[go: up one dir, main page]

JPH054365B2 - - Google Patents

Info

Publication number
JPH054365B2
JPH054365B2 JP15402783A JP15402783A JPH054365B2 JP H054365 B2 JPH054365 B2 JP H054365B2 JP 15402783 A JP15402783 A JP 15402783A JP 15402783 A JP15402783 A JP 15402783A JP H054365 B2 JPH054365 B2 JP H054365B2
Authority
JP
Japan
Prior art keywords
lactic acid
poly
microparticles
fluorouracil
physiologically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15402783A
Other languages
Japanese (ja)
Other versions
JPS6048923A (en
Inventor
Tamotsu Kondo
Masayuki Arakawa
Makoto Asano
Kyoharu Hasegawa
Hiroshi Takayanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15402783A priority Critical patent/JPS6048923A/en
Publication of JPS6048923A publication Critical patent/JPS6048923A/en
Publication of JPH054365B2 publication Critical patent/JPH054365B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)

Description

【発明の詳細な説明】 本発明は、生体分解性ポリ−L−乳酸を用いた
相分離法による微小粒子の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing microparticles by a phase separation method using biodegradable poly-L-lactic acid.

更に詳細には生体分解性ポリ−L−乳酸を重合
体材料とし生理活性物質をコア材料とする有機溶
液系からの相分離法による改良された徐放性微小
粒子の製造法に関する。
More specifically, the present invention relates to a method for producing improved sustained-release microparticles using a phase separation method from an organic solution system using biodegradable poly-L-lactic acid as a polymer material and a physiologically active substance as a core material.

被覆材料である重合体の溶液からなる連続相中
に所望の粒度のコア材料を分散させ、前記重合体
に対する非溶剤の添加および/または溶液の冷却
等により重合体をコア材料の周囲に沈澱させる重
合体被覆マイクロカプセルの製法は、有機溶剤系
からの相分離法として知られているが、このよう
な方法は、通常カプセル化粒子間の不都合な凝集
を生じ、粒度のコントロールされた有用な単独の
微小カプセルを得ることは難しかつた。とりわ
け、近年生体分解性を有する高分子をマイクロカ
プセルの被覆物質またはマイクロスフエアのマト
リツクス材料として医療用用途への応用が注目さ
れているが、上記の方法によりマイクロカプセル
を製造しようとしても巨大な軟凝集体を生じマイ
クロカプセルとしては極めて不充分なものであつ
た。
A core material of a desired particle size is dispersed in a continuous phase consisting of a solution of a polymer that is a coating material, and the polymer is precipitated around the core material by adding a non-solvent to the polymer and/or cooling the solution. The preparation of polymer-coated microcapsules is known as a phase separation method from an organic solvent system, but such methods usually result in undesirable agglomeration between the encapsulated particles and do not provide useful single particles with controlled particle size. It was difficult to obtain microcapsules. In particular, in recent years, the application of biodegradable polymers to medical applications as coating materials for microcapsules or matrix materials for microspheres has attracted attention. This produced soft aggregates and was extremely unsatisfactory as a microcapsule.

このような凝集を抑制する方法として、ポリ−
D,L−乳酸を用いる−40〜−100℃の極低温で
の相分離法が提案されているが(特開昭54−
55717号)、この方法によつてもマイクロカプセル
またはマイクロスフエアの凝集化傾向は完全には
解決されず、かつ相対的に低分子量のポリ乳酸、
または乳酸共重合体等を用いる場合ではすべて軟
凝集体を生じ所望のマイクロカプセルは得られな
い。
As a method to suppress such aggregation, poly-
A phase separation method using D,L-lactic acid at an extremely low temperature of -40 to -100°C has been proposed (Japanese Patent Application Laid-Open No. 1989-1999).
55717), this method does not completely solve the tendency of microcapsules or microspheres to agglomerate, and relatively low molecular weight polylactic acid,
Alternatively, when a lactic acid copolymer or the like is used, soft aggregates are formed and the desired microcapsules cannot be obtained.

他方、生体分解性高分子を被覆物質としてまた
はコア材料との均質混合物として微小粒子を生成
する方法として、生体分解性高分子を溶解した、
例えば塩化メチレン、ベンゼンなどの低沸点溶剤
に、コア物質を溶解または分散させ、これをゼラ
チン、キトーサンなどの保護コロイド物質の水溶
液に分散させ、系を昇温させることにより溶剤を
揮発させて微小粒子を得るいわゆる「液中乾燥法
の応用も考えられる。しかしこの方法では一般的
にかなりの水溶性を有するコア材料は水層に流出
し、生体分解性高分子でうまく被覆または混合さ
れず目的の微小粒子を得ることはできなかつた。
On the other hand, as a method of producing microparticles with a biodegradable polymer as a coating material or as a homogeneous mixture with a core material, biodegradable polymers are dissolved,
For example, a core substance is dissolved or dispersed in a low-boiling point solvent such as methylene chloride or benzene, and this is dispersed in an aqueous solution of a protective colloid substance such as gelatin or chitosan.The solvent is evaporated by raising the temperature of the system to form microparticles. It is also possible to apply the so-called "in-liquid drying method" to obtain the biodegradable polymer. However, in this method, the core material, which is generally quite water-soluble, flows into the water layer and is not properly coated or mixed with the biodegradable polymer, which results in the drying of the desired material. It was not possible to obtain microparticles.

本発明の目的は、製造過程における生成微粒子
の凝集を抑制することができる相分離法による微
粒子製造方法を提供することにある。
An object of the present invention is to provide a method for producing fine particles using a phase separation method that can suppress aggregation of produced fine particles during the manufacturing process.

本発明者等は生体分解性高分子を被覆またはマ
トリツクス材料とし、生理活性物質をコア材料と
する有機溶液系からの相分離法による微小粒子の
製造法について鋭意検討した結果、ポリ−L−乳
酸を用いることにより凝集傾向を抑制して所望の
微小粒子を製造しうることを見出し本発明に到達
した。
The present inventors have conducted intensive studies on a method for producing microparticles using a phase separation method from an organic solution system using a biodegradable polymer as a coating or matrix material and a physiologically active substance as a core material, and found that poly-L-lactic acid The present inventors have discovered that it is possible to suppress the agglomeration tendency and produce desired microparticles by using the following methods.

本発明の微粒子の製造方法は生理活性物質の微
小粒子を相分離法によつて製造するに当り、ポリ
−L−乳酸を被覆材料とし、ポリ−L−乳酸に対
する良溶媒に不溶な生理活性物質をコア材料とす
ることを特徴とするものである。
The method for producing microparticles of the present invention involves producing microparticles of a physiologically active substance by a phase separation method, using poly-L-lactic acid as a coating material, and using a physiologically active substance that is insoluble in a good solvent for poly-L-lactic acid. The core material is:

具体的には、本発明の微粒子の製造方法はポリ
−L−乳酸をジクロルメタン、クロロホルムまた
はトルエンなどに代表される良溶剤に溶解させ、
このなかに上記溶剤に不溶な生理活性物質を分散
させ、ポリ−L−乳酸に対する貧溶剤としてのn
−パラフインを加えてコアセルベーシヨンを正起
させ、ついで冷却してポリ−L−乳酸のコアセル
ベートを硬化させるものである。
Specifically, the method for producing fine particles of the present invention involves dissolving poly-L-lactic acid in a good solvent such as dichloromethane, chloroform, or toluene,
In this, a physiologically active substance insoluble in the above solvent is dispersed, and n is used as a poor solvent for poly-L-lactic acid.
- Paraffin is added to normalize the coacervation and then cooled to harden the coacervate of poly-L-lactic acid.

本発明において用いられるポリ−L−乳酸はク
ロロホルム中での固有粘度が0.3〜3.0のものが好
ましく、特に1.0〜1.5のものが好ましい。ポリ−
L−乳酸の固有粘度が0.3未満ではTgが低いため
軟化凝集傾向が認められ、又3.0を上廻わるもの
は、一般の重合条件下では得ることが難しく、且
つ、溶剤に対する溶解性が低下する。
The poly-L-lactic acid used in the present invention preferably has an intrinsic viscosity of 0.3 to 3.0 in chloroform, particularly preferably 1.0 to 1.5. poly
If the intrinsic viscosity of L-lactic acid is less than 0.3, it tends to soften and agglomerate due to its low Tg, while if it is more than 3.0, it is difficult to obtain under general polymerization conditions and its solubility in solvents decreases.

この方法により、生理活性物質とりわけ水溶性
を有する生理活性物質をポリ−L−乳酸で効率的
に被覆することが可能となり、生理活性物質の徐
放化に大きな効果を有する。
This method makes it possible to efficiently coat a physiologically active substance, particularly a water-soluble physiologically active substance, with poly-L-lactic acid, and has a great effect on sustained release of the physiologically active substance.

ポリ−乳酸は、生体分解性高分子として、公知
であるが前述したように、ポリ−D,L−乳酸を
用いた場合に於いては、本発明のポリ−L−乳酸
を被覆またはマトリツクス材とする微小粒子の製
造法の如き、温和な条件下では凝集傾向のない微
小粒子の生成はまつたく期待できない。
Poly-lactic acid is known as a biodegradable polymer, but as mentioned above, when poly-D,L-lactic acid is used, the poly-L-lactic acid of the present invention can be coated or used as a matrix material. The production of microparticles without a tendency to agglomerate cannot be expected under mild conditions, such as in the method for producing microparticles.

このように本発明のポリ−L−乳酸を被覆また
はマトリツクス材料として用いた微小粒子は0℃
〜室温の温和な条件下で貧溶剤を加えることによ
り、凝集のない微小粒子を与え、かつ、ポリ−L
−乳酸が生理活性物質をちみつに被覆し、徐放性
にすぐれたものである。
In this way, the microparticles coated with poly-L-lactic acid of the present invention or using it as a matrix material can be heated at 0°C.
~ By adding a poor solvent under mild conditions at room temperature, fine particles without agglomeration can be obtained, and poly-L
- Lactic acid coats the physiologically active substance in honey, providing excellent sustained release properties.

また、本発明の微小粒子の製造に於ける好まし
い、態様としては、 (1) ポリ−L−乳酸に対する良溶媒例えばトルエ
ン、キシレン、クロロホルム、塩化メチレンな
どにポリ−L−乳酸を予め溶解させ、 (2) 生理活性物質の微粉末を分散あるいは溶解さ
せ、 (3) 攪拌下に、貧溶剤としてのパラフイン類を添
加したのち、氷冷してコアセルベートの析出を
行なわせ、 (4) コアセルベートが析出沈降したのち上澄み液
を捨て、アセトンのなかでコアセルベートを再
分散させ、 (5) アセトン上澄みを捨て、パラフイン類を再び
加えて、コアセルベートを固化させ、ついで、 (6) 出来あがつた微小粒子を濾過あるいはデカン
テーシヨンで取り出して風乾あるいは減圧乾燥
下に残留溶剤を除き、乾燥微小粒子とする。
Further, preferred embodiments for producing the microparticles of the present invention include (1) dissolving poly-L-lactic acid in advance in a good solvent for poly-L-lactic acid, such as toluene, xylene, chloroform, methylene chloride, etc.; (2) Disperse or dissolve the fine powder of the physiologically active substance, (3) add paraffin as a poor solvent while stirring, cool on ice to precipitate coacervate, (4) precipitate coacervate. After sedimentation, the supernatant liquid is discarded and the coacervate is redispersed in acetone. (5) The acetone supernatant liquid is discarded and paraffins are added again to solidify the coacervate. Then, (6) the resulting microparticles are dispersed. The particles are taken out by filtration or decantation, and the residual solvent is removed by air drying or vacuum drying to obtain dry fine particles.

生理活性物質をポリ−L−乳酸溶液に分散する
に際し、親油性の界面活性剤たとえばソルビタ
ン酸エステル類などを加えて分散性を高めるこ
ともできる。
When dispersing a physiologically active substance in a poly-L-lactic acid solution, a lipophilic surfactant such as sorbitanic acid esters can be added to improve dispersibility.

さらに、微小粒子の徐放性を更に高めるため
に、生理活性物質と共にレシチン、キトーサン、
アルギン酸ソーダ、ゼラチン、カン天、カルボキ
シメチルセルロース、アラビアゴムなどの水との
接触によつてゲル化し、徐放性を更に高める、い
わゆるゲル化剤をポリ−L−乳酸のなかに分散さ
せて用いることもできる。
Furthermore, in order to further enhance the sustained release properties of the microparticles, we have added lecithin, chitosan, and other physiologically active substances.
So-called gelling agents, such as sodium alginate, gelatin, agar, carboxymethylcellulose, and gum arabic, which gel when they come into contact with water and further enhance sustained release properties, are used by dispersing them in poly-L-lactic acid. You can also do it.

本発明において使用されるコア材料としては各
種の生理活性物質例えば各種の殺虫剤、殺菌剤、
除草剤、殺ダニ剤、フエロモン、昆虫ホルモン、
植物生長調節剤などの農薬があげられるがとくに
好ましい態様として用いられるコア材料は制ガン
剤であり、例えば5−フロロウラシル、1−(2
−テトラヒドロフリル)−5−フロロウラシル、
1−ヘキシルカルバモイル−5−フロロウラシ
ル、マイトマイシン−C、アドレアマイシン、カ
ルチノフイリン、ブレオマイシン、シタラビン、
カルムスチン、ニムスチンなどがあげられ、更に
好適なコア材料としては、水溶性が大きく、副作
用も大きい5−フロロウラシル、マイトマイシン
−Cが挙げられる。
The core material used in the present invention includes various physiologically active substances such as various insecticides, fungicides,
Herbicides, acaricides, pheromones, insect hormones,
Examples include agricultural chemicals such as plant growth regulators, but in a particularly preferred embodiment, the core material used is an anticancer agent, such as 5-fluorouracil, 1-(2
-tetrahydrofuryl)-5-fluorouracil,
1-hexylcarbamoyl-5-fluorouracil, mitomycin-C, adreamycin, carcinophilin, bleomycin, cytarabine,
Examples include carmustine and nimustine, and more suitable core materials include 5-fluorouracil and mitomycin-C, which have high water solubility and have large side effects.

実施例 1 予め、平均粒子径が50μとなるように粉砕した
5−フロロウラシル(三井東圧化学製)0.5gを
ポリ−L−乳酸〔固有粘度値(η)=0.85(クロロ
ホルム中で測定)〕の/W/V%のジクロロメタ
ン溶液30mlに攪拌しながら室温で分散させた。攪
拌下に33mlのn−ヘプタンを加えたのち静置氷冷
する。下層にコアセルベートに被覆された5−フ
ロロウラシルが沈澱する。
Example 1 0.5 g of 5-fluorouracil (manufactured by Mitsui Toatsu Chemical Co., Ltd.), which was pre-pulverized to an average particle size of 50 μm, was added to poly-L-lactic acid [intrinsic viscosity value (η) = 0.85 (measured in chloroform)] ] was dispersed at room temperature with stirring in 30 ml of a /W/V% dichloromethane solution. After adding 33 ml of n-heptane while stirring, the mixture was left to cool on ice. 5-fluorouracil coated with coacervate precipitates in the lower layer.

上澄みをデカンテーシヨンで除いたのち、アセ
トン20mlを加え室温で攪拌し再び静置し上澄みを
除く、更に、n−ヘプタン35mlを加えて充分攪拌
しコアセルベートを完全に固化させる。濾過して
5−フロロウラシルがポリ−L−乳酸で被覆され
た微小粒子0.7gを得た。該微小粒子は、凝集傾
向は認められず、白色の微粉状であつた。
After removing the supernatant by decantation, 20 ml of acetone was added, stirred at room temperature, left to stand again, and the supernatant was removed.Furthermore, 35 ml of n-heptane was added and thoroughly stirred to completely solidify the coacervate. After filtration, 0.7 g of microparticles in which 5-fluorouracil was coated with poly-L-lactic acid was obtained. The microparticles showed no tendency to agglomerate and were in the form of white fine powder.

こゝで用いた5−フロロウラシルの結晶の電子
顕微鏡写真(×500)を第1図に、また5−フロ
ロウラシルのポリ−L−乳酸マイクロロカプセル
の電子顕微鏡写真(×500)を第2図に示した。
An electron micrograph (x500) of the crystals of 5-fluorouracil used here is shown in Figure 1, and an electron micrograph (x500) of poly-L-lactic acid microcapsules of 5-fluorouracil is shown in Figure 2. Shown in the figure.

比較例 1 50mlのトルエン中に1.0gのポリ−D,L−乳
酸〔固有粘度値〔η〕=0.53〕の溶液をドライア
イスイソプロパノール浴中で約−65℃に冷却し
た。予め平均粒子径が100μとなるように微粉砕
された5−フロロウラシル0.5gを前記重合体溶
液中に攪拌しながら加えて分散させた。
Comparative Example 1 A solution of 1.0 g of poly-D,L-lactic acid [intrinsic viscosity [η] = 0.53] in 50 ml of toluene was cooled to about -65°C in a dry ice isopropanol bath. 0.5 g of 5-fluorouracil, which had been finely ground in advance to have an average particle size of 100 μm, was added to the polymer solution with stirring and dispersed.

イソプロパノール(150ml)を分散液に最初の
50mlに対して1時間残りの100mlに対して0.5時間
を要して滴下したところ5−フロロウラシルの周
囲にポリ−D,L−乳酸のコアセルベートが析出
した。しかしながらドライアイス浴を除去して系
を徐々に戻したところ−30℃位からコアセルベー
ト同志が軟化凝集をはじめ室温に戻したところで
は完全に軟凝集体となり目的とするポリ−D,L
−乳酸で被覆された5−フロロウラシルの微小粒
子を得ることはできなかつた。
Add isopropanol (150ml) to the dispersion first.
When the solution was added dropwise for 1 hour to 50 ml and 0.5 hour to the remaining 100 ml, coacervate of poly-D,L-lactic acid was precipitated around 5-fluorouracil. However, when the dry ice bath was removed and the system was gradually returned to normal temperature, the coacervates began to soften and aggregate from around -30°C, and when the temperature returned to room temperature, they completely became soft aggregates, producing the desired poly-D, L.
- It was not possible to obtain microparticles of 5-fluorouracil coated with lactic acid.

比較例 2 ポリ−L−乳酸に変えてポリ−D,L−乳酸
(固有粘度値〔η〕=0.71)を用いた以外は実施例
1と同様に処理した。最初のn−ヘプタンを添加
したところ、析出したポリ−D,L−乳酸が軟化
凝集して目的とする微小粒子は得られなかつた。
Comparative Example 2 The same process as in Example 1 was carried out except that poly-D,L-lactic acid (intrinsic viscosity [η]=0.71) was used instead of poly-L-lactic acid. When the first n-heptane was added, the precipitated poly-D,L-lactic acid softened and agglomerated, and the desired microparticles could not be obtained.

実施例 2 マイトマイシン−Cの微粉体(協和発酵工業
製)1gをL−乳酸をオクタン酸スズ触媒の存在
下に加熱脱水縮合して得たポリ−L−乳酸〔クロ
ロホルム中での固有粘度値〔η〕=0.96〕の1w/
v%のジクロロメタン溶液に攪拌しながら室温で
分散させた。攪拌下に30mlのn−ヘキサンを加え
系を5℃迄攪拌下に冷却すると、マイトマイシン
−Cの周囲にポリ−L−乳酸のコアセルベートが
析出し硬化する。静置して上澄みを約半量除いた
のち粉末レシチン0.2gを加え混合溶解する。更
にアセトン30mlを加えて室温で攪拌し、再び静置
し、レシチンをコアセルベート壁に推積させたの
ち、上澄みを除く。更にn−へキサン50mlを加え
て充分攪拌してコアセルベート膜を完全に固化さ
せたのち、濾過、乾燥してレシチンで変性された
ポリ−L−乳酸で被覆されたマイトマイシン−
C1.2gを得た。該微小粒子は凝集傾向は認められ
ず、紫色の微粉状であつた。
Example 2 Poly-L-lactic acid obtained by heating and dehydrating 1 g of mitomycin-C fine powder (manufactured by Kyowa Hakko Kogyo) with L-lactic acid in the presence of a tin octoate catalyst [intrinsic viscosity value in chloroform] η〕=0.96〕1w/
% dichloromethane solution at room temperature with stirring. When 30 ml of n-hexane is added with stirring and the system is cooled to 5 DEG C. with stirring, coacervate of poly-L-lactic acid precipitates around mitomycin-C and hardens. After leaving to stand and removing about half of the supernatant, add 0.2 g of powdered lecithin and mix and dissolve. Further, 30 ml of acetone is added, stirred at room temperature, and left to stand again to allow lecithin to accumulate on the coacervate wall, and then the supernatant is removed. Further, 50 ml of n-hexane was added and thoroughly stirred to completely solidify the coacervate membrane, followed by filtration and drying to form mitomycin coated with poly-L-lactic acid modified with lecithin.
1.2 g of C was obtained. The microparticles showed no tendency to agglomerate and were in the form of a purple fine powder.

実施例 3 予め平均粒径が50μとなるように粉砕した5−
フロロウラシル0.5gとキトーサン(共和油脂工
業製)の微粉砕品0.5gをポリ−L−乳酸〔クロ
ロホルム中での固有粘度値0.78〕の2w/v%の
ジクロロメタン溶液30mlに攪拌しながら溶解させ
た。これ以降、実施例1と同様に処理して白色の
微粉状微小粒子1.3gを得た。
Example 3 5-G was crushed in advance to have an average particle size of 50μ.
0.5 g of fluorouracil and 0.5 g of finely pulverized chitosan (manufactured by Kyowa Yushi Kogyo) were dissolved in 30 ml of a 2 w/v % dichloromethane solution of poly-L-lactic acid [intrinsic viscosity value in chloroform: 0.78] with stirring. . Thereafter, the same treatment as in Example 1 was carried out to obtain 1.3 g of white fine powder particles.

実施例 4 マイトマイシン−Cに代えて5−フロロウラシ
ルを用いた以外は実施例2と同様に処理してレシ
チンで変性されたポリ−L−乳酸で被覆された5
−フロロウラシルの微小粒子を得た。
Example 4 5 coated with lecithin-modified poly-L-lactic acid treated in the same manner as in Example 2 except that 5-fluorouracil was used in place of mitomycin-C.
- Microparticles of fluorouracil were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1において用いられた5−フロ
ロウラシルの図面代用電子顕微鏡写真(×500)
第2図は実施例1により得られた5−フロロウラ
シルのポリ−L−乳酸マイクロカプセルの図面代
用電子顕微鏡写真(×500)である。
Figure 1 is an electron micrograph (×500) used as a drawing of 5-fluorouracil used in Example 1.
FIG. 2 is an electron micrograph (×500) used as a drawing of the poly-L-lactic acid microcapsules of 5-fluorouracil obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 生理活性物質の微小粒子を相分離法によつて
製造するに当り、ポリ−L−乳酸を被覆材料と
し、ポリ−L−乳酸に対する良溶媒に不溶な生理
活性物質をコア材料とすることを特徴とする微小
粒子の製造方法。 2 クロロホルム中での固有粘度が0.3〜3.0のポ
リ−L−乳酸を用いる特許請求の範囲第1項に記
載の方法。
[Claims] 1. In producing microparticles of a physiologically active substance by a phase separation method, poly-L-lactic acid is used as a coating material, and a physiologically active substance that is insoluble in a good solvent for poly-L-lactic acid is used as a coating material. A method for producing microparticles, characterized in that the core material is used as a core material. 2. The method according to claim 1, which uses poly-L-lactic acid having an intrinsic viscosity of 0.3 to 3.0 in chloroform.
JP15402783A 1983-08-25 1983-08-25 Manufacturing method of microparticles Granted JPS6048923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15402783A JPS6048923A (en) 1983-08-25 1983-08-25 Manufacturing method of microparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15402783A JPS6048923A (en) 1983-08-25 1983-08-25 Manufacturing method of microparticles

Publications (2)

Publication Number Publication Date
JPS6048923A JPS6048923A (en) 1985-03-16
JPH054365B2 true JPH054365B2 (en) 1993-01-19

Family

ID=15575300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15402783A Granted JPS6048923A (en) 1983-08-25 1983-08-25 Manufacturing method of microparticles

Country Status (1)

Country Link
JP (1) JPS6048923A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914084A (en) * 1984-05-09 1990-04-03 Synthetic Blood Corporation Composition and method for introducing heme, hemoproteins, and/or heme-hemoprotein complexes into the body
AU5741590A (en) * 1989-05-04 1990-11-29 Southern Research Institute Improved encapsulation process and products therefrom
US6517859B1 (en) 1990-05-16 2003-02-11 Southern Research Institute Microcapsules for administration of neuroactive agents
ES2185615T3 (en) * 1990-05-16 2003-05-01 Southern Res Inst USE AND CONTROLLED RELEASE OF MICROCAPSULES TO STIMULATE THE GROWTH OF NERVOUS FIBER.
EP0994650B1 (en) 1997-06-30 2004-02-25 Monsanto Technology LLC Microparticles containing agricultural active ingredients
US6562361B2 (en) * 2001-05-02 2003-05-13 3M Innovative Properties Company Pheromone immobilized in stable hydrogel microbeads

Also Published As

Publication number Publication date
JPS6048923A (en) 1985-03-16

Similar Documents

Publication Publication Date Title
Genta et al. A multiple emulsion method to entrap a lipophilic compound into chitosan microspheres
Valo et al. Electrospray encapsulation of hydrophilic and hydrophobic drugs in poly (L‐lactic acid) nanoparticles
Nair et al. Application of chitosan microspheres as drug carriers: a review
KR100420287B1 (en) Process for producing dry water dispersible compositions of microencapsulated pesticides and composition produced therefrom
CN111417459A (en) Novel drug-loaded microsphere and preparation method thereof
CN103783039B (en) A kind of Fluoxastrobin nano-microcapsule with shell-core structure and preparation method thereof
JPH06503259A (en) Method for producing collagen particles and their use as carriers for active substrates
US5858531A (en) Method for preparation of polymer microparticles free of organic solvent traces
JPH054365B2 (en)
Shahgholian et al. Preparation of BSA nanoparticles and its binary compounds via ultrasonic piezoelectric oscillator for curcumin encapsulation
CN115777914A (en) Slow release delivery carrier based on nutritional functional components embedded in debranched starch-zein composite particles and preparation method thereof
CN107412193A (en) Nano hybridization pharmaceutical carrier and its preparation method prepared by the Pickering emulsion template methods using magadiite as emulsifying agent
CN110742065A (en) A kind of nano flower-loaded pesticide preparation and preparation method thereof
JP2004035446A (en) Method for producing microsphere and apparatus for producing the same
Pozarnsky et al. Preparation of monodisperse colloids of biologically active compounds 1. Naproxen
JPH0372097B2 (en)
Te et al. A Study on Chitosan Coated Polycaprolactone (Ch-PCL) microspheres prepared via double emulsion solvent evaporation method
JPH0455610B2 (en)
CN113730374B (en) Sugar beet pectin-based oral sustained-release gel beads and preparation method thereof
KR100690318B1 (en) Method for preparing water-soluble polymer nano hydrogel
US10085948B2 (en) Ionic gelation on solids
Adewuyi et al. Design of nano-chitosans for tissue engineering and molecular release
Das et al. Study of the formation of biodegradable polycaprolactone particles using solvent evaporation method
JP2014223608A (en) Production method of microcapsule and microcapsule
JPH0623202B2 (en) Method for producing chitosan granules