[go: up one dir, main page]

JPH0541610B2 - - Google Patents

Info

Publication number
JPH0541610B2
JPH0541610B2 JP1151224A JP15122489A JPH0541610B2 JP H0541610 B2 JPH0541610 B2 JP H0541610B2 JP 1151224 A JP1151224 A JP 1151224A JP 15122489 A JP15122489 A JP 15122489A JP H0541610 B2 JPH0541610 B2 JP H0541610B2
Authority
JP
Japan
Prior art keywords
reaction
hydrogen
combustion chamber
dehydrogenation
dehydrogenation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1151224A
Other languages
Japanese (ja)
Other versions
JPH0317026A (en
Inventor
Naoji Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1151224A priority Critical patent/JPH0317026A/en
Publication of JPH0317026A publication Critical patent/JPH0317026A/en
Priority to US07/764,295 priority patent/US5449848A/en
Publication of JPH0541610B2 publication Critical patent/JPH0541610B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/04Dehydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/367Formation of an aromatic six-membered ring from an existing six-membered ring, e.g. dehydrogenation of ethylcyclohexane to ethylbenzene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00117Controlling the temperature by indirect heating or cooling employing heat exchange fluids with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00155Controlling the temperature by thermal insulation means using insulating materials or refractories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、脱水素反応方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a dehydrogenation reaction method.

〔従来技術〕[Prior art]

脱水素反応は、大きな吸熱を伴い熱力学的にも
高温ほど有利な反応であるため、工業的にも大体
550〜650℃の温度で操業されており典型的なエネ
ルギー多消費型化学プロセスとなつている。高温
でしかも大きな反応熱を補うためには、多量の熱
エネルギーを反応装置に供給しなければらない。
従来の脱水素反応室は、この点を克服するため
に、いくつかの工夫を行つている。例えば、反応
器を複数に分割し、その中間に再加熱部を設けて
反応温度の低下を防ぐ、反応層内に直接加熱用配
管を配置するなどの措置を行つている。
The dehydrogenation reaction involves a large endothermic reaction and is thermodynamically more advantageous at higher temperatures.
It operates at temperatures between 550 and 650°C, making it a typical energy-intensive chemical process. In order to compensate for the high temperature and large heat of reaction, a large amount of thermal energy must be supplied to the reactor.
Conventional dehydrogenation reaction chambers employ several techniques to overcome this problem. For example, measures are taken such as dividing the reactor into a plurality of parts and providing a reheating section in the middle to prevent a drop in reaction temperature, or arranging heating piping directly within the reaction layer.

〔目的〕〔the purpose〕

本発明は、前記従来技術に見られる欠点を、単
に克服することに加え、全く新規なタイプの反応
方法を実現することにある。
The present invention consists not only in overcoming the drawbacks found in the prior art, but also in realizing a completely new type of reaction process.

〔構成〕〔composition〕

本発明によれば、脱水素反応室と水素燃焼室か
ら成り、該反応室と燃焼室とは水素透過性材料の
隔壁で隔離され、該水素燃焼室には酸素あるいは
酸素含有ガスが流されるような構造となつてお
り、さらに両室は外部とは熱的に遮断、つまり断
熱の状態に置かれていることを特徴とする脱水素
反応方法が提供される。
According to the present invention, the present invention comprises a dehydrogenation reaction chamber and a hydrogen combustion chamber, the reaction chamber and the combustion chamber are separated by a partition made of a hydrogen permeable material, and oxygen or oxygen-containing gas is allowed to flow into the hydrogen combustion chamber. A dehydrogenation reaction method is provided, which is characterized in that both chambers are thermally isolated from the outside, that is, placed in an adiabatic state.

次に、本発明を図面により説明する。第1図は
本発明方法の一つの実施例についての説明遮断図
であり、脱水素反応室Aと水素燃焼室Bとから構
成されている。脱水素反応室Aと水素燃焼室Bと
の間の隔壁は水素透過性材料Cで構成されてい
る。さらに、これらの構成物は断熱材料Dにて被
覆されている。
Next, the present invention will be explained with reference to the drawings. FIG. 1 is an explanatory block diagram of one embodiment of the method of the present invention, which is composed of a dehydrogenation reaction chamber A and a hydrogen combustion chamber B. The partition wall between the dehydrogenation reaction chamber A and the hydrogen combustion chamber B is made of a hydrogen permeable material C. Furthermore, these components are coated with a heat insulating material D.

このような脱水素反応方法を用いて脱水素反応
を行うには、原料をライン1を通して反応室Aに
導入するとともに、反応生成物をライン3を通し
て抜き出し、また酸素あるいは酸素含有ガスをラ
イン2を通して水素燃焼室に導入するとともに、
水素燃焼ガスをライン4を通して抜き出す。
To perform a dehydrogenation reaction using such a dehydrogenation reaction method, raw materials are introduced into reaction chamber A through line 1, reaction products are extracted through line 3, and oxygen or oxygen-containing gas is introduced through line 2. In addition to introducing hydrogen into the combustion chamber,
Hydrogen combustion gas is extracted through line 4.

本発明方法においては、反応室Aと水素燃焼室
Bとの間の隔壁が水素透過性材料膜Cで構成され
ており、水素透過性材料としては水素透過性金属
膜、あるいは隔壁の水素透過性金属を薄膜化する
ために多孔性支持体上に該金属を担持するタイプ
の場合は、水素燃焼室側膜表面を水素透過性金属
によつてコーテイングしたものを用いる。こうし
た装置においては、反応室Aにおける脱水素反応
により生成した水素は、その水素燃焼室Bとの間
の水素分圧差が駆動力となつて水素透過性材料膜
Cを透過し水素燃焼室Bへ移動するが、その時水
素燃焼室側膜表面上では、一種の触媒反応が起こ
る。何故ならば、水素透過性金属は酸化および水
素化反応の良好な触媒としての機能も有している
ためである。要するに、透過した水素は水素燃焼
室Bに送りこまれている酸素ガスと主として膜表
面上で反応し、水蒸気に変化した上でライン4を
通つて装置外に抜き出される。ここで、反応室A
および水素燃焼室Bは空間、あるいは不活性固体
粒子の充填、あるいはそれぞれ脱水素反応触媒も
しくは水素酸化触媒の充填が可能であり、その選
択は装置の目標とする性能(反応成績、伝熱特性
なと)に応じて行うことができる。さらに、本発
明方法では、大きな吸熱を伴う脱水素反応と大き
な発熱を伴う水素の酸化反応が隔壁を挟んで同時
に進行する事になり、しかも反応系は外部とは遮
断(熱的に遮断された)状態になつているため
に、外部への熱の逸散はなく、発によつて相対的
に高温となる水素燃焼室B側から吸熱によつて相
対的に低温となる脱水素反応室A側への熱の移動
のみが生じる。
In the method of the present invention, the partition wall between the reaction chamber A and the hydrogen combustion chamber B is composed of a hydrogen permeable material membrane C, and the hydrogen permeable material may be a hydrogen permeable metal membrane or a hydrogen permeable membrane of the partition wall. In the case of a type in which the metal is supported on a porous support to make the metal thin, the surface of the membrane on the hydrogen combustion chamber side is coated with a hydrogen permeable metal. In such a device, the hydrogen generated by the dehydrogenation reaction in the reaction chamber A is permeated through the hydrogen permeable material membrane C to the hydrogen combustion chamber B due to the hydrogen partial pressure difference between it and the hydrogen combustion chamber B. At that time, a type of catalytic reaction occurs on the surface of the membrane on the side of the hydrogen combustion chamber. This is because hydrogen-permeable metals also function as good catalysts for oxidation and hydrogenation reactions. In short, the permeated hydrogen reacts with the oxygen gas fed into the hydrogen combustion chamber B mainly on the membrane surface, changes into water vapor, and is extracted out of the apparatus through the line 4. Here, reaction chamber A
The hydrogen combustion chamber B can be filled with space, inert solid particles, or a dehydrogenation reaction catalyst or hydrogen oxidation catalyst, respectively, and the selection depends on the target performance of the device (reaction performance, heat transfer characteristics, etc.). ). Furthermore, in the method of the present invention, the dehydrogenation reaction accompanied by a large endotherm and the hydrogen oxidation reaction accompanied by a large exotherm proceed simultaneously across the partition wall, and the reaction system is isolated from the outside (thermally isolated). ) state, there is no heat dissipation to the outside, and the hydrogen combustion chamber B side becomes relatively high temperature due to heat generation, and the dehydrogenation reaction chamber A becomes relatively low temperature due to heat absorption. Only heat transfer to the side occurs.

このようにして、水素燃焼室Bの水素を反応に
よつて消費させることで、脱水素反応室Aで生成
した水素は連続的にしかも完全に除去されること
になる。この結果は、水素燃焼室B側から脱水素
反応室A側への断熱的な熱の移動による脱水素反
応温度の上昇によつてさらに増幅され、脱水素反
応の極めて効率的な進行および完結をもたらすこ
とができる。
In this way, by consuming the hydrogen in the hydrogen combustion chamber B through the reaction, the hydrogen produced in the dehydrogenation reaction chamber A is continuously and completely removed. This result is further amplified by the increase in the dehydrogenation reaction temperature due to adiabatic heat transfer from the hydrogen combustion chamber B side to the dehydrogenation reaction chamber A side, allowing the dehydrogenation reaction to progress and complete extremely efficiently. can bring.

本発明で用いる水素透過性金属材料としては、
パラジウムおよびその合金(金、銀、ニツケル、
希土類金属など)、白金、チタン、ニツケル、鉄、
銅などが使用できる。また、該水素透過性金属を
担持する場合の支持体としては、多孔質のセラミ
ツクスあるいは多孔質金属(非水素透過性で良
い)などが使用できる。
Hydrogen permeable metal materials used in the present invention include:
Palladium and its alloys (gold, silver, nickel,
rare earth metals, etc.), platinum, titanium, nickel, iron,
Copper etc. can be used. Further, as a support for supporting the hydrogen permeable metal, porous ceramics or porous metal (non-hydrogen permeable may be used) can be used.

〔効果〕〔effect〕

本発明の脱水素反応方法は、従来公知の種々の
脱水素反応に適用することができ、例えば、エチ
ルベンゼン、メタノール、ブタン、ブテン、シク
ロヘキサン等の炭化水素原料の脱水素あるいは硫
化水素、ヨウ化水素など無機系水素化物の分解に
適用することができる。
The dehydrogenation reaction method of the present invention can be applied to various conventionally known dehydrogenation reactions, such as dehydrogenation of hydrocarbon raw materials such as ethylbenzene, methanol, butane, butene, cyclohexane, hydrogen sulfide, hydrogen iodide, etc. It can be applied to the decomposition of inorganic hydrides such as

本発明方法によれば、反応で生成した水素は連
続的に反応室から水素透過性膜を通して透過除去
され、かつその透過水素の燃焼室での酸化反応に
よつて発生した熱が断熱操作であるために100%
反応室側に供給される事から、平衡反応率の小さ
い脱水素反応を著しく促進させ、100%の反応率
を達成させることができる。このことによつて、
従来の反応方法では不可欠であつた反応装置のあ
とに続く後処理設備である未反応原料と生成物と
の分離工程が不要になり、脱水素反応による反応
層の温度低下を防ぐ目的で供給される熱媒(主に
加熱水蒸気)の加熱用エネルギーも不要になる。
According to the method of the present invention, the hydrogen produced in the reaction is continuously permeated and removed from the reaction chamber through a hydrogen permeable membrane, and the heat generated by the oxidation reaction of the permeated hydrogen in the combustion chamber is an adiabatic operation. 100% for
Since it is supplied to the reaction chamber side, the dehydrogenation reaction, which has a low equilibrium reaction rate, can be significantly accelerated and a reaction rate of 100% can be achieved. By this,
The process of separating unreacted raw materials and products, which is the post-processing equipment that follows the reaction equipment, which is essential in conventional reaction methods, is no longer necessary, and the system is supplied to prevent the temperature of the reaction layer from decreasing due to dehydrogenation. Energy for heating the heating medium (mainly heating steam) is also no longer required.

〔実施例〕〔Example〕

次に実施例に基づき本発明をさらに詳細に説明
する。
Next, the present invention will be explained in more detail based on Examples.

実施例 1 以下のような条件を設定することで計算を行つ
た。反応装置は第1図に示したようなものを用い
た。脱水素反応室には触媒を充填し、水素透過性
材料としてはパラジウム金属膜を用いる。反応系
としては、シクロヘキサンのベンゼへの脱水素反
応を取り上げた。原料のシクロヘキサンは脱水素
反応室Aに送入され、同時に水素燃焼室Bには酸
素含有ガスを流す。反応原料および酸素含有ガス
は入口条件として、1気圧下、200℃で装置内に
送り込まれる。
Example 1 Calculations were performed by setting the following conditions. The reaction apparatus shown in FIG. 1 was used. The dehydrogenation reaction chamber is filled with a catalyst, and a palladium metal membrane is used as the hydrogen permeable material. As a reaction system, we took up the dehydrogenation reaction of cyclohexane to benzene. Cyclohexane as a raw material is sent to the dehydrogenation reaction chamber A, and at the same time, oxygen-containing gas is flowed into the hydrogen combustion chamber B. The reaction raw materials and oxygen-containing gas are fed into the apparatus under 1 atm and at 200° C. as inlet conditions.

第2図に、その計算結果の一例を示す。 FIG. 2 shows an example of the calculation results.

第2図は酸素含有ガスとして空気(酸素濃度
20.95%)を用い、計算バラメタとしてγ(ガン
マ)すなわち(伝熱係数×膜面積)/(原料の比
熱×原料供給速度)で表わされる無次元数を変え
て計算した結果である。γ=0つまり伝熱係数が
ゼロの場合は、水素燃焼室Bで発生した熱が全く
脱水素反応室側に伝わらないとする場合で、従来
の反応装置において熱の補充をしなかつた場合に
ほぼ相当するものである。この場合は反応層温度
が上がらず、反応率もせいぜい10%程度であるこ
とがわかる。次にに、γ(ガンマ)を0.5,1,5
と大きくして行くにしたがい、脱水素反応室Aお
よび水素燃焼室Bの温度上昇は大きく、しかも早
くなつていくことがわかる。これは、透過した水
素が燃焼室Bにおいて酸素と反応することで発熱
し、その熱が脱水素反応室A側に流れることで脱
水素反応層が加熱されることによるものである。
こうした脱水素反応温度の上昇はその反応速度を
増大させ、水素発生量も大きくすることからます
ます水素透過量を大きくして水素燃焼室Bでの発
熱量を増加させるように作用する。このことが、
加速度的な温度上昇が見られる理由である。これ
に相応して、反応率曲線の上昇も早くなり、反応
を完結するに要する反応装置の長さ(大きさ)も
小くてすむようになつていることがわかる。
Figure 2 shows air as an oxygen-containing gas (oxygen concentration
20.95%), and by changing the dimensionless number expressed by γ (gamma), that is, (heat transfer coefficient x membrane area)/(specific heat of raw material x raw material supply rate), as a calculation parameter. When γ = 0, that is, the heat transfer coefficient is zero, it is assumed that the heat generated in the hydrogen combustion chamber B is not transferred to the dehydrogenation reaction chamber at all, and when heat is not supplemented in a conventional reaction apparatus. It is almost equivalent. It can be seen that in this case, the temperature of the reaction layer does not rise and the reaction rate is about 10% at most. Next, set γ (gamma) to 0.5, 1, 5
It can be seen that as the temperature increases, the temperature increases in the dehydrogenation reaction chamber A and the hydrogen combustion chamber B increase and become faster. This is because the permeated hydrogen reacts with oxygen in the combustion chamber B to generate heat, and the heat flows to the dehydrogenation reaction chamber A side, thereby heating the dehydrogenation reaction layer.
Such an increase in the dehydrogenation reaction temperature increases the reaction rate and also increases the amount of hydrogen generated, which acts to further increase the amount of hydrogen permeation and increase the amount of heat generated in the hydrogen combustion chamber B. This means that
This is the reason for the accelerated temperature rise. Correspondingly, it can be seen that the rise in the reaction rate curve becomes faster and the length (size) of the reactor required to complete the reaction becomes smaller.

実施例 2 脱水素反応装置として、第3図に示されるよう
なステンレス製管状反応管全体がセラミツクウー
ル(断熱材)で厚さ3cmに被覆された反応装置を
用いた。この反応装置は水素透過性膜であるPd
−Ag合金の管状膜の内側に酸素混合ガスが供給
され、原料が白金触媒層に供給される構造となつ
ており、反応温度199℃に保たれている。
Example 2 As a dehydrogenation reactor, a reactor as shown in FIG. 3 was used, in which the entire stainless steel tubular reaction tube was covered with ceramic wool (insulating material) to a thickness of 3 cm. This reactor is a hydrogen-permeable membrane made of Pd
The structure is such that oxygen mixed gas is supplied to the inside of the -Ag alloy tubular membrane, and raw materials are supplied to the platinum catalyst layer, and the reaction temperature is maintained at 199°C.

この反応装置に原料供給管よりシロヘキサンを
供給速度27.94mg/min(同伴ガスとしてアルゴン
ガス20c.c./minを供給)で供給した。一方酸素混
合ガスとしては15.1%酸素−アルゴンガスを用
い、これを酸素混合ガス供給口から供給速度146
c.c./minで導入した。ついで、反応器各部(T.C
−1、T.C−2、T.C−3、T.C−R)の温度変
化およびシクロヘキサンのベンゼンへの転化率を
調た。その結果を図4及び図5に示す。図4及び
図5から反応時間の経過と共に燃焼室で水素が酸
化されることによつて反応器各部の温度が上昇
し、それに伴ない脱水素反応の転化率も上昇して
いくことが判る。
Silohexane was supplied to this reactor from the raw material supply pipe at a supply rate of 27.94 mg/min (argon gas was supplied as an accompanying gas of 20 c.c./min). On the other hand, 15.1% oxygen-argon gas was used as the oxygen mixed gas, and this was supplied from the oxygen mixed gas supply port at a rate of 146%.
It was introduced at cc/min. Next, each part of the reactor (TC
-1, TC-2, TC-3, TC-R) and the conversion rate of cyclohexane to benzene were investigated. The results are shown in FIGS. 4 and 5. It can be seen from FIGS. 4 and 5 that as the reaction time elapses, hydrogen is oxidized in the combustion chamber, so that the temperature of each part of the reactor increases, and the conversion rate of the dehydrogenation reaction increases accordingly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で用いる脱水素反応装置の説
明図であり、第2図は実施例1の脱水素反応の解
析結果を示すグラフである。第3図は実施例2で
用いる脱水素反応装置の説明図であり、第4図は
実施例2の脱水素反応における反応時間と反応器
の各部の温度との関係を示すグラフであり、また
第5図は実施例2の脱水素反応における反応時間
と転化率の関係を示すグラフである。 A……脱水素反応室、B……水素燃焼室、C…
…水素透過性金属あるいは多孔質支持体に水素透
過性金属をコーテイングしたもの、D……断熱
材。
FIG. 1 is an explanatory diagram of the dehydrogenation reaction apparatus used in Example 1, and FIG. 2 is a graph showing the analysis results of the dehydrogenation reaction of Example 1. FIG. 3 is an explanatory diagram of the dehydrogenation reactor used in Example 2, and FIG. 4 is a graph showing the relationship between the reaction time and the temperature of each part of the reactor in the dehydrogenation reaction of Example 2. FIG. 5 is a graph showing the relationship between reaction time and conversion rate in the dehydrogenation reaction of Example 2. A... Dehydrogenation reaction chamber, B... hydrogen combustion chamber, C...
...Hydrogen-permeable metal or porous support coated with hydrogen-permeable metal, D...Insulating material.

Claims (1)

【特許請求の範囲】[Claims] 1 脱水素反応室と水素燃焼室から成り、該反応
室と燃焼室とは水素透過性膜で隔離され、該水素
燃焼室には酸素あるいは酸素含有ガスが導入され
る構造となつており、さらに該反応室と燃焼室と
は外部との熱の出入りが遮断構造になつているこ
とを特徴とする脱水素反応方法。
1 Consists of a dehydrogenation reaction chamber and a hydrogen combustion chamber, the reaction chamber and the combustion chamber are separated by a hydrogen permeable membrane, and the hydrogen combustion chamber is structured to introduce oxygen or an oxygen-containing gas, and further A dehydrogenation reaction method characterized in that the reaction chamber and the combustion chamber have a structure that blocks heat from entering and exiting from the outside.
JP1151224A 1989-06-13 1989-06-13 Dehydrogenation Granted JPH0317026A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1151224A JPH0317026A (en) 1989-06-13 1989-06-13 Dehydrogenation
US07/764,295 US5449848A (en) 1989-06-13 1991-09-23 Dehydrogenation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151224A JPH0317026A (en) 1989-06-13 1989-06-13 Dehydrogenation

Publications (2)

Publication Number Publication Date
JPH0317026A JPH0317026A (en) 1991-01-25
JPH0541610B2 true JPH0541610B2 (en) 1993-06-24

Family

ID=15513961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151224A Granted JPH0317026A (en) 1989-06-13 1989-06-13 Dehydrogenation

Country Status (2)

Country Link
US (1) US5449848A (en)
JP (1) JPH0317026A (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461408B2 (en) 1995-11-06 2002-10-08 Robert E. Buxbaum Hydrogen generator
US5888273A (en) * 1996-09-25 1999-03-30 Buxbaum; Robert E. High temperature gas purification system
US6376113B1 (en) 1998-11-12 2002-04-23 Idatech, Llc Integrated fuel cell system
US6547858B1 (en) 1999-03-22 2003-04-15 Idatech, Llc Hydrogen-permeable metal membrane and hydrogen purification assemblies containing the same
US6494937B1 (en) 2001-09-27 2002-12-17 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US5997594A (en) * 1996-10-30 1999-12-07 Northwest Power Systems, Llc Steam reformer with internal hydrogen purification
US6221117B1 (en) 1996-10-30 2001-04-24 Idatech, Llc Hydrogen producing fuel processing system
US6319306B1 (en) 2000-03-23 2001-11-20 Idatech, Llc Hydrogen-selective metal membrane modules and method of forming the same
US7195663B2 (en) 1996-10-30 2007-03-27 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6537352B2 (en) 1996-10-30 2003-03-25 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6783741B2 (en) 1996-10-30 2004-08-31 Idatech, Llc Fuel processing system
US6152995A (en) * 1999-03-22 2000-11-28 Idatech Llc Hydrogen-permeable metal membrane and method for producing the same
JPH10203803A (en) * 1997-01-20 1998-08-04 Ngk Insulators Ltd Apparatus for recovery, purification and storage of hydrogen gas
US6152987A (en) * 1997-12-15 2000-11-28 Worcester Polytechnic Institute Hydrogen gas-extraction module and method of fabrication
US6835232B2 (en) * 1998-11-10 2004-12-28 Frost Chester B Fluid separation assembly and fluid separation module
US6602325B1 (en) 1999-10-21 2003-08-05 Ati Properties, Inc. Fluid separation assembly
DE19983751B4 (en) * 1998-11-10 2008-04-17 ATI Properties, Inc., Gardena Hydrogen Segregation membrane
US6419726B1 (en) 1999-10-21 2002-07-16 Ati Properties, Inc. Fluid separation assembly and fluid separation module
US6767389B2 (en) * 1999-03-22 2004-07-27 Idatech, Llc Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US6596057B2 (en) 1999-03-22 2003-07-22 Idatech, Llc Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US6569227B2 (en) 2001-09-27 2003-05-27 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US6967063B2 (en) 2001-05-18 2005-11-22 The University Of Chicago Autothermal hydrodesulfurizing reforming method and catalyst
US6888014B2 (en) * 2001-07-24 2005-05-03 Panagin Pharmaceuticals Inc. Dammarane sapogenins, their use as anti-cancer agents, and a process for producing same
ATE407731T1 (en) * 2003-03-21 2008-09-15 Worcester Polytech Inst METHOD FOR CORRECTING DEFECTS IN THE MANUFACTURING OF A COMPOSITE MEMBRANE GAS SEPARATION MODULE
AU2004224370C1 (en) * 2003-03-21 2008-03-13 Worcester Polytechnic Institute Composite gas separations modules having intermediate metal layers
CA2519774A1 (en) * 2003-03-21 2004-10-07 Worcester Polytechnic Institute Method for fabricating composite gas separation modules
JP2006525119A (en) * 2003-05-02 2006-11-09 ウスター ポリテクニック インスティチュート Composite gas separation module with high Tamman temperature interlayer
US7727596B2 (en) * 2004-07-21 2010-06-01 Worcester Polytechnic Institute Method for fabricating a composite gas separation module
US7297183B2 (en) * 2004-09-20 2007-11-20 Idatech, Llc Hydrogen purification devices, components, and fuel processing systems containing the same
US7967342B2 (en) * 2005-03-01 2011-06-28 Ti Group Automotive Systems, Llc Anti-rotation quick connector
US7601302B2 (en) 2005-09-16 2009-10-13 Idatech, Llc Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
WO2007035467A2 (en) 2005-09-16 2007-03-29 Idatech, Llc Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
JP4945109B2 (en) * 2005-10-13 2012-06-06 株式会社東芝 Hydrogen iodide production method, hydrogen production method, and production apparatus therefor
US7972420B2 (en) 2006-05-22 2011-07-05 Idatech, Llc Hydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
US7939051B2 (en) 2006-05-23 2011-05-10 Idatech, Llc Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
GB0617498D0 (en) * 2006-09-06 2006-10-18 Boc Group Plc Method of pumping gas
AU2008236737A1 (en) * 2007-04-05 2008-10-16 Worcester Polytechnic Institute Composite structures with porous anodic oxide layers and methods of fabrication
US8262752B2 (en) 2007-12-17 2012-09-11 Idatech, Llc Systems and methods for reliable feedstock delivery at variable delivery rates
US20100052315A1 (en) * 2008-08-28 2010-03-04 Ti Group Automotive Systems, Llc Quick connector coupling with lateral stabilization
US8652239B2 (en) 2010-05-03 2014-02-18 Worcester Polytechnic Institute High permeance sulfur tolerant Pd/Cu alloy membranes
US20120190904A1 (en) * 2011-01-20 2012-07-26 Fina Technology, Inc. Hydrogen removal from dehydrogenation reactor product
US10500559B2 (en) * 2012-05-05 2019-12-10 King Abdullah University Of Science And Technology System and method of dehydrogenative coupling
US10476093B2 (en) 2016-04-15 2019-11-12 Chung-Hsin Electric & Machinery Mfg. Corp. Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same
CN106365936B (en) * 2016-08-27 2019-01-15 福州大学 The method of the shell and tube reactor and liquid phase alcohol dehydrogenase of liquid phase alcohol dehydrogenase
DE102019104902A1 (en) * 2019-02-26 2020-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Passive self-regulating membrane reactor and method for carrying out equilibrium reactions
RU2717819C1 (en) * 2019-09-25 2020-03-25 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Method of producing super-pure hydrogen by steam reforming of ethanol
US11712655B2 (en) 2020-11-30 2023-08-01 H2 Powertech, Llc Membrane-based hydrogen purifiers
DE102022103269A1 (en) 2022-02-11 2023-08-17 Karlsruher Institut für Technologie CATALYTIC MEMBRANE REACTOR

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1685759A (en) * 1924-05-22 1928-09-25 Ver Fur Chemische Ind Ag Diffusion reaction
US3849076A (en) * 1972-06-21 1974-11-19 V Gryaznov Catalytic reactor for carrying out conjugate chemical reactions
US4132668A (en) * 1977-04-06 1979-01-02 Gryaznov Vladimir M Method of preparing a hydrogen-permeable membrane catalyst on a base of palladium or its alloys for the hydrogenation of unsaturated organic compounds
DE3424208A1 (en) * 1984-06-30 1986-01-16 Kernforschungsanlage Jülich GmbH, 5170 Jülich METHOD AND DEVICE FOR INCREASING THE SALES OF GAS REACTIONS PROCESSING WITH HYDROGEN PRODUCTION
US4891464A (en) * 1985-12-26 1990-01-02 Uop Control method for oxygen addition to oxidative reheat zone of hydrocarbon conversion process
US4810485A (en) * 1986-08-25 1989-03-07 Institute Of Gas Technology Hydrogen forming reaction process

Also Published As

Publication number Publication date
JPH0317026A (en) 1991-01-25
US5449848A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
JPH0541610B2 (en)
Gryaznov Metal containing membranes for the production of ultrapure hydrogen and the recovery of hydrogen isotopes
Shu et al. Methane steam reforming in asymmetric Pd-and Pd-Ag/porous SS membrane reactors
Kikuchi Palladium/ceramic membranes for selective hydrogen permeation and their application to membrane reactor
Champagnie et al. A high temperature catalytic membrane reactor for ethane dehydrogenation
US6171574B1 (en) Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel
Tosti et al. Design and process study of Pd membrane reactors
Gobina et al. Ethane dehydrogenation in a catalytic membrane reactor coupled with a reactive sweep gas
She et al. Palladium membrane reactor for the dehydrogenation of ethylbenzene to styrene
Itoh et al. An adiabatic type of palladium membrane reactor for coupling endothermic and exothermic reactions
JP2002521192A (en) Method and apparatus for obtaining enhanced production rates of thermochemical reactions
US5904913A (en) Process for obtaining a high-hydrogen, low-carbon-monoxide gas
JPS6117401A (en) Method and device for converting steam by using coal or hydrocarbon
Hofstad et al. Partial oxidation of methane over platinum metal gauze
Yeung et al. Metal composite membranes: Synthesis, characterization and reaction studies
Tsotsis et al. The enhancement of reaction yield through the use of high temperature membrane reactors
Fathi et al. Partial oxidation of methane to synthesis gas at very short contact times
JP3217447B2 (en) Membrane reactor for dehydrogenation reaction
Gobina et al. Mathematical analysis of ethylbenzene dehydrogenation: comparison of microporous and dense membrane systems
EP1066216A1 (en) Use of a membrane reactor for hydrogen production via the direct cracking of hydrocarbons
EP0496755A1 (en) Process for production of ethylene from ethane
Prabhu et al. Supported nickel catalysts for carbon dioxide reforming of methane in plug flow and membrane reactors
Hacarlioglu et al. Studies of the methane steam reforming reaction at high pressure in a ceramic membrane reactor
Santos et al. Catalytic partial oxidation of methane to synthesis gas in a ceramic membrane reactor
Chen et al. Hydrogen production from the steam reforming of liquid hydrocarbons in membrane reactor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term