JPH0542138A - Ultrasonic diagnostic device and its calibrating method - Google Patents
Ultrasonic diagnostic device and its calibrating methodInfo
- Publication number
- JPH0542138A JPH0542138A JP20428491A JP20428491A JPH0542138A JP H0542138 A JPH0542138 A JP H0542138A JP 20428491 A JP20428491 A JP 20428491A JP 20428491 A JP20428491 A JP 20428491A JP H0542138 A JPH0542138 A JP H0542138A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- transducer
- echo signal
- data
- ultrasonic diagnostic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、被検体内の音速の不均
一性に基づく超音波パルスの位相歪を補正する超音波診
断装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic diagnostic apparatus for correcting the phase distortion of an ultrasonic pulse due to non-uniformity of sound velocity in a subject.
【0002】[0002]
【従来の技術】従来の超音波診断装置においては多数の
振動子がアレイ状に配列されたプローブを用いて、被検
体内のある領域に送信超音波パルスを集束させて検出さ
れた超音波エコー信号を基に、超音波画像を再構成して
ディスプレイに表示することが行われている。2. Description of the Related Art In a conventional ultrasonic diagnostic apparatus, an ultrasonic echo detected by focusing a transmitted ultrasonic pulse on a certain region in a subject using a probe in which a large number of transducers are arranged in an array. Ultrasonic images are reconstructed based on signals and displayed on a display.
【0003】ここで体内には種々の組織が存在しており
これら各組織の超音波に対する音速は均一でない。この
ため超音波パルスには体内音速の不均一性に基づく位相
歪が生じて画質が低下するので、この位相歪を補正する
必要がある。Here, various tissues exist in the body, and the sonic speeds of these tissues with respect to ultrasonic waves are not uniform. For this reason, the ultrasonic pulse has a phase distortion based on the non-uniformity of the sound velocity in the body, which deteriorates the image quality. Therefore, it is necessary to correct this phase distortion.
【0004】このため従来ではプローブから送信した超
音波パルスを被検体内のある領域に集中させ、その付近
の微小散乱体群からの反射波である超音波エコー信号を
受信口内の各振動子毎に得て、受信振動子群の少なくと
も2つの振動子間の信号で相互相関関数を演算し、被検
体内の音速の不均一性に起因する超音波パルスの伝搬時
間における位相歪を検出してこれを補正するような方法
が行われている(特開昭63−51846号)。For this reason, conventionally, the ultrasonic pulse transmitted from the probe is concentrated in a certain area in the subject, and the ultrasonic echo signal, which is a reflected wave from the minute scatterer group in the vicinity, is transmitted to each transducer in the receiving port. Then, the cross-correlation function is calculated by the signal between at least two transducers of the receiving transducer group, and the phase distortion in the propagation time of the ultrasonic pulse due to the non-uniformity of the sound velocity in the subject is detected. A method for correcting this has been performed (Japanese Patent Laid-Open No. 63-51846).
【0005】[0005]
【発明が解決しようとする課題】前述の従来装置では、
多数の微小散乱体群からの反射信号を用いた相互相関関
数演算により、被検体内の音速の不均一性に起因する超
音波パルスの伝搬時間の歪のデータを得ている。ところ
が、このようにして得られるデータには、そのデータ収
集に用いた超音波送信ビームの形状に依存した誤差が生
じる。In the above-mentioned conventional apparatus,
By the cross-correlation function calculation using the reflection signals from a large number of minute scatterers, the data of the distortion of the propagation time of the ultrasonic pulse due to the non-uniformity of the sound velocity in the subject is obtained. However, the data thus obtained has an error depending on the shape of the ultrasonic transmission beam used for the data collection.
【0006】送信ビームの形状は、それを形成するため
に用いた振動子アレイプローブの口径、焦点距離、周波
数、深さ(開口からの距離)、生体内の超音波減衰特性
など多くの要因によって変化し、しかもこれらの要因を
常に一定にすることは困難である。そのため、前述の伝
搬時間の歪データをより高精度に得るためには、前記の
多くの要因により変化する誤差成分を補正しなければな
らないが、従来技術ではこの点について何ら考慮されて
いなかった。The shape of the transmission beam depends on many factors such as the aperture, focal length, frequency, depth (distance from the aperture) of the transducer array probe used to form it, and ultrasonic attenuation characteristics in the living body. It is difficult to keep these factors constant, changing. Therefore, in order to obtain the above-described propagation time distortion data with higher accuracy, it is necessary to correct the error component that changes due to the many factors described above, but this point was not taken into consideration in the prior art.
【0007】この発明は前述した従来の問題点に鑑みな
されたもので、その目的は、振動子アレイプローブの口
径、焦点距離、周波数、深さ、生体内の超音波減衰特性
といった実際の測定条件による誤差を補正し、常に精度
良く伝搬時間の歪データを得て、結果的に高画質の超音
波画像が得られるようにすることにある。The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide actual measurement conditions such as the aperture of the transducer array probe, the focal length, the frequency, the depth, and the ultrasonic attenuation characteristic in the living body. It is intended to correct the error caused by the above and always obtain the distortion data of the propagation time with high accuracy so that a high-quality ultrasonic image can be obtained as a result.
【0008】[0008]
【課題を解決するための手段】そこでこの発明では、送
信超音波パルスを被検体内のある領域に集束させ、その
付近の微小散乱体群から反射してくる超音波エコー信号
を受信開口内の振動子毎に観測して、各振動子への超音
波エコー信号の到達時刻を検出することによりこれを補
正する超音波診断装置において、各振動子の個々に対応
する校正データが設定されていて、各振動子毎に実際に
検出された到達時刻から該当の校正データを差し引く処
理手段を付加した。Therefore, in the present invention, the transmitted ultrasonic pulse is focused on a certain region in the subject, and the ultrasonic echo signal reflected from the minute scatterer group in the vicinity thereof is received in the receiving aperture. In the ultrasonic diagnostic equipment that observes each transducer and corrects it by detecting the arrival time of the ultrasonic echo signal to each transducer, calibration data corresponding to each transducer is set. A processing means for subtracting the corresponding calibration data from the arrival time actually detected for each transducer is added.
【0009】また、前記の校正データを作成する方法と
して、生体組織と等価な減衰特性の物質中に微小散乱体
をほぼ均一に混ぜたファントムに対し、超音波診断装置
に実装される振動子アレイプローブを用いて前記ファン
トム中のある領域に送信超音波パルスを集束させるとと
もに、その付近の微小散乱体群から反射してくる超音波
エコー信号の伝搬時間の分布を測定し、その測定データ
に基づいて前記校正データを作成するようにした。As a method of creating the above-mentioned calibration data, a transducer array mounted in an ultrasonic diagnostic apparatus is applied to a phantom in which a minute scatterer is almost uniformly mixed in a substance having an attenuation characteristic equivalent to that of living tissue. While focusing the transmission ultrasonic pulse to a certain area in the phantom using a probe, the distribution of the propagation time of the ultrasonic echo signal reflected from the microscatterer group in the vicinity is measured, and based on the measurement data. Then, the calibration data is created.
【0010】[0010]
【作用】図1において、30は振動子アレイプローブを
示す。図のようにアレイ全体が受信用アレイとして使用
され、中央よりのアレイが送信用アレイとして使用され
る。また、31は生体組織と等価な減衰を有する寒天な
どで作られたファントムであり、グラファイトなどの微
小粉体(微小散乱体群32)を均一に混ぜた内部に構造
物などのない均一ファントムと、反射体が微小散乱体群
32ではなくて点反射体33であるファントムの2種類
があるものとして説明を進める。In FIG. 1, reference numeral 30 indicates a transducer array probe. As shown, the entire array is used as a receiving array, and the array from the center is used as a transmitting array. Further, 31 is a phantom made of agar or the like having an attenuation equivalent to that of a living tissue, and is a uniform phantom in which fine powder (fine scatterer group 32) such as graphite is evenly mixed and has no structure inside. , The phantom in which the reflector is not the minute scatterer group 32 but the point reflector 33 will be described.
【0011】アレイプローブ30を用い、微小散乱体群
32だけを含んだファントム中のある領域に送信超音波
パルスを集束させ、その付近の微小散乱体群32から反
射してくる超音波パルスの伝搬時間の分布を測定した場
合、図1の実線で示す分布となる。同様にして、ある位
置に限定された点反射体33だけを含んだファントムに
より測定を行うと、超音波パルスの伝搬時間の分布は図
1の点線のようになる。The array probe 30 is used to focus the transmitted ultrasonic pulse on a certain region in the phantom containing only the microscatterer group 32, and the propagation of the ultrasonic pulse reflected from the microscatterer group 32 in the vicinity thereof. When the time distribution is measured, the distribution shown by the solid line in FIG. 1 is obtained. Similarly, when the measurement is performed by using the phantom including only the point reflector 33 limited to a certain position, the distribution of the propagation time of the ultrasonic pulse is as shown by the dotted line in FIG.
【0012】図1のように、反射体が微小散乱体群32
の場合と、点反射体33の場合とでは、検出された伝搬
時間の開口上の分布は異なる。さらに、微小散乱体群3
2による測定において、その中心の位置に点反射体33
を置いた場合との伝搬時間の分布の差が送信ビーム形状
によって異なり、送信ビームをシャープにすればするほ
ど点反射体33の場合に近づく傾向がある。また、この
ようなデータは、アレイプローブ30と均一ファントム
31との間に何らの不均一層(均一ファントム31と音
速が異なる媒質)も入れない状態で得られており、微小
散乱体群32を用いた場合にも点反射体33を用いた場
合と同様な結果が得られるべきところであるが、微小散
乱体群32を用いた場合には、送信ビームが十分にシャ
ープでないことに起因して、伝搬時間の計測に誤差が生
じたものと考えられる。As shown in FIG. 1, the reflector is a group of minute scatterers 32.
And the case of the point reflector 33 have different distributions of the detected propagation time on the aperture. Furthermore, the group of minute scatterers 3
In the measurement by 2, the point reflector 33 is placed at the center position.
The difference in the distribution of the propagation time from that of the point reflector is different depending on the shape of the transmission beam, and the sharper the transmission beam is, the closer it is to the point reflector 33. Further, such data is obtained without any non-uniform layer (medium having a different sound velocity from the uniform phantom 31) between the array probe 30 and the uniform phantom 31. The same result should be obtained when using the point reflector 33 when used, but when the microscatterer group 32 is used, the transmission beam is not sufficiently sharp, It is considered that an error occurred in the measurement of the propagation time.
【0013】このような知見に基づいて本発明がなされ
ている。つまり、装置に実装されるアレイプローブ30
と、均一ファントム31とを用い、微小散乱体群32か
らの超音波エコー信号の伝搬時間の分布を測定し、その
測定データに基づいて前記校正データを予め作成し、そ
れを装置のメモリに貯えておく。そして、実際に生体に
対する診断計測の際に、アレイプローブの各振動子毎に
実際に検出された到達時刻から該当の校正データを差し
引く。これでアレイの口径、焦点距離、周波数などの装
置側の条件と生体内の超音波減衰特性などの条件に起因
する誤差成分が補正される。The present invention has been made based on such findings. That is, the array probe 30 mounted on the device
And the uniform phantom 31 are used to measure the propagation time distribution of the ultrasonic echo signals from the microscatterer group 32, the calibration data is created in advance based on the measured data, and the calibration data is stored in the memory of the device. Keep it. Then, when actually performing diagnostic measurement on a living body, the corresponding calibration data is subtracted from the arrival time actually detected for each transducer of the array probe. This corrects error components due to conditions such as the aperture of the array, focal length, and frequency on the device side and conditions such as in-vivo ultrasonic attenuation characteristics.
【0014】[0014]
【実施例】図2は本発明の超音波診断装置の実施例を示
すブロック図で、1はプローブで多数の振動子1a,1
b,1c,…がアレイ状に配列されて成り、被検体2の
体表に接して超音波パルスを送信し反射して戻ってきた
超音波エコー信号を受信する。被検体2の体内には例え
ば腹壁3、肝臓4、血管5、胆のう6が存在している。
血管5、胆のう6は超音波エコー信号を反射させない構
造物を構成している。7は超音波パルスが所定の領域で
集束するようにプローブ1から送信された超音波ビーム
である。9はプローブ1に高圧パルスを加えて駆動する
パルサー、10はプローブ1から送信される超音波パル
スに所望の遅延特性を与える送信遅延回路、11はレー
トパルス(基準信号)を発生するレートパルス発生器で
ある。FIG. 2 is a block diagram showing an embodiment of the ultrasonic diagnostic apparatus of the present invention, in which 1 is a probe and a large number of transducers 1a,
, b, 1c, ... Are arranged in an array, and transmit ultrasonic pulses in contact with the body surface of the subject 2 and receive ultrasonic echo signals reflected and returned. The abdominal wall 3, the liver 4, the blood vessel 5, and the gallbladder 6 are present in the body of the subject 2.
The blood vessel 5 and the gallbladder 6 form a structure that does not reflect the ultrasonic echo signal. Reference numeral 7 denotes an ultrasonic beam transmitted from the probe 1 so that the ultrasonic pulse is focused in a predetermined area. Reference numeral 9 is a pulser that drives the probe 1 by applying a high-voltage pulse, 10 is a transmission delay circuit that gives desired delay characteristics to the ultrasonic pulse transmitted from the probe 1, and 11 is a rate pulse generation that generates a rate pulse (reference signal). It is a vessel.
【0015】12はプローブ1で受信された超音波エコ
ー信号を増幅するプリアンプ、13は超音波エコー信号
に所望の遅延特性を与える受信遅延回路である。14は
超音波エコー信号から位相歪を検出する位相歪検出回
路、22は位相歪検出回路14の出力をディジタル変換
するAD変換器、23はディジタル化された各振動子か
らのエコー信号を一時記憶する波形メモリ、21は作用
の項で詳述した各振動子毎の校正データを格納するメモ
リ、23は波形メモリ24から順次読み出される各振動
子のエコー信号の伝搬時間からメモリ21に格納されて
いる該当振動子の校正データを差し引く遅延量補正器、
15は遅延量補正器24で補正されたエコー信号につい
て各振動子毎に整相加算しかつエコー成分を検出する加
算回路及び包絡線検波回路、16はシステム全体の制御
動作を司っているCPU(中央演算処理装置)、17は
超音波エコー信号をTV走査方式に変換するDSC(デ
ィジタル・スキャン・コンバータ)、20は超音波画像
を表示するディスプレイである。Reference numeral 12 is a preamplifier for amplifying the ultrasonic echo signal received by the probe 1, and 13 is a reception delay circuit for giving a desired delay characteristic to the ultrasonic echo signal. Reference numeral 14 is a phase distortion detection circuit for detecting phase distortion from the ultrasonic echo signal, 22 is an AD converter for converting the output of the phase distortion detection circuit 14 into a digital signal, and 23 is a temporary storage of the digitized echo signal from each transducer. Waveform memory, 21 is a memory for storing calibration data for each transducer described in detail in the section of action, and 23 is a memory for storing the echo signal propagation time of each transducer sequentially read from the waveform memory 24. The delay compensator that subtracts the calibration data of the applicable oscillator
Reference numeral 15 is an adder circuit and envelope detection circuit for phasing and adding echo signals corrected by the delay amount corrector 24 for each transducer and detecting an echo component, and 16 is a CPU that controls the entire system. (Central processing unit), 17 is a DSC (digital scan converter) for converting an ultrasonic echo signal into a TV scanning system, and 20 is a display for displaying an ultrasonic image.
【0016】以上のように構成された装置の動作を次に
説明する。The operation of the apparatus configured as above will be described below.
【0017】先ずCPU16の制御の基に送信遅延回路
10によって所望の遅延特性を与えてプローブ1から送
信超音波パルスを被検体内のある領域に集束させ、この
領域付近に存在する組織からの超音波エコー信号をプロ
ーブ1で受信する。この受信信号はプリアンプ12で増
幅され、受信遅延回路13で所望の遅延特性が与えられ
た後、位相歪検出回路14に加えられ、ここでプローブ
1を構成している各振動子における位相歪が検出され
る。この結果はCPU16の制御の基に送信遅延回路1
0又は受信遅延回路13に送られ、位相歪は送信遅延回
路10で所望の遅延特性が与えられることにより補正さ
れて再度プローブ1から超音波パルスの送信が行われ
る。又は受信遅延回路13においてのみ所望の遅延特性
が与えられることにより補正される。First, under the control of the CPU 16, a desired delay characteristic is given by the transmission delay circuit 10 to focus the transmitted ultrasonic pulse from the probe 1 on a certain region in the subject, and the ultrasonic wave from the tissue existing near this region is superposed. The probe 1 receives a sound wave echo signal. This received signal is amplified by the preamplifier 12, given a desired delay characteristic by the reception delay circuit 13, and then added to the phase distortion detection circuit 14, where the phase distortion in each transducer constituting the probe 1 is To be detected. This result is based on the control of the CPU 16 and the transmission delay circuit 1
0 or is sent to the reception delay circuit 13, and the phase distortion is corrected by the transmission delay circuit 10 being given a desired delay characteristic, and the ultrasonic pulse is again transmitted from the probe 1. Alternatively, it is corrected by giving a desired delay characteristic only in the reception delay circuit 13.
【0018】以上のように処理されたエコー信号はディ
ジタル化されて波形メモリ23に書き込まれた後、順次
読み出されて遅延量補正器24に加えられる。この波形
メモリ23の読み出し走査と同期して校正データメモリ
21が読み出し走査され、補正器24において、各振動
子毎のエコー信号の伝搬時間から予め設定された校正デ
ータが差し引かれる。その補正後の加算回路及び包絡線
検波回路15で整相加算及び包絡線検波が行われ、続い
てDSC17に送られ、最終的に位相歪を補正した画像
がディスプレイ20に表示される。The echo signal processed as described above is digitized and written in the waveform memory 23, then sequentially read out and added to the delay amount corrector 24. The calibration data memory 21 is read and scanned in synchronization with the readout scanning of the waveform memory 23, and the corrector 24 subtracts the preset calibration data from the propagation time of the echo signal of each transducer. The corrected addition circuit and envelope detection circuit 15 perform phasing addition and envelope detection, which are then sent to the DSC 17, and finally an image with corrected phase distortion is displayed on the display 20.
【0019】[0019]
【発明の効果】以上のようにこの発明では、実際に使用
するアレイプローブと均一ファントムとを用い、アレイ
の口径、焦点距離、周波数、深さ、生体内の超音波減衰
特性などの条件に左右される伝搬時間の分布データを予
め測定し、そのデータに基づいて各振動子毎の伝搬時間
の校正データを作成して装置に設定しておく。そして生
体に対する診断測定時に検出された各振動子毎の伝搬時
間から前記校正データを差し引き、その補正後のデータ
から画像を生成する。したがって、前述した多くの誤差
要因による悪影響を排除した高品質の超音波画像を得る
ことができる。As described above, according to the present invention, the array probe and the uniform phantom that are actually used are used, and the conditions such as the aperture of the array, the focal length, the frequency, the depth, the ultrasonic attenuation characteristic in the living body, etc. The propagation time distribution data is measured in advance, and based on the data, propagation time calibration data for each transducer is created and set in the apparatus. Then, the calibration data is subtracted from the propagation time of each transducer detected during the diagnostic measurement on the living body, and an image is generated from the corrected data. Therefore, it is possible to obtain a high-quality ultrasonic image in which the adverse effects of the many error factors described above are eliminated.
【図1】この発明の作用説明図。FIG. 1 is an explanatory view of the operation of the present invention.
【図2】この発明の一実施例による超音波診断装置のブ
ロック図。FIG. 2 is a block diagram of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
【符号の説明】 21 校正データメモリ 24 遅延量補正器[Explanation of Codes] 21 Calibration Data Memory 24 Delay Amount Corrector
Claims (2)
に集束させ、その付近の微小散乱体群から反射してくる
超音波エコー信号を受信開口内の振動子毎に観測して、
各振動子への超音波エコー信号の到達時刻を検出するこ
とによりこれを補正する超音波診断装置において、各振
動子の個々に対応する校正データが設定されていて、各
振動子毎に実際に検出された到達時刻から該当の校正デ
ータを差し引く処理手段を備えたことを特徴とする超音
波診断装置。1. An ultrasonic echo signal reflected from a group of minute scatterers in the vicinity of a certain region of a subject, which is transmitted ultrasonic pulses, is observed for each transducer in a receiving aperture,
In the ultrasonic diagnostic apparatus that corrects this by detecting the arrival time of the ultrasonic echo signal to each transducer, calibration data corresponding to each transducer is set, and each transducer is actually An ultrasonic diagnostic apparatus comprising processing means for subtracting the corresponding calibration data from the detected arrival time.
小散乱体をほぼ均一に混ぜたファントムに対し、請求項
1の超音波診断装置に実装される振動子アレイプローブ
を用いて前記ファントム中のある領域に送信超音波パル
スを集束させるとともに、その付近の微小散乱体群から
反射してくる超音波エコー信号の伝搬時間の分布を測定
し、その測定データに基づいて請求項1の校正データを
作成することを特徴とする超音波診断装置の校正方法。2. A phantom in which a minute scatterer is substantially uniformly mixed in a substance having an attenuation characteristic equivalent to that of a biological tissue, and the phantom using the transducer array probe mounted in the ultrasonic diagnostic apparatus according to claim 1. 2. The calibration of claim 1 based on the measured data by focusing the transmission ultrasonic pulse on a certain area inside and measuring the distribution of the propagation time of the ultrasonic echo signal reflected from the microscatterer group in the vicinity thereof. A method for calibrating an ultrasonic diagnostic apparatus, which comprises creating data.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3204284A JP3015527B2 (en) | 1991-08-14 | 1991-08-14 | Ultrasound diagnostic equipment |
US07/750,599 US5348013A (en) | 1990-08-29 | 1991-08-28 | Ultrasonic diagnostic apparatus capable of acquiring high quality image by correcting phase distortion contained in ultrasonic pulses |
EP91114462A EP0477571B1 (en) | 1990-08-29 | 1991-08-28 | Ultrasonic diagnostic apparatus capable of acquiring high quality image by correcting phase distortion contained in ultrasonic pulses |
DE69132561T DE69132561T2 (en) | 1990-08-29 | 1991-08-28 | Ultrasound diagnostic device to achieve a high quality image by correcting the phase disturbance, present in ultrasound pulses |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3204284A JP3015527B2 (en) | 1991-08-14 | 1991-08-14 | Ultrasound diagnostic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0542138A true JPH0542138A (en) | 1993-02-23 |
JP3015527B2 JP3015527B2 (en) | 2000-03-06 |
Family
ID=16487936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3204284A Expired - Lifetime JP3015527B2 (en) | 1990-08-29 | 1991-08-14 | Ultrasound diagnostic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3015527B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014026185A1 (en) * | 2012-08-10 | 2014-02-13 | Maui Imaging, Inc. | Calibration of multiple aperture ultrasound probes |
US9072495B2 (en) | 2006-10-25 | 2015-07-07 | Maui Imaging, Inc. | Method and apparatus to produce ultrasonic images using multiple apertures |
US9146313B2 (en) | 2006-09-14 | 2015-09-29 | Maui Imaging, Inc. | Point source transmission and speed-of-sound correction using multi-aperature ultrasound imaging |
US9192355B2 (en) | 2006-02-06 | 2015-11-24 | Maui Imaging, Inc. | Multiple aperture ultrasound array alignment fixture |
US9220478B2 (en) | 2010-04-14 | 2015-12-29 | Maui Imaging, Inc. | Concave ultrasound transducers and 3D arrays |
US9265484B2 (en) | 2011-12-29 | 2016-02-23 | Maui Imaging, Inc. | M-mode ultrasound imaging of arbitrary paths |
US9282945B2 (en) | 2009-04-14 | 2016-03-15 | Maui Imaging, Inc. | Calibration of ultrasound probes |
US9339256B2 (en) | 2007-10-01 | 2016-05-17 | Maui Imaging, Inc. | Determining material stiffness using multiple aperture ultrasound |
US9439626B2 (en) | 2012-09-03 | 2016-09-13 | Seiko Epson Corporation | Attachment for ultrasonic probe, ultrasonic probe, electronic device, and ultrasonic diagnostic apparatus |
US9510806B2 (en) | 2013-03-13 | 2016-12-06 | Maui Imaging, Inc. | Alignment of ultrasound transducer arrays and multiple aperture probe assembly |
US9582876B2 (en) | 2006-02-06 | 2017-02-28 | Maui Imaging, Inc. | Method and apparatus to visualize the coronary arteries using ultrasound |
US9668714B2 (en) | 2010-04-14 | 2017-06-06 | Maui Imaging, Inc. | Systems and methods for improving ultrasound image quality by applying weighting factors |
US9788813B2 (en) | 2010-10-13 | 2017-10-17 | Maui Imaging, Inc. | Multiple aperture probe internal apparatus and cable assemblies |
US9883848B2 (en) | 2013-09-13 | 2018-02-06 | Maui Imaging, Inc. | Ultrasound imaging using apparent point-source transmit transducer |
JP2018509263A (en) * | 2015-03-31 | 2018-04-05 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Calibration of lesion boundary mapping based on ultrasonic elasticity |
US9986969B2 (en) | 2012-09-06 | 2018-06-05 | Maui Imaging, Inc. | Ultrasound imaging system memory architecture |
US10226234B2 (en) | 2011-12-01 | 2019-03-12 | Maui Imaging, Inc. | Motion detection using ping-based and multiple aperture doppler ultrasound |
US10401493B2 (en) | 2014-08-18 | 2019-09-03 | Maui Imaging, Inc. | Network-based ultrasound imaging system |
US10856846B2 (en) | 2016-01-27 | 2020-12-08 | Maui Imaging, Inc. | Ultrasound imaging with sparse array probes |
US12167209B2 (en) | 2012-09-06 | 2024-12-10 | Maui Imaging, Inc. | Ultrasound imaging system memory architecture |
US12190627B2 (en) | 2015-03-30 | 2025-01-07 | Maui Imaging, Inc. | Ultrasound imaging systems and methods for detecting object motion |
-
1991
- 1991-08-14 JP JP3204284A patent/JP3015527B2/en not_active Expired - Lifetime
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9582876B2 (en) | 2006-02-06 | 2017-02-28 | Maui Imaging, Inc. | Method and apparatus to visualize the coronary arteries using ultrasound |
US9192355B2 (en) | 2006-02-06 | 2015-11-24 | Maui Imaging, Inc. | Multiple aperture ultrasound array alignment fixture |
US9986975B2 (en) | 2006-09-14 | 2018-06-05 | Maui Imaging, Inc. | Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging |
US9146313B2 (en) | 2006-09-14 | 2015-09-29 | Maui Imaging, Inc. | Point source transmission and speed-of-sound correction using multi-aperature ultrasound imaging |
US9526475B2 (en) | 2006-09-14 | 2016-12-27 | Maui Imaging, Inc. | Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging |
US9420994B2 (en) | 2006-10-25 | 2016-08-23 | Maui Imaging, Inc. | Method and apparatus to produce ultrasonic images using multiple apertures |
US10130333B2 (en) | 2006-10-25 | 2018-11-20 | Maui Imaging, Inc. | Method and apparatus to produce ultrasonic images using multiple apertures |
US9072495B2 (en) | 2006-10-25 | 2015-07-07 | Maui Imaging, Inc. | Method and apparatus to produce ultrasonic images using multiple apertures |
US10675000B2 (en) | 2007-10-01 | 2020-06-09 | Maui Imaging, Inc. | Determining material stiffness using multiple aperture ultrasound |
US9339256B2 (en) | 2007-10-01 | 2016-05-17 | Maui Imaging, Inc. | Determining material stiffness using multiple aperture ultrasound |
US9282945B2 (en) | 2009-04-14 | 2016-03-15 | Maui Imaging, Inc. | Calibration of ultrasound probes |
US11051791B2 (en) * | 2009-04-14 | 2021-07-06 | Maui Imaging, Inc. | Calibration of ultrasound probes |
US10206662B2 (en) | 2009-04-14 | 2019-02-19 | Maui Imaging, Inc. | Calibration of ultrasound probes |
US11998395B2 (en) | 2010-02-18 | 2024-06-04 | Maui Imaging, Inc. | Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging |
US10835208B2 (en) | 2010-04-14 | 2020-11-17 | Maui Imaging, Inc. | Concave ultrasound transducers and 3D arrays |
US9220478B2 (en) | 2010-04-14 | 2015-12-29 | Maui Imaging, Inc. | Concave ultrasound transducers and 3D arrays |
US11172911B2 (en) | 2010-04-14 | 2021-11-16 | Maui Imaging, Inc. | Systems and methods for improving ultrasound image quality by applying weighting factors |
US9247926B2 (en) | 2010-04-14 | 2016-02-02 | Maui Imaging, Inc. | Concave ultrasound transducers and 3D arrays |
US9668714B2 (en) | 2010-04-14 | 2017-06-06 | Maui Imaging, Inc. | Systems and methods for improving ultrasound image quality by applying weighting factors |
US9788813B2 (en) | 2010-10-13 | 2017-10-17 | Maui Imaging, Inc. | Multiple aperture probe internal apparatus and cable assemblies |
US10226234B2 (en) | 2011-12-01 | 2019-03-12 | Maui Imaging, Inc. | Motion detection using ping-based and multiple aperture doppler ultrasound |
US9265484B2 (en) | 2011-12-29 | 2016-02-23 | Maui Imaging, Inc. | M-mode ultrasound imaging of arbitrary paths |
US10617384B2 (en) | 2011-12-29 | 2020-04-14 | Maui Imaging, Inc. | M-mode ultrasound imaging of arbitrary paths |
US12186133B2 (en) | 2012-03-26 | 2025-01-07 | Maui Imaging, Inc. | Systems and methods for improving ultrasound image quality by applying weighting factors |
WO2014026185A1 (en) * | 2012-08-10 | 2014-02-13 | Maui Imaging, Inc. | Calibration of multiple aperture ultrasound probes |
US10064605B2 (en) | 2012-08-10 | 2018-09-04 | Maui Imaging, Inc. | Calibration of multiple aperture ultrasound probes |
US12171621B2 (en) | 2012-08-10 | 2024-12-24 | Maui Imaging, Inc. | Calibration of multiple aperture ultrasound probes |
US11253233B2 (en) | 2012-08-10 | 2022-02-22 | Maui Imaging, Inc. | Calibration of multiple aperture ultrasound probes |
US9572549B2 (en) | 2012-08-10 | 2017-02-21 | Maui Imaging, Inc. | Calibration of multiple aperture ultrasound probes |
US9439626B2 (en) | 2012-09-03 | 2016-09-13 | Seiko Epson Corporation | Attachment for ultrasonic probe, ultrasonic probe, electronic device, and ultrasonic diagnostic apparatus |
US9986969B2 (en) | 2012-09-06 | 2018-06-05 | Maui Imaging, Inc. | Ultrasound imaging system memory architecture |
US12167209B2 (en) | 2012-09-06 | 2024-12-10 | Maui Imaging, Inc. | Ultrasound imaging system memory architecture |
US9510806B2 (en) | 2013-03-13 | 2016-12-06 | Maui Imaging, Inc. | Alignment of ultrasound transducer arrays and multiple aperture probe assembly |
US10267913B2 (en) | 2013-03-13 | 2019-04-23 | Maui Imaging, Inc. | Alignment of ultrasound transducer arrays and multiple aperture probe assembly |
US10653392B2 (en) | 2013-09-13 | 2020-05-19 | Maui Imaging, Inc. | Ultrasound imaging using apparent point-source transmit transducer |
US9883848B2 (en) | 2013-09-13 | 2018-02-06 | Maui Imaging, Inc. | Ultrasound imaging using apparent point-source transmit transducer |
US10401493B2 (en) | 2014-08-18 | 2019-09-03 | Maui Imaging, Inc. | Network-based ultrasound imaging system |
US12204023B2 (en) | 2014-08-18 | 2025-01-21 | Maui Imaging, Inc. | Network-based ultrasound imaging system |
US12190627B2 (en) | 2015-03-30 | 2025-01-07 | Maui Imaging, Inc. | Ultrasound imaging systems and methods for detecting object motion |
US11109840B2 (en) | 2015-03-31 | 2021-09-07 | Koninklijke Philips N.V. | Calibration of ultrasonic elasticity-based lesion-border mapping |
JP2018509263A (en) * | 2015-03-31 | 2018-04-05 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Calibration of lesion boundary mapping based on ultrasonic elasticity |
US10856846B2 (en) | 2016-01-27 | 2020-12-08 | Maui Imaging, Inc. | Ultrasound imaging with sparse array probes |
US12048587B2 (en) | 2016-01-27 | 2024-07-30 | Maui Imaging, Inc. | Ultrasound imaging with sparse array probes |
Also Published As
Publication number | Publication date |
---|---|
JP3015527B2 (en) | 2000-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3015527B2 (en) | Ultrasound diagnostic equipment | |
US5172343A (en) | Aberration correction using beam data from a phased array ultrasonic scanner | |
US4043181A (en) | Ultrasonic pulse-echo apparatus | |
EP0566324A1 (en) | Ultrasound imaging system with improved dynamic focusing | |
US5235982A (en) | Dynamic transmit focusing of a steered ultrasonic beam | |
US4389893A (en) | Precision ultrasound attenuation measurement | |
US5014711A (en) | Ultrasonic diagnosis apparatus | |
EP0152874A1 (en) | Ultrasonic measurement method, and apparatus therefor | |
JP3645347B2 (en) | Ultrasonic diagnostic apparatus and delay time optimization method | |
JPH02500464A (en) | Method and apparatus for ultrasound beam compensation | |
US4679565A (en) | Ultrasonic diagnostic apparatus using non-linear parameters of an organ | |
US4862892A (en) | Ultrasonic reflex transmission imaging method and apparatus with artifact removal | |
JPH0467856A (en) | Ultrasonic imager by bistatic transmission/reception | |
US5327894A (en) | Wall filter using circular convolution for a color flow imaging system | |
US8905933B2 (en) | Ultrasonic diagnostic apparatus | |
US4691569A (en) | Apparatus for observing sound field of ultrasonic wave | |
US8398548B2 (en) | Ultrasound diagnostic apparatus and ultrasound diagnostic method | |
Maginness | Methods and terminology for diagnostic ultrasound imaging systems | |
US20090054769A1 (en) | Ultrasonic diagnostic apparatus | |
JPS5869538A (en) | Ultrasonic diagnostic apparatus | |
JPH074379B2 (en) | Ultrasonic diagnostic equipment | |
JP4580490B2 (en) | Ultrasonic diagnostic equipment | |
JP3492095B2 (en) | Ultrasound imaging device | |
JP2006223736A (en) | Ultrasonic diagnostic apparatus | |
JP2597360B2 (en) | Ultrasound diagnostic equipment |