℃の範囲である。350℃以上である
と、炭素繊維表面の酸化が過度に進行し、炭素繊維の引
張強度及び弾性率が低下する。加熱処理時間は特に制限
されないが、通常30分〜5時間、好ましくは1〜2時
間である。
The heat treatment temperature is 350 ° C. or lower, preferably 200 to 300 ° C. When the temperature is 350 ° C. or higher, the surface of the carbon fiber is excessively oxidized, and the tensile strength and elastic modulus of the carbon fiber decrease. The heat treatment time is not particularly limited, but is usually 30 minutes to 5 hours, preferably 1 to 2 hours.

【0029】また、加熱処理は減圧下で行うことが好ま
しい。減圧下で行うと、残存する陰イオンや表面の吸着
ガス分子を効率よく除去できる。圧力は、好ましくは1
Torr以上程度が良く、また圧力は酸素又は酸素含有
気体、例えば空気によってコントロールするのが良い。
The heat treatment is preferably performed under reduced pressure. When it is performed under reduced pressure, the remaining anions and adsorbed gas molecules on the surface can be efficiently removed. The pressure is preferably 1
The pressure is preferably about Torr or higher, and the pressure is preferably controlled by oxygen or an oxygen-containing gas such as air.

【0030】常圧で加熱処理を行う場合の酸素含有雰囲
気としては、酸素含有量が約20容量%以上であること
が必要である。酸素含有量が約20容量%未満の場合に
は、炭素繊維表面の不純物などの不要成分を十分に除去
しがたい。酸素含有雰囲気としては、酸素、酸素リッチ
空気、空気などを挙げることができる。
When the heat treatment is carried out at normal pressure, the oxygen-containing atmosphere must have an oxygen content of about 20% by volume or more. When the oxygen content is less than about 20% by volume, it is difficult to sufficiently remove unnecessary components such as impurities on the carbon fiber surface. Examples of the oxygen-containing atmosphere include oxygen, oxygen-rich air, and air.

【0031】このような特定の表面処理は、炭素繊維表
面に、OH基、COOH基などの酸素含有官能基を実質
的に残存させるが、炭素繊維表面に生成した陰イオン或
いはCO、CO2、H2Oなどの吸着ガス分子を除去する
ものである。これにより、エポキシ樹脂などのマトリッ
クス樹脂との複合材の製造に当たり、炭素繊維との界面
での強度低下を誘発するボイドや硬化不均一部分を極力
なくすることができる。また、この表面処理により、炭
素繊維の表面の凹凸が増加し、そのアンカー効果により
エポキシ樹脂などのマトリックスとの接着強度が向上す
る。
Such a specific surface treatment causes oxygen-containing functional groups such as OH groups and COOH groups to substantially remain on the carbon fiber surface, but the anions formed on the carbon fiber surface or CO, CO 2 , It removes adsorbed gas molecules such as H 2 O. This makes it possible to minimize voids and non-uniform curing, which induce a decrease in strength at the interface with the carbon fibers, in the production of a composite material with a matrix resin such as an epoxy resin. In addition, this surface treatment increases irregularities on the surface of the carbon fiber, and the anchoring effect improves the adhesive strength with a matrix such as an epoxy resin.

【0032】[0032]

【作用】炭素繊維とエポキシ樹脂マトリックスとの複合
材において、樹脂マトリックスとの接着性又は密着性を
向上させるには、炭素繊維の表面の構造を結晶質から非
晶質に変え、表面に凹凸を増加させると同時にその表面
にOH基などのマトリックス樹脂との親和性の高い官能
基を主として導入することが重要であることを、本発明
者らは見出した。
In the composite material of carbon fiber and epoxy resin matrix, in order to improve the adhesiveness or adhesiveness with the resin matrix, the surface structure of the carbon fiber is changed from crystalline to amorphous, and irregularities are formed on the surface. The present inventors have found that it is important to increase the number of OH groups and at the same time mainly introduce functional groups having a high affinity with the matrix resin such as OH groups.

【0033】これらの前提にたって、本発明において
は、(a) 結晶構造の炭素繊維の表面を非晶質構造に変
える、苛酷な条件で行う電解酸化工程と、(b) その
後、酸素含有雰囲気中で加熱処理して、表面層をクリア
にし、かつ表面の凹凸及び酸素官能基を増加させる工程
を採用するに至ったものである。
Based on these assumptions, in the present invention, (a) an electrolytic oxidation step performed under severe conditions for changing the surface of the carbon fiber having a crystalline structure to an amorphous structure, and (b) after that, an oxygen-containing atmosphere In this process, heat treatment is performed to clear the surface layer and increase surface irregularities and oxygen functional groups.

【0034】硝酸などの強電解質液中で50c/g以上
の高通電気量を通す苛酷な条件下での電解酸化(a) は、
炭素繊維表面の黒鉛構造の層間に電解液が入り込み易
く、その構造を歪ませると同時に、黒鉛構造自体を破壊
し、表層構造を酸化し易い非晶質に変える作用・効果が
ある。
The electrolytic oxidation (a) under severe conditions of passing a high electricity amount of 50 c / g or more in a strong electrolyte solution such as nitric acid is
The electrolytic solution easily enters between the layers of the graphite structure on the surface of the carbon fiber to distort the structure, and at the same time, destroys the graphite structure itself and changes the surface structure into an easily oxidizable amorphous structure.

【0035】(b) 酸素含有雰囲気中での加熱処理は、炭
素繊維表面にOH基、COOH基などの酸素含有官能基
を実質的に残存させるが、炭素繊維表面に生成した不純
物、すなわち残存する陰イオン(SO4 2-、NO3 - 等)或
いはCO、CO2、H2Oなどの吸着ガス分子を除去する
ものである。これにより、エポキシ樹脂などのマトリッ
クス樹脂との複合材の製造に当たり、炭素繊維との界面
での強度低下を誘発するボイドや硬化不均一部分を極力
なくすることができる。
(B) The heat treatment in an oxygen-containing atmosphere causes oxygen-containing functional groups such as OH groups and COOH groups to substantially remain on the carbon fiber surface, but the impurities formed on the carbon fiber surface, ie, remain. It removes anions (SO 4 2− , NO 3 etc.) or adsorbed gas molecules such as CO, CO 2 and H 2 O. This makes it possible to minimize voids and non-uniform curing, which induce a decrease in strength at the interface with the carbon fibers, in the production of a composite material with a matrix resin such as an epoxy resin.

【0036】本発明においては、このように複数工程の
処理を組み合わせることにより、炭素繊維、特に電解酸
化により表面改質効果を上げることの難しいピッチ系炭
素繊維にあって、炭素繊維表面にOH基などの酸素含有
官能基を優先的に導入すると共に、非晶質表面に多数の
凹凸を形成出来て、複合材を構成するマトリックス樹脂
との接着性向上効果が極めて優れ、高い層間剪断強度の
複合材を提供できる。
In the present invention, by combining the treatments of a plurality of steps in this manner, carbon fibers, particularly pitch-based carbon fibers in which it is difficult to improve the surface modification effect by electrolytic oxidation, have OH groups on the carbon fiber surface. In addition to preferentially introducing oxygen-containing functional groups such as, it is possible to form a large number of irregularities on the amorphous surface, and the effect of improving the adhesiveness with the matrix resin that constitutes the composite material is extremely excellent, and a composite with high interlaminar shear strength. We can provide wood.

【0037】[0037]

【実施例】本発明を以下の実施例により具体的に説明す
るが、それらは本発明の範囲を制限しない。なお、実施
例に用いた各実験値の測定は、以下に従って行われた。
The present invention is illustrated by the following examples, which do not limit the scope of the invention. The measurement of each experimental value used in the examples was performed according to the following.

【0038】 複合材の層間剪断強度:得られた複合
材をASTM D2344に準じて測定した値である。 炭素繊維のO/C比:得られた炭素繊維の表面を光
電子分光法(ESCA)により分析して得た炭素と酸素
の原子数の比である。
Interlaminar Shear Strength of Composite Material: A value obtained by measuring the obtained composite material according to ASTM D2344. O / C ratio of carbon fiber: The ratio of the number of carbon atoms and the number of oxygen atoms obtained by analyzing the surface of the obtained carbon fiber by photoelectron spectroscopy (ESCA).

【0039】 I1350/I1580:レーザーラマン分光
分析法により測定したスペクトルの1350cm- 付近
(乱層構造炭素)のバンドと1580cm- 付近(黒鉛
構造炭素)のバンドのピーク強度比で、炭素繊維表面の
黒鉛化度と配向度を示す尺度である。
I 1350 / I 1580 : The peak intensity ratio of the band around 1350 cm (turbulent structure carbon) and the band around 1580 cm (graphite structure carbon) in the spectrum measured by the laser Raman spectroscopy. It is a scale showing the degree of graphitization and the degree of orientation.

【0040】 凹凸度:実測繊維径を用いて算出した
比表面積(平滑表面積)とクリプトンガス吸着によるB
ET法を用いて測定した実測表面積の比により表す。炭
素繊維表面の凹凸の程度を示す尺度である。
Concavity / convexity: B by specific surface area (smooth surface area) calculated using measured fiber diameter and krypton gas adsorption
It is represented by the ratio of the measured surface area measured using the ET method. It is a scale showing the degree of unevenness of the carbon fiber surface.

【0041】[0041]

【実施例1〜3及び比較例1〜3】市販のメソフェーズ
系炭素繊維カーボニックHM−50(直径10μ、強度
302kg/mm2 、弾性率50,000kgf/mm
2 )の炭素繊維繊維束を陽極とし、0.05N硫酸水溶
液(4%濃度)の電解液を収めた電解槽中に50c/g
の電気量を通電しながら、40℃で5分間電解酸化処理
した。
Examples 1 to 3 and Comparative Examples 1 to 3 Commercially available mesophase carbon fiber carbonic HM-50 (diameter 10 μ, strength 302 kg / mm 2 , elastic modulus 50,000 kgf / mm
2 ) Carbon fiber fiber bundle is used as an anode and 50c / g in an electrolytic cell containing 0.05N sulfuric acid aqueous solution (4% concentration).
While conducting the electricity amount of, the electrolytic oxidation treatment was performed at 40 ° C. for 5 minutes.

【0042】次いで、水洗し、赤外線ヒーターで乾燥し
た後に、アルミ性のボビンに巻取り、そのボビンをステ
ンレスの容器に密閉し、10-3torr程度まで減圧し
た。その後、300℃まで昇温し、2torrになるよ
うに酸素を導入し、器内圧力をコントロールしながら約
1時間の処理を行なった。
Next, after washing with water and drying with an infrared heater, the bobbin was wound on an aluminum bobbin, and the bobbin was sealed in a stainless steel container and depressurized to about 10 -3 torr. Then, the temperature was raised to 300 ° C., oxygen was introduced so that the pressure was 2 torr, and the treatment was performed for about 1 hour while controlling the pressure inside the vessel.

【0043】この減圧加熱処理により、約1重量%の目
付け減少が見られた。この表面処理糸をエポキシ樹脂
(シェル化学(株)製エピコート828/BF3 ・メタ
ノールアミン錯体)の50重量%アセトン溶液に含浸
し、乾燥し、金型内に積層し、加圧硬化して強化積層体
を得た。
By this reduced-pressure heat treatment, a reduction in unit weight of about 1% by weight was observed. This surface-treated yarn is impregnated with a 50 wt% acetone solution of an epoxy resin (Epicoat 828 / BF 3 · methanolamine complex manufactured by Shell Chemical Co., Ltd.), dried, laminated in a mold, and pressure-cured to strengthen it. A laminated body was obtained.

【0044】さらに、電解酸化の通電気量を種々変更
し、また酸性電解質の代わりにアルカリ性電解質を電解
液として用いて、実施例1と同様の操作で実施例2〜3
及び比較例1〜4の実験を行い、その結果を実施例1と
共に表1にまとめた。
Furthermore, the amount of electricity for electrolytic oxidation was variously changed, and an alkaline electrolyte was used as the electrolytic solution instead of the acidic electrolyte.
The experiments of Comparative Examples 1 to 4 were performed, and the results are summarized in Table 1 together with Example 1.

【0045】[0045]

【表1】 [Table 1]

【0046】以上の結果、通電気量が50c/g未満の
場合、及びアルカリ性電解質を使用の場合には、層間剪
断強度(ILSS )が9kg/mm2 以上に上がらないこ
とが判る。
From the above results, it is understood that the interlaminar shear strength (ILSS) does not exceed 9 kg / mm 2 when the amount of electricity supplied is less than 50 c / g and when an alkaline electrolyte is used.

【0047】[0047]

【発明の効果】本発明の特定の複数工程の処理法によ
り、炭素繊維表面にマトリックス樹脂との接着性の向上
に有効な、凹凸な表面の増加によるアンカー効果増加と
酸素含有官能基のみを残して不要成分を除去することに
よる、主として酸素含有官能基の導入とが効率的に果た
せるのである。
According to the specific multi-step treatment method of the present invention, the anchor effect is increased and the oxygen-containing functional group is left on the surface of the carbon fiber, which is effective for improving the adhesiveness with the matrix resin. By mainly removing unnecessary components, the introduction of the oxygen-containing functional group can be efficiently performed.

【0048】従って、本発明の表面処理法で得られた炭
素繊維を使用することにより層間剪断強度に優れた複合
材を提供できる。
Therefore, by using the carbon fiber obtained by the surface treatment method of the present invention, a composite material having excellent interlaminar shear strength can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 D06M 11/34 // D06M 101:40 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location D06M 11/34 // D06M 101: 40

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維を電解酸化により表面処理する
方法において、 (a) 初めに炭素繊維を陽極としかつ電解液中で50c
/g以上の電気量を通す苛酷な条件下で電解酸化処理を
行い、(b) 次いで、水洗・乾燥した後に、酸素含有雰
囲気下で加熱処理を行うことを特徴とする、炭素繊維の
表面処理方法。
1. A method of surface-treating carbon fibers by electrolytic oxidation, comprising the steps of: (a) first using carbon fibers as an anode and applying 50 c in an electrolytic solution.
Surface treatment of carbon fiber, characterized in that electrolytic oxidation treatment is carried out under severe conditions of passing an electricity amount of / g or more, and (b) then, after washing with water and drying, heat treatment is carried out in an oxygen-containing atmosphere. Method.
【請求項2】 電解酸化に用いる電解質が硝酸、硫酸及
びリン酸等の無機強電解質であることを特徴とする、請
求項1記載の炭素繊維の表面処理方法。
2. The method for surface treatment of carbon fiber according to claim 1, wherein the electrolyte used for electrolytic oxidation is a strong inorganic electrolyte such as nitric acid, sulfuric acid and phosphoric acid.
【請求項3】 加熱処理が350℃以下でかつ減圧下で
酸素圧が1Torr以上で行われるか、或いは350℃
以下でかつ常圧下、酸素濃度約20容量%以上の雰囲気
下で行われることを特徴とする、請求項1記載の炭素繊
維の表面処理方法。
3. The heat treatment is carried out at 350 ° C. or lower and under reduced pressure and oxygen pressure of 1 Torr or higher, or 350 ° C.
The method for surface treatment of carbon fiber according to claim 1, wherein the method is performed below and under normal pressure in an atmosphere having an oxygen concentration of about 20% by volume or more.
JP3219369A 1991-08-06 1991-08-06 Surface treatment of carbon fiber Pending JPH0544155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3219369A JPH0544155A (en) 1991-08-06 1991-08-06 Surface treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3219369A JPH0544155A (en) 1991-08-06 1991-08-06 Surface treatment of carbon fiber

Publications (1)

Publication Number Publication Date
JPH0544155A true JPH0544155A (en) 1993-02-23

Family

ID=16734340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3219369A Pending JPH0544155A (en) 1991-08-06 1991-08-06 Surface treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JPH0544155A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762111A (en) * 1993-08-23 1995-03-07 Toray Ind Inc Heat-resistant composite material
KR100317617B1 (en) * 1999-05-13 2001-12-22 김충섭 Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins
WO2005115915A1 (en) * 2004-05-27 2005-12-08 Mitsubishi Chemical Corporation Fibrous carbon fine particles and production method therefor
CN108486692A (en) * 2018-04-16 2018-09-04 中国科学院宁波材料技术与工程研究所 A kind of processing method and system of high-strength high-modules carbon fibre
CN114197199A (en) * 2021-07-22 2022-03-18 台湾塑胶工业股份有限公司 Manufacturing method of carbon fiber and carbon fiber composite bottle
CN115897241A (en) * 2022-11-17 2023-04-04 陕西天策新材料科技有限公司 High-shear-strength ultrahigh-modulus asphalt-based graphite fiber and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762111A (en) * 1993-08-23 1995-03-07 Toray Ind Inc Heat-resistant composite material
KR100317617B1 (en) * 1999-05-13 2001-12-22 김충섭 Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins
WO2005115915A1 (en) * 2004-05-27 2005-12-08 Mitsubishi Chemical Corporation Fibrous carbon fine particles and production method therefor
CN108486692A (en) * 2018-04-16 2018-09-04 中国科学院宁波材料技术与工程研究所 A kind of processing method and system of high-strength high-modules carbon fibre
CN108486692B (en) * 2018-04-16 2024-01-02 中国科学院宁波材料技术与工程研究所 High-strength high-modulus carbon fiber processing method and system
CN114197199A (en) * 2021-07-22 2022-03-18 台湾塑胶工业股份有限公司 Manufacturing method of carbon fiber and carbon fiber composite bottle
JP2023016745A (en) * 2021-07-22 2023-02-02 臺灣塑膠工業股▲ふん▼有限公司 Method for manufacturing carbon fiber and carbon fiber composite bottle
CN114197199B (en) * 2021-07-22 2024-06-04 台湾塑胶工业股份有限公司 Method for producing carbon fiber and carbon fiber composite bottle
CN115897241A (en) * 2022-11-17 2023-04-04 陕西天策新材料科技有限公司 High-shear-strength ultrahigh-modulus asphalt-based graphite fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5191322B2 (en) Carbon fiber surface treatment method
JPH0544154A (en) Surface treatment of carbon fiber
EP0374680B1 (en) Carbon fibers having modified surfaces and process for preparing the same
JPH0544155A (en) Surface treatment of carbon fiber
JP3755255B2 (en) Carbon fiber and method for producing the same
JPS62276075A (en) Carbon fiber and its production
KR910003351B1 (en) Post-treatment method of carbon fiber
JPH1025627A (en) Acrylic carbon fiber
JP7338176B2 (en) Carbon fiber reinforced vinyl ester resin composition and method for producing the same
JPS62149964A (en) Production of ultrahigh strength carbon fiber
JPH02169763A (en) Surface-improved carbon fiber and production thereof
JP2770038B2 (en) Surface-modified high-elasticity carbon fiber and its manufacturing method
JPH03287860A (en) Production of carbon fiber
JPS60252719A (en) Production of carbon fiber having high elongation
JPH0284527A (en) Treatment of carbon fiber
KR20190084187A (en) Apparatus and method for treating surface of carbon fiber
JPH03227325A (en) Method for modifying surface of carbon fiber
JPH0192471A (en) Post-treatment of carbon fiber
JPH03185181A (en) Method for treating surface of carbon fiber
JPS62149972A (en) Treatment of carbon fiber
JPH02300375A (en) Carbon fiber surface treatment method
JPS62141171A (en) Method for strength enhancing treatment of carbon fiber
JPS61282470A (en) Treatment of carbon fiber
JP3880101B2 (en) Carbon fiber and method for producing the same
JPS62149970A (en) Treatment of carbon fiber