[go: up one dir, main page]

JPH0541603A - Primary radiator in common use with circularly polarized wave and linearly polarized wave - Google Patents

Primary radiator in common use with circularly polarized wave and linearly polarized wave

Info

Publication number
JPH0541603A
JPH0541603A JP19647791A JP19647791A JPH0541603A JP H0541603 A JPH0541603 A JP H0541603A JP 19647791 A JP19647791 A JP 19647791A JP 19647791 A JP19647791 A JP 19647791A JP H0541603 A JPH0541603 A JP H0541603A
Authority
JP
Japan
Prior art keywords
circular waveguide
phase circuit
circular
polarized wave
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19647791A
Other languages
Japanese (ja)
Inventor
Katsuaki Kaminakada
勝明 上中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP19647791A priority Critical patent/JPH0541603A/en
Publication of JPH0541603A publication Critical patent/JPH0541603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To realize the primary radiator in common use with a circularly polarized wave and a linearly polarized wave able to receive both radio waves from a satellite employing the circularly polarized wave and the linearly polarized wave. CONSTITUTION:When a circularly polarized wave is received by providing a 1st phase circuit (metal lumps 3, 4) and a 2nd rotary phase circuit (dielectric plate 7) and an output means (square waveguides 9, 10) with respect to an orthogonal component of an electromagnetic wave in the TE11 mode in this order from an opening 1 using one end of a circular waveguide 2 toward a termination face 5 being the other end of the waveguide 2, the 1st phase circuit (3, 4) converts the wave into a linearly polarized wave, the dielectric plate 7 is directed in a way that the phase between two polarized wave components of the linearly polarized wave is unchanged, the one output means outputs a signal, and when a linearly polarized wave is received, the phase difference generated in the 1st phase circuit (3, 4) with respect to the two polarized wave components of the linearly polarized wave is brought into in-phase by turning the dielectric plate 7, one of the vertical polarized waves is outputted from the other output means and the dielectric plate 7 is turned so that the phase difference is nearly 180 deg. and the other signal of the linearly polarized wave is outputted from the other output means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円偏波を使用している
衛星放送(BS)と、直線偏波を使用している通信衛星
(CS)とを、共に受信可能とした円偏波及び直線偏波
共用一次放射器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a circularly polarized wave capable of receiving both satellite broadcasting (BS) using circularly polarized wave and communication satellite (CS) using linearly polarized wave. And a linear radiator for both linearly polarized waves.

【0002】[0002]

【従来の技術】従来のBS及びCS共用アンテナは図1
3(A)に示すように、同一リフレクタ25にBS用の
一次放射器23とCS用の一次放射器24を並べて取り
付け、リフレクタ25の焦点をずらせて、リフレクタ2
5の一端の焦点にBS用の一次放射器23が位置するよ
うにし、リフレクタ25の他端の焦点にCS用の一次放
射器24が位置するようにして、リフレクタ25の向き
を各々の衛星の向きにして、BSの電波及びCSの電波
を受信するようにしていた。
2. Description of the Related Art A conventional BS and CS shared antenna is shown in FIG.
As shown in FIG. 3 (A), the primary radiator 23 for BS and the primary radiator 24 for CS are attached to the same reflector 25 side by side, and the reflector 25 is defocused to make the reflector 2
The primary radiator 23 for BS is positioned at the focal point of one end of the reflector 5, and the primary radiator 24 for CS is positioned at the focal point of the other end of the reflector 25 so that the orientation of the reflector 25 of each satellite is adjusted. It was oriented so that it could receive BS radio waves and CS radio waves.

【0003】[0003]

【発明が解決しようとする課題】従って、リフレクタの
焦点がずらせてあるため各々の一次放射器で得られる利
得が低下するといった問題点があり、また、同一リフレ
クタに2個の一次放射器を取り付けているため、構造が
複雑となるといった問題点もあった。本発明は、BSと
CS用に共用できる一次放射器とし、図13(B)に示
すように一次放射器27をリフレクタ26の焦点に配置
して、BSを受信するときにはリフレクタ26を放送衛
星の方向に向け、CSを受信するときにはリフレクタ2
6を通信衛星の方向に向けて、BSの電波とCSの電波
が同一の一次放射器27で受信できるようにすることに
より、構造が簡単で価格の安い、経済的な受信システム
を提供することを目的とする。
Therefore, there is a problem in that the gain obtained by each primary radiator is lowered because the reflectors are defocused, and two primary radiators are attached to the same reflector. Therefore, there is a problem that the structure becomes complicated. The present invention provides a primary radiator that can be used for both BS and CS. As shown in FIG. 13B, the primary radiator 27 is arranged at the focal point of the reflector 26, and when the BS is received, the reflector 26 is a broadcasting satellite. Reflector 2 when facing the direction and receiving CS
To provide an economical receiving system having a simple structure and a low price by directing 6 toward the communication satellite so that the BS and CS waves can be received by the same primary radiator 27. With the goal.

【0004】[0004]

【課題を解決するための手段】図1は、本発明の一実施
例を示す円偏波及び直線偏波共用一次放射器の一部切欠
き斜視図であり、同図に示すように、一端を電磁波が導
入し得る開口部1とし、他端に終端面5を設けた円形導
波管2において、同円形導波管2の内部に開口部1側か
ら終端面5に向かって順に、固定式の第1位相回路(図
1においては、金属塊3及び4)と、回転式の第2位相
回路(図1においては、誘電体板7)とを設け、前記第
2位相回路と前記終端面5の間に、円形導波管2の内部
を伝播する電磁波のTE11モードの垂直方向及び水平
方向成分に各々結合せしめる2つの出力手段(図1にお
いては、方形導波管9、及び方形導波管10)を設け
て、円偏波の電磁波が導入された場合は、前記第1位相
回路で直線偏波に変換し、前記第2位相回路を回転させ
て前記直線偏波の直交する2つの偏波成分間の位相が変
化しない向きとして、前記出力手段の一方から信号を取
り出し、直線偏波の電磁波が導入された場合は、水平及
び垂直偏波の内どちらか一方に対しては、同直線偏波の
直交する2つの偏波成分間に対して前記第1位相回路で
発生させた位相差を、前記第2位相回路を回転させて同
相となる向きとして、前記出力手段の他方から信号を取
り出し、直線偏波の他方に対しては、前記位相差が、前
記第1位相回路と前記第2位相回路とで約180度とな
るように、前記第2位相回路を回転させて、前記出力手
段の他方から信号を取り出すようにしている。
FIG. 1 is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, showing an embodiment of the present invention. As shown in FIG. Is an opening 1 through which an electromagnetic wave can be introduced, and a circular waveguide 2 having a terminating surface 5 at the other end is fixed inside the circular waveguide 2 in order from the opening 1 side toward the terminating surface 5. 1st phase circuit (metal masses 3 and 4 in FIG. 1) and a rotary 2nd phase circuit (dielectric plate 7 in FIG. 1) are provided, and the 2nd phase circuit and the termination are provided. Two output means (in FIG. 1, a rectangular waveguide 9 and a rectangular waveguide in FIG. 1) for coupling to the vertical and horizontal components of the TE11 mode of the electromagnetic wave propagating inside the circular waveguide 2 between the surfaces 5. When a circularly polarized electromagnetic wave is introduced by providing a wave tube 10), the first phase circuit converts it into a linearly polarized wave. Then, the second phase circuit is rotated so that the phase between two orthogonal polarization components of the linearly polarized wave does not change, a signal is taken out from one of the output means, and the linearly polarized electromagnetic wave is introduced. In the case of either the horizontal polarization or the vertical polarization, the phase difference generated by the first phase circuit between the two orthogonal polarization components of the same linear polarization is A signal is taken out from the other of the output means in a direction in which the two-phase circuit is rotated to have the same phase, and the phase difference with respect to the other of the linearly polarized waves is the first phase circuit and the second phase circuit. The second phase circuit is rotated so as to be about 180 degrees in order to extract a signal from the other of the output means.

【0005】[0005]

【作用】本発明は上記した構成により、円偏波を使用し
ている放送衛星(BS)と、直線偏波を使用している通
信衛星(CS)の電波とを円偏波及び直線偏波共用一次
放射器で受けて受信するようにしている。図1は本発明
の一実施例を示す円偏波及び直線偏波共用一次放射器の
一部切欠き斜視図であり、同図において、管軸から上部
方向に向かう軸をY軸とし、管軸から左部方向に向かう
軸をX軸とし、各々反対方向に向かう軸を−Y軸と−X
軸(図示せず)とする(以下、図2〜図12において同
じ)。放送衛星と通信衛星は静止軌道が異なるため、受
信時は各々の衛星の向きにアンテナを向けるため、円偏
波と直線偏波の電波は同時に円偏波及び直線偏波共用一
次放射器に入ってくることはない。
According to the present invention, with the above-mentioned configuration, the broadcasting satellite (BS) using circular polarization and the radio waves of the communication satellite (CS) using linear polarization are circularly polarized and linearly polarized. The shared primary radiator is used to receive and receive. FIG. 1 is a partially cutaway perspective view of a circularly-polarized and linearly-polarized primary radiator showing an embodiment of the present invention. In FIG. 1, the axis extending upward from the tube axis is the Y-axis, and the tube The axis extending leftward from the axis is the X axis, and the axes extending in opposite directions are -Y axis and -X.
A shaft (not shown) (hereinafter the same in FIGS. 2 to 12). Broadcast satellites and communication satellites have different geostationary orbits, so the antennas are directed to the respective satellites at the time of reception, so that circularly polarized waves and linearly polarized waves enter the primary radiators for both circularly polarized waves and linearly polarized waves at the same time. It never comes.

【0006】従って、先ずCS受信時の作用について次
に説明する。位相器としては、図1に示すように、第1
位相回路(図1においては、金属塊3及び4)と、第2
位相回路(図1においては、誘電体板7)を円形導波管
2の内部の開口部1側から終端面5に向かって順に設け
ている。図4は、円形導波管2に導入された、水平偏波
と垂直偏波の電界分布を示す説明図であり、通信衛星は
水平偏波及び垂直偏波を通信に使用しており、通信衛星
からの水平偏波EhがX軸とY軸を2分する向きに導入さ
れ、垂直偏波Evが−X軸とY軸を2分する向きに導入さ
れたとする。
Therefore, first, the operation at the time of CS reception will be described below. As the phase shifter, as shown in FIG.
A phase circuit (in FIG. 1, metal masses 3 and 4) and a second
Phase circuits (dielectric plate 7 in FIG. 1) are provided in order from the opening 1 side inside the circular waveguide 2 toward the termination surface 5. FIG. 4 is an explanatory diagram showing the electric field distribution of the horizontal polarization and the vertical polarization introduced into the circular waveguide 2, and the communication satellite uses the horizontal polarization and the vertical polarization for communication. It is assumed that the horizontal polarization Eh from the satellite is introduced in a direction that bisects the X axis and the Y axis, and the vertical polarization Ev is introduced in a direction that bisects the -X axis and the Y axis.

【0007】最初に、円形導波管2に導入された、水平
偏波Eh及び垂直偏波Evに対する信号の出力方法について
説明する。図5(A)〜(D)は、位相器の入出力端に
おける水平偏波Ehと、垂直偏波Evの電界ベクトルの分解
図であり、(A)は水平偏波Ehの位相器の入力端におけ
る電界ベクトル分解図、(B)は垂直偏波Evの位相器の
入力端における電界ベクトル分解図、(C)は水平偏波
Ehの電界ベクトルのY軸成分の位相を180度遅延させ
た、位相器の出力端における電界ベクトル分解図、
(D)は垂直偏波Evの電界ベクトルのY軸成分の位相を
180度遅延させた、位相器の出力端における電界ベク
トル分解図である。
First, a method of outputting signals to the horizontally polarized wave Eh and the vertically polarized wave Ev introduced into the circular waveguide 2 will be described. 5A to 5D are exploded views of the electric field vectors of the horizontal polarization Eh and the vertical polarization Ev at the input / output ends of the phase shifter, and FIG. 5A is the input of the phase shifter of the horizontal polarization Eh. Electric field vector decomposition diagram at the end, (B) is an electric field vector decomposition diagram at the input end of the phaser for vertical polarization Ev, and (C) is a horizontal polarization
An electric field vector decomposition diagram at the output end of the phaser in which the phase of the Y-axis component of the electric field vector of Eh is delayed by 180 degrees,
(D) is an electric field vector decomposition diagram at the output end of the phaser in which the phase of the Y-axis component of the electric field vector of the vertically polarized wave Ev is delayed by 180 degrees.

【0008】位相器の入力端における水平偏波Ehの電界
ベクトルの分解図は、(A)図に示すように、導入され
た水平偏波の電界ベクトルをEhとすると、同電界ベクト
ルEhは、X軸方向にベクトル成分Ehx を有し、Y軸方向
にベクトル成分Ehy を有する電磁波に分解することがで
き、また、垂直偏波Evの電界ベクトルの分解図は、
(B)図に示すように、導入された垂直偏波の電界ベク
トルをEvとすると、−X軸方向にベクトル成分Evx を有
し、Y軸方向にベクトル成分Evy を有する電磁波に分解
することができる。(A)図に示す水平偏波Ehと、
(B)図に示す垂直偏波Evに対して位相器を使用して、
電界ベクトルのY軸成分の位相を180度遅延させた場
合は、水平偏波Ehの電界ベクトルは(C)図に示すよう
に、X軸方向にベクトル成分Ehx を有し、−Y軸方向に
ベクトル成分−Ehy を有する電磁波にすることができ、
垂直偏波Evの電界ベクトルは(D)図に示すように、X
軸方向にベクトル成分Evx を有し、−Y軸方向にベクト
ル成分−Evy を有する電磁波にすることができる。
An exploded view of the electric field vector of the horizontally polarized wave Eh at the input end of the phase shifter is, as shown in FIG. It can be decomposed into an electromagnetic wave having a vector component Ehx in the X-axis direction and a vector component Ehy in the Y-axis direction, and an exploded view of the electric field vector of the vertically polarized wave Ev is
As shown in the figure (B), when the electric field vector of the introduced vertically polarized wave is Ev, it can be decomposed into an electromagnetic wave having a vector component Evx in the −X axis direction and a vector component Evy in the Y axis direction. it can. Horizontally polarized wave Eh shown in FIG.
Using a phase shifter for vertically polarized Ev shown in (B),
When the phase of the Y-axis component of the electric field vector is delayed by 180 degrees, the electric field vector of the horizontal polarization Eh has a vector component Ehx in the X-axis direction and a −Y-axis direction as shown in FIG. Can be an electromagnetic wave having a vector component −Ehy,
The electric field vector of the vertically polarized wave Ev is X as shown in FIG.
An electromagnetic wave having a vector component Evx in the axial direction and a vector component -Evy in the -Y axis direction can be obtained.

【0009】位相器を通り抜けた電磁波の出力手段とし
て、図1に示すように円形導波管2の終端面5側の側面
に方形導波管9と方形導波管10とを接合し、図4に示
すように、方形導波管9は、円形導波管2の開口部から
みた方形導波管9の円形導波管2の管軸方向に向かう中
心線(図示せず)がY軸と−X軸を2分する向きに配置
し、方形導波管10は、円形導波管2の開口部からみた
方形導波管10の円形導波管2の管軸方向に向かう中心
線(図示せず)がY軸とX軸を2分する向きに配置すれ
ば、(A)図に示す水平偏波Ehは、位相器で位相が変わ
らないようにし(位相差零)、(B)図に示す垂直偏波
Evは、位相器でY軸成分の位相を180度遅延させて、
(D)図に示すような電界分布にすることにより、方形
導波管9で水平偏波Eh、あるいは垂直偏波Evの信号を取
り出すことができ、(B)図に示す垂直偏波Evは、位相
器で位相が変わらないようにし(位相差零)、(A)図
に示す水平偏波Ehは、位相器でY軸成分の位相を180
度遅延させて、(C)図に示すような電界分布にするこ
とにより、方形導波管10で水平偏波Eh、あるいは垂直
偏波Evの信号を取り出すことができる。
As a means for outputting an electromagnetic wave passing through the phase shifter, a rectangular waveguide 9 and a rectangular waveguide 10 are joined to the side surface of the circular waveguide 2 on the side of the terminal surface 5 as shown in FIG. As shown in FIG. 4, in the rectangular waveguide 9, the center line (not shown) of the rectangular waveguide 9 in the tube axis direction of the circular waveguide 2 viewed from the opening of the circular waveguide 2 is the Y-axis. And the −X axis are arranged so as to bisect each other, and the rectangular waveguide 10 has a center line (in the axial direction of the circular waveguide 2 of the rectangular waveguide 10 as seen from the opening of the circular waveguide 2 ( (Not shown) is arranged so as to bisect the Y axis and the X axis, the horizontal polarization Eh shown in the figure (A) is kept in phase by the phase shifter (zero phase difference), (B). Vertical polarization shown in the figure
Ev delays the phase of the Y-axis component by 180 degrees with a phase shifter,
By making the electric field distribution as shown in FIG. 6D, the horizontally polarized wave Eh or the vertically polarized wave Ev can be taken out by the rectangular waveguide 9, and the vertically polarized wave Ev shown in FIG. , The phase shifter does not change the phase (zero phase difference), and the horizontal polarization Eh shown in FIG.
The signal of horizontal polarization Eh or vertical polarization Ev can be taken out by the rectangular waveguide 10 by delaying the electric field distribution so that the electric field distribution shown in FIG.

【0010】次に、第1位相回路と第2位相回路で構成
された位相器の作用について説明する。図6(A)〜
(D)は、直線偏波に対する位相器の作用についての説
明図であり、(A)及び(B)図は、第1位相回路に使
用する金属塊の配置を示しており、(A)図は円形導波
管2の上下方向に金属塊3及び4を配置しており、
(B)図は円形導波管2の左右方向に金属塊11及び1
2を配置した構造としている。(C)及び(D)図は、
第2位相回路に使用する円形導波管2の管軸を中心とし
て回転可能とした誘電体板7を回転させた位置を示して
おり、(C)図は垂直の向きとし、(D)図は水平の向
きにしている。
Next, the operation of the phase shifter composed of the first phase circuit and the second phase circuit will be described. FIG. 6 (A)-
(D) is explanatory drawing about the effect | action of the phase shifter with respect to linear polarization, (A) and (B) figure has shown arrangement | positioning of the metal block used for a 1st phase circuit, (A) figure Arranges metal blocks 3 and 4 in the vertical direction of the circular waveguide 2,
(B) The figure shows metal blocks 11 and 1 in the left-right direction of the circular waveguide 2.
2 is arranged. Figures (C) and (D) show
It shows a position in which the dielectric plate 7 which is rotatable around the tube axis of the circular waveguide 2 used for the second phase circuit is rotated, and (C) is a vertical direction, and (D) is shown. Is oriented horizontally.

【0011】この位相回路に、図5(A)及び(B)に
示す、水平偏波Ehと、垂直偏波Evの電磁波が導入される
と、X軸方向のベクトル成分とY軸方向のベクトル成分
の位相速度は、 (A)図の場合、Ehy よりEhx の位相速度が速く、Evy
よりEvx の位相速度が速い。 (B)図の場合、Ehy がEhx より位相速度が速く、Evy
がEvx より位相速度が速い。 (C)図の場合、Ehy よりEhx の位相速度が速く、Evy
よりEvx の位相速度が速い。 (D)図の場合、Ehy がEhx より位相速度が速く、Evy
がEvx より位相速度が速い。
When electromagnetic waves of horizontal polarization Eh and vertical polarization Ev shown in FIGS. 5A and 5B are introduced into this phase circuit, vector components in the X-axis direction and vectors in the Y-axis direction are introduced. In the case of (A), the phase velocity of Ehx is faster than that of Ehy.
The phase velocity of Evx is faster than that of Evx. In the case of (B), Ehy has a higher phase velocity than Ehx,
Has a faster phase velocity than Evx. In the case of (C), the phase velocity of Ehx is faster than that of Ehy,
The phase velocity of Evx is faster than that of Evx. In the case of (D), Ehy has a faster phase velocity than Ehx, and Evy
Has a faster phase velocity than Evx.

【0012】従って、金属塊の形状及び長さを選択し、 (A)図の場合、Ehy がEhx に対して90度遅れになる
ように設定すると、EvyもEvx に対して90度遅れにな
る。 (B)図の場合、Ehy がEhx に対して90度進むように
設定すると、Evy もEvxに対して90度進む。 また、誘電体板7の形状及び長さを選択し、 (C)図の場合、Ehy がEhx に対して90度遅れになる
ように設定すると、EvyもEvx に対して90度遅れにな
る。 (D)図の場合、Ehy がEhx に対して90度進むように
設定すると、Evy もEvxに対して90度進む。 (A)〜(D)図において、方形導波管9は、円形導波
管2の開口部1側からみた方形導波管9の管軸の中心線
が、−X軸とY軸を2分する向きにして、円形導波管2
に接合しており、方形導波管10は、円形導波管2の開
口部1側からみた方形導波管10の管軸の中心線が、−
X軸とY軸を2分する向きにして、円形導波管2に接合
しており、方形導波管9及び方形導波管10に出力され
る信号は次の通りとなる。
Therefore, if the shape and length of the metal lump are selected and Ehy is set to be delayed by 90 degrees with respect to Ehx in the case of FIG. (A), Evy is also delayed by 90 degrees with respect to Evx. .. In the case of the diagram (B), if Ehy is set to advance 90 degrees with respect to Ehx, Evy also advances 90 degrees with respect to Evx. If the shape and length of the dielectric plate 7 are selected and Ehy is set to be delayed by 90 degrees with respect to Ehx in the case of (C), Evy is also delayed by 90 degrees with respect to Evx. In the case of the diagram (D), if Ehy is set to advance 90 degrees with respect to Ehx, Evy also advances 90 degrees with respect to Evx. 1A to 1D, in the rectangular waveguide 9, the center line of the tube axis of the rectangular waveguide 9 as viewed from the opening 1 side of the circular waveguide 2 has a -X axis and a Y axis of 2 Circular waveguide 2
In the rectangular waveguide 10, the center line of the tube axis of the rectangular waveguide 10 viewed from the opening 1 side of the circular waveguide 2 is −
Signals output to the rectangular waveguide 9 and the rectangular waveguide 10 are as follows, which are joined to the circular waveguide 2 such that the X axis and the Y axis are bisected.

【0013】第1位相回路が(A)図で、第2位相回路
が(C)図の状態の場合、
In the case where the first phase circuit is in the state of (A) and the second phase circuit is in the state of (C),

【0014】第1位相回路が(A)図で、第2位相回路
が(D)図の状態の場合、
In the case where the first phase circuit is in the state of (A) and the second phase circuit is in the state of (D),

【0015】第1位相回路が(B)図で、第2位相回路
が(C)図の状態の場合、
In the case where the first phase circuit is in the state of (B) and the second phase circuit is in the state of (C),

【0016】第1位相回路が(B)図で、第2位相回路
が(D)図の状態の場合、 従って、第1位相回路の金属塊の配置は、図(A)及
び図(B)の2通りあるが、CSの受信に関しては、誘
電体板7の回転により、水平偏波と垂直偏波を切り換え
て、方形導波管9、あるいは方形導波管10から出力す
ることができる。
In the case where the first phase circuit is in the state of (B) and the second phase circuit is in the state of (D), Therefore, although there are two ways of disposing the metal block of the first phase circuit, as shown in FIGS. (A) and (B), regarding the reception of CS, the horizontal polarization and the vertical polarization are generated by the rotation of the dielectric plate 7. It is possible to switch and output from the rectangular waveguide 9 or the rectangular waveguide 10.

【0017】次にBS受信時の作用について、以下に説
明する。図7(A)〜(E)は、円偏波に対する位相器
の作用についての説明図であり、円偏波は、2つの直交
した直線偏波の合成とみなすことができ、この2つの直
交した直線偏波の振幅が等しく、位相が90度ずれてい
る場合に円偏波となる。(A)図に示す円は、円偏波の
電界ベクトルの軌跡を示しており、X軸とY軸を2分す
る向きに電界ベクトルEを有する円偏波が円形導波管2
に導入されたとすると、円偏波はX軸方向に直線偏波成
分Exを有し、Y軸方向に直線偏波成分Eyとを有する電磁
波として表すことができる。直線偏波成分Exが、直線偏
波成分Eyより位相が遅れている場合、円偏波の電界ベク
トルEは、矢印bの向きに回転し左旋円偏波となり、直
線偏波成分Eyが、直線偏波成分Exより位相が遅れている
場合、円偏波の電界ベクトルEは、矢印aの向きに回転
し右旋円偏波となる。
Next, the operation at the time of BS reception will be described below. 7 (A) to 7 (E) are explanatory views of the action of the phase shifter on the circularly polarized waves, and the circularly polarized waves can be regarded as a combination of two orthogonal linearly polarized waves. The circularly polarized waves are circular when the amplitudes of the linearly polarized waves are equal and the phases thereof are deviated by 90 degrees. The circle shown in (A) shows the locus of the electric field vector of the circularly polarized wave, and the circularly polarized wave having the electric field vector E in the direction that bisects the X axis and the Y axis is a circular waveguide 2.
, The circularly polarized wave can be represented as an electromagnetic wave having a linearly polarized wave component Ex in the X-axis direction and a linearly polarized wave component Ey in the Y-axis direction. When the linearly polarized wave component Ex lags behind the linearly polarized wave component Ey in phase, the electric field vector E of the circularly polarized wave rotates in the direction of the arrow b to become a left-handed circularly polarized wave, and the linearly polarized wave component Ey becomes a straight line. When the phase lags the polarization component Ex, the circularly polarized electric field vector E rotates in the direction of the arrow a and becomes right circularly polarized wave.

【0018】(B)及び(C)図は、第1位相回路に使
用する金属塊の配置を示しており、(B)図は円形導波
管2の上下方向に金属塊3及び4を配置しており、
(C)図は円形導波管2の左右方向に金属塊11及び1
2を配置した構造としている。(D)及び(E)図は、
第2位相回路に使用する円形導波管2の管軸を中心とし
て回転可能とした誘電体板7を回転させた位置を示して
おり、(D)図は、誘電体板7の端面の長手方向の中心
線がX軸とY軸を2分する向きとし、(E)図は、誘電
体板7の端面の長手方向の中心線が−X軸とY軸を2分
する向きとしている。円偏波の2つの直交した直線偏波
成分は、いずれも誘電体板7と平行した伝播状態とはな
らないため、誘電体板7による位相変化は発生しない。
従って、第1位相回路の作用のみを考慮すれば良い。
FIGS. 3B and 3C show the arrangement of metal masses used in the first phase circuit, and FIG. 2B shows the metal masses 3 and 4 arranged in the vertical direction of the circular waveguide 2. And
(C) The figure shows metal blocks 11 and 1 in the left-right direction of the circular waveguide 2.
2 is arranged. Figures (D) and (E) show
It shows a position in which the dielectric plate 7 that is rotatable around the tube axis of the circular waveguide 2 used for the second phase circuit is rotated, and FIG. The center line of the direction is in a direction that bisects the X axis and the Y axis, and in (E), the center line in the longitudinal direction of the end surface of the dielectric plate 7 is in a direction that bisects the -X axis and the Y axis. Since neither of the two orthogonally polarized linearly polarized components of the circularly polarized wave is in the propagation state parallel to the dielectric plate 7, the phase change due to the dielectric plate 7 does not occur.
Therefore, it suffices to consider only the operation of the first phase circuit.

【0019】第1位相回路が(B)図で、第2位相回路
が、(D)か(E)図の状態の場合、
In the case where the first phase circuit is in the state of (B) and the second phase circuit is in the state of (D) or (E),

【0020】第1位相回路が(C)図で、第2位相回路
が、(D)か(E)図の状態の場合、
When the first phase circuit is in the state of (C) and the second phase circuit is in the state of (D) or (E),

【0021】従って、方形導波管9、あるいは方形導波
管10から出力する信号が左旋円偏波を変換したもの
か、あるいは右旋円偏波を変換したものかによって、第
1位相回路が(B)図のものか、または(C)図のもの
かを使い分けし、第1位相回路で円偏波を直線偏波に変
換し、方形導波管から前記直線偏波に変換された信号を
出力することができる。方形導波管9にCSコンバータ
を接続し、方形導波管10にBSコンバータを接続した
場合で、BSの右旋円偏波を受信する場合、表5から第
1位相回路が図7(B)のものを使用し、第2位相回路
を回転させて図7(D)か(E)の状態とし、CSの直
線偏波を受信する場合、表1及び表2から、第2位相回
路を回転させて、図6(C)の状態にすることにより垂
直偏波を受信することができ、また、第2位相回路を回
転させて、図6(D)の状態にすることにより水平偏波
を受信することができる。
Therefore, depending on whether the signal output from the rectangular waveguide 9 or the rectangular waveguide 10 is a left-handed circularly polarized wave converted signal or a right-handed circularly polarized wave converted signal, the first phase circuit is A signal obtained by converting the circularly polarized wave into the linearly polarized wave by the first phase circuit by selectively using the one shown in (B) or the one shown in (C), and converting it from the rectangular waveguide into the linearly polarized wave. Can be output. When the CS converter is connected to the rectangular waveguide 9 and the BS converter is connected to the rectangular waveguide 10, when the right-hand circularly polarized wave of BS is received, from Table 5, the first phase circuit is shown in FIG. 7) is used to rotate the second phase circuit to the state of FIG. 7 (D) or (E) and to receive the linearly polarized wave of CS, from Table 1 and Table 2, the second phase circuit Vertically polarized waves can be received by rotating the second phase circuit to the state shown in FIG. 6C, and horizontally polarized wave by rotating the second phase circuit to the state shown in FIG. 6D. Can be received.

【0022】あるいは、前記例でBSの左旋円偏波を受
信する場合、表6から第1位相回路が図7(C)のもの
を使用し、第2位相回路を回転させて図7(D)か
(E)の状態とし、CSの直線偏波を受信する場合、表
3及び表4から、第2位相回路を回転させて、図6
(C)の状態にすることにより水平偏波を受信すること
ができ、また、第2位相回路を回転させて、図6(D)
の状態にすることにより垂直偏波を受信することができ
る。従って、円偏波を使用した衛星放送電波と、直線偏
波を使用した通信衛星電波とを、同一の一次放射器で受
けて受信することが可能となる。
Alternatively, in the case of receiving the left-handed circularly polarized wave of the BS in the above example, from Table 6, the first phase circuit shown in FIG. 7 (C) is used, and the second phase circuit is rotated to obtain the state shown in FIG. ) Or (E), when receiving the linearly polarized wave of CS, from Table 3 and Table 4, the second phase circuit is rotated to
Horizontal polarization can be received in the state of (C), and the second phase circuit is rotated to obtain the state of FIG.
Vertical polarization can be received in this state. Therefore, it is possible to receive and receive satellite broadcast radio waves using circular polarization and communication satellite radio waves using linear polarization by the same primary radiator.

【0023】[0023]

【実施例】図1は、本発明の一実施例を示す円偏波及び
直線偏波共用一次放射器の一部切欠き斜視図であり、円
形導波管2の一端をホーン形状として電磁波を効率良く
円形導波管2に導入し得る開口部1とし、円形導波管2
の他端を導入された電磁波を反射せしめる終端面5と
し、開口部1側から終端面5に向かって順に、円形導波
管2の内部に固定式の第1位相回路と、回転式の第2位
相回路を設けている。図1の実施例では第1位相回路と
して金属塊3及び4で構成された90度位相器を使用し
ており、円形導波管2の内部の円形表面の上部及び下部
の対向する円弧が平面になるように金属塊3及び4を取
り付け、円形導波管2の管軸方向に沿った金属塊3及び
4の長さを、円形導波管2の内部を伝播する電磁波のT
E11モードの直交する2つの偏波成分間の位相差を9
0度にできる長さとしている。前記金属塊3及び4は、
どちらか一方のみを使用するようにしても良いが、この
場合は、90度位相器とするため金属塊の円形導波管2
の管軸方向に沿った長さを長くする必要がある。
FIG. 1 is a partially cutaway perspective view of a primary radiator for circular polarization and linear polarization, showing an embodiment of the present invention. The circular waveguide 2 has an opening 1 that can be efficiently introduced into the circular waveguide 2.
The other end of which is used as a terminating surface 5 for reflecting the introduced electromagnetic wave, and a fixed first phase circuit and a rotating first phase circuit are sequentially provided inside the circular waveguide 2 from the opening 1 side toward the terminating surface 5. A two-phase circuit is provided. In the embodiment of FIG. 1, a 90-degree phaser composed of metal lumps 3 and 4 is used as the first phase circuit, and the opposing arcs of the upper and lower circular surfaces inside the circular waveguide 2 are flat. The metal lumps 3 and 4 are attached so that the length of the metal lumps 3 and 4 along the tube axis direction of the circular waveguide 2 becomes T of the electromagnetic wave propagating inside the circular waveguide 2.
The phase difference between two orthogonal polarization components of E11 mode is 9
The length is set to 0 degrees. The metal blocks 3 and 4 are
Only one of them may be used, but in this case, since it is a 90-degree phase shifter, the circular waveguide 2 of a metal block is used.
It is necessary to increase the length along the tube axis direction of.

【0024】金属塊3及び4の表面は略平面状としてい
るが、円形導波管2の内部を伝播する電磁波のTE11
モードの直交する2つの偏波成分間に位相差を発生させ
るためには、X軸方向とY軸方向との内径差を設ければ
良く、金属塊3及び4の表面を平面状とする代わりに、
表面を盛り上げて円形導波管2の開口部1からみた形を
円弧状にしても良く、加工のしやすさによって選択が可
能である。図1の実施例では、第2位相回路として誘電
体板7で構成された90度位相器を使用しており、円形
導波管2の管軸を中心とし誘電体板7を回転させること
ができるようにし、誘電体板7の円形導波管2の管軸方
向に沿った長手方向の長さを円形導波管2の内部を伝播
する電磁波のTE11モードの直交する2つの偏波成分
間の位相差を90度にできる長さとしている。
The surfaces of the metal ingots 3 and 4 are substantially flat, but the TE 11 of the electromagnetic wave propagating inside the circular waveguide 2 is formed.
In order to generate a phase difference between two polarization components orthogonal to each other, it is sufficient to provide an inner diameter difference between the X-axis direction and the Y-axis direction. Instead of making the surfaces of the metal ingots 3 and 4 flat. To
The surface may be raised so that the shape of the circular waveguide 2 seen from the opening 1 may be an arc shape, and the shape can be selected depending on the ease of processing. In the embodiment shown in FIG. 1, a 90-degree phaser composed of a dielectric plate 7 is used as the second phase circuit, and the dielectric plate 7 can be rotated about the tube axis of the circular waveguide 2. The length of the dielectric plate 7 in the longitudinal direction along the tube axis direction of the circular waveguide 2 is set between two orthogonal polarization components of the TE11 mode of the electromagnetic wave propagating inside the circular waveguide 2. The phase difference is set to 90 degrees.

【0025】誘電体板7の回転機構としては、円形導波
管2の終端面5の外側に駆動部6を設け、駆動部6とし
ては例えばモータ等を使用し、同モータの回転と連動し
て回転する回転軸8を設けて、誘電体板7の短辺方向の
中心に取り付け、誘電体板7を円形導波管2の管軸を中
心として回転できるようにしている。誘電体板7の短辺
方向の端面の形状は、略V字形の形状としているが、位
相回路としての整合がとれるようであれば、他の形状に
しても良い。また、駆動部6を使用する代わりに、手動
で誘電体板7を回転させるようにしても良い。円形導波
管2の内部に導入された電磁波の出力手段として、第2
位相回路と終端面5の間の円形導波管2の側面に方形導
波管9及び方形導波管10を接合しており、図2は、図
1の正面図であり、同図に示すように、円形導波管2の
開口部1からみた金属塊3及び4の管軸方向に向かう中
心線(図示せず)と方形導波管9の円形導波管2の管軸
方向に向かう中心線(図示せず)とが約45度の角度を
なし、−X軸とY軸を2分する向きに方形導波管9を配
置し、方形導波管10は、同方形導波管10の円形導波
管2の管軸方向に向かう中心線(図示せず)が、X軸と
Y軸を2分する向きとし、前記方形導波管9の円形導波
管2の管軸方向に向かう中心線に対して、直角となるよ
うに配置している。
As a rotating mechanism of the dielectric plate 7, a driving unit 6 is provided outside the end surface 5 of the circular waveguide 2, and a motor or the like is used as the driving unit 6, and it is interlocked with the rotation of the motor. A rotating shaft 8 for rotating is provided at the center of the dielectric plate 7 in the short side direction so that the dielectric plate 7 can rotate about the tube axis of the circular waveguide 2. The shape of the end surface of the dielectric plate 7 in the short side direction is substantially V-shaped, but other shapes may be used as long as they can be matched as a phase circuit. Further, instead of using the drive unit 6, the dielectric plate 7 may be manually rotated. As a means for outputting the electromagnetic wave introduced into the circular waveguide 2, the second
A rectangular waveguide 9 and a rectangular waveguide 10 are joined to the side surface of the circular waveguide 2 between the phase circuit and the termination surface 5, and FIG. 2 is a front view of FIG. 1 and is shown in FIG. Thus, the center lines (not shown) of the metal lumps 3 and 4 directed from the opening 1 of the circular waveguide 2 toward the tube axis direction and the rectangular waveguide 9 toward the tube axis direction of the circular waveguide 2. The center line (not shown) makes an angle of about 45 degrees, and the rectangular waveguide 9 is arranged in a direction that bisects the -X axis and the Y axis. The rectangular waveguide 10 is a rectangular waveguide. The center line (not shown) of the circular waveguide 2 of the circular waveguide 10 has a direction that bisects the X axis and the Y axis. It is placed at a right angle to the center line toward.

【0026】図3(A)は、本発明のその他の実施例を
示す円偏波及び直線偏波共用一次放射器の一部切欠き斜
視図であり、図1に示す実施例との相違は、第1位相回
路として金属塊10及び11で構成された90度位相器
を使用しており、円形導波管の内部の円形表面の左部及
び右部の対向する円弧が平面になるようにして、金属塊
10及び11を取り付けた点であり、その他の部分の構
成は図1の実施例と同様にしている。図3(B)は、図
3(A)の正面図であり、円形導波管2の開口部1から
みた金属塊10及び11の管軸方向に向かう中心線(図
示せず)と、方形導波管9及び方形導波管10の円形導
波管2の管軸方向に向かう中心線(図示せず)とが約4
5度の角度をなすように配置し、方形導波管9と方形導
波管10の各々の円形導波管2の管軸方向に向かう中心
線同士が直角となるように配置している。
FIG. 3A is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization showing another embodiment of the present invention, which is different from the embodiment shown in FIG. , A 90-degree phaser composed of metal lumps 10 and 11 is used as the first phase circuit, and the arcs on the left and right sides of the circular surface inside the circular waveguide are arranged to be flat. The metal lumps 10 and 11 are attached, and the configuration of the other portions is the same as that of the embodiment of FIG. 3 (B) is a front view of FIG. 3 (A), and a center line (not shown) of the metal ingots 10 and 11 as seen from the opening 1 of the circular waveguide 2 in the tube axis direction, and a square shape. The center line (not shown) of the waveguide 9 and the rectangular waveguide 10 in the tube axis direction of the circular waveguide 2 is about 4
The rectangular waveguides 9 and 10 are arranged so as to form an angle of 5 degrees, and the center lines of the circular waveguides 2 of the rectangular waveguide 9 and the rectangular waveguide 2 in the tube axis direction are perpendicular to each other.

【0027】図8は、本発明の他の実施例を示す、円偏
波及び直線偏波共用一次放射器の一部切欠き斜視図であ
り、図1に示す実施例との相違は、円形導波管2の内部
に導入した電磁波の信号出力手段として用いる方形導波
管9及び14を、円形導波管2の管軸方向に沿い、誘電
体板7と終端面5の間に位置するように、円形導波管2
の側面に並べて配置している点であり、その他の部分の
構成は図1の実施例と同様にしている。図9(A)図
は、図8の要部拡大図であり、(B)図は、(A)の正
面図であり、方形導波管9は図1に示す実施例と同様
に、円形導波管2の開口部1からみた方形導波管9の円
形導波管2の管軸方向に向かう中心線が、−X軸とY軸
を2分する向きにして、結合用スリット16を介して円
形導波管2に接合している。方形導波管9では、結合用
スリット16の開口面と平行な、X軸とY軸を2分する
向きに平行な電界を有する直線偏波の電磁波を出力する
ことができる。
FIG. 8 is a partially cutaway perspective view of a circularly-polarized and linearly-polarized primary radiator showing another embodiment of the present invention. The difference from the embodiment shown in FIG. 1 is a circle. The rectangular waveguides 9 and 14 used as signal output means of electromagnetic waves introduced into the waveguide 2 are located between the dielectric plate 7 and the terminal surface 5 along the tube axis direction of the circular waveguide 2. Circular waveguide 2
It is arranged side by side on the same side, and the configuration of the other parts is the same as that of the embodiment of FIG. FIG. 9 (A) is an enlarged view of a main part of FIG. 8, (B) is a front view of (A), and the rectangular waveguide 9 is circular as in the embodiment shown in FIG. When the center line of the rectangular waveguide 9 as viewed from the opening 1 of the waveguide 2 toward the tube axis direction of the circular waveguide 2 is oriented such that the −X axis and the Y axis are bisected, the coupling slit 16 is formed. It is joined to the circular waveguide 2 via. The rectangular waveguide 9 can output a linearly polarized electromagnetic wave having an electric field parallel to the opening surface of the coupling slit 16 and parallel to the direction that bisects the X axis and the Y axis.

【0028】方形導波管14は励振用プローブ13を介
して電気的に円形導波管2と接続しており、プローブ1
3の一端は−X軸とY軸を2分する向きにして、円形導
波管2の内部に挿入しており、プローブ13は−X軸と
Y軸を2分する向きに平行な電界を有する直線偏波を電
気信号に変換し、同電気信号をプローブ13の他端に伝
え、同プローブ13の他端は方形導波管14の内部に挿
入され、略L字状に形成されており、略L字状に形成さ
れた部分で電磁波を励振させる。方形導波管9は結合用
スリット16を介して円形導波管2と接続し、方形導波
管14はプローブ13を介して円形導波管2と接続と接
続することにより、方形導波管9と方形導波管14は円
形導波管2に対して同一方向から接合することができ、
従って、加工をし易くし、また、リフレクタに取り付け
る場合も同一方向に方形導波管が引き出してあるため、
取り扱いし易い。プローブ13の取付位置は、円形導波
管2の管軸方向に沿った終端面5からの距離をプローブ
13に結合させる電磁波の波長の略1/4の長さとし、
方形導波管14に対する挿入の深さも同様に、プローブ
13で励振させる電磁波の波長の略1/4の長さとし、
その他の円形導波管2に挿入する深さ、あるいはL字状
に曲げた部分の長さは、方形導波管14の内部で効率良
く電磁波を励振できるように調整する。
The rectangular waveguide 14 is electrically connected to the circular waveguide 2 through the excitation probe 13, and the probe 1
One end of 3 is inserted into the inside of the circular waveguide 2 so that the −X axis and the Y axis are bisected, and the probe 13 generates an electric field parallel to the direction that bisects the −X axis and the Y axis. The linearly polarized wave which it has is converted into an electric signal, the same electric signal is transmitted to the other end of the probe 13, and the other end of the same probe 13 is inserted into the inside of the rectangular waveguide 14 and is formed in a substantially L shape. , Electromagnetic waves are excited at the portion formed in the substantially L shape. The rectangular waveguide 9 is connected to the circular waveguide 2 via the coupling slit 16, and the rectangular waveguide 14 is connected to the circular waveguide 2 via the probe 13 to form a rectangular waveguide. 9 and the rectangular waveguide 14 can be joined to the circular waveguide 2 from the same direction,
Therefore, it is easy to process, and since the rectangular waveguide is pulled out in the same direction when attached to the reflector,
Easy to handle. The mounting position of the probe 13 is such that the distance from the terminating surface 5 along the tube axis direction of the circular waveguide 2 is approximately ¼ of the wavelength of the electromagnetic wave coupled to the probe 13,
Similarly, the depth of insertion into the rectangular waveguide 14 is set to be about 1/4 of the wavelength of the electromagnetic wave excited by the probe 13,
The depth to be inserted into the other circular waveguide 2 or the length of the portion bent into the L-shape is adjusted so that electromagnetic waves can be efficiently excited inside the rectangular waveguide 14.

【0029】例えば、方形導波管9に導入する電磁波
が、円形導波管2の終端面5や、プローブ13からの反
射波等の影響により不整合状態とならないようにして、
効率良く方形導波管9に電磁波を導入するため、略長方
形の金属板15を使用し、円形導波管2の側面からみた
取り付け位置を、方形導波管9の結合用スリット16と
円形導波管2の終端面5間とし、円形導波管2の開口か
らみた取り付け位置は、X軸とY軸を2分する向きに
し、略長方形の金属板15の長手方向の両端を円形導波
管2の内壁で挟持させ、金属板15の長手方向の略中央
部分を半円状に湾曲させて、同湾曲に回転軸8を通し
て、回転軸8は自在に回転できるようにしても良い。
For example, the electromagnetic wave introduced into the rectangular waveguide 9 is prevented from being in a mismatched state due to the influence of the reflected wave from the terminal surface 5 of the circular waveguide 2 or the probe 13,
In order to efficiently introduce an electromagnetic wave into the rectangular waveguide 9, a substantially rectangular metal plate 15 is used, and the mounting position viewed from the side surface of the circular waveguide 2 is changed to the coupling slit 16 of the rectangular waveguide 9 and the circular waveguide. Between the end faces 5 of the wave tube 2, the mounting position viewed from the opening of the circular waveguide 2 is such that the X axis and the Y axis are bisected, and both ends of the substantially rectangular metal plate 15 in the longitudinal direction are circular waveguides. The metal plate 15 may be sandwiched by the inner wall of the tube 2, and the substantially central portion of the metal plate 15 in the longitudinal direction may be curved in a semicircular shape, and the rotary shaft 8 may be passed through the curved line so that the rotary shaft 8 can freely rotate.

【0030】図10(A)は、本発明の他の実施例を示
す、円偏波及び直線偏波共用一次放射器の一部切欠き斜
視図であり、図10(B)は同上の正面図である。図1
及び図2に示す方形導波管9及び方形導波管10の代わ
りに、励振用プローブ17及び18を信号取り出し手段
として用いている。プローブ17及び18は、方形導波
管9及び方形導波管10を使用する場合と同様に、第2
位相回路と終端面5の間の円形導波管2の側面に取り付
けるようにし、図10(B)に示すように、円形導波管
2の開口部1からみた金属塊3及び4の管軸方向に向か
う中心線(図示せず)と、プローブ17及び18の円形
導波管2の管軸方向に向かう各々の中心線(図示せず)
とが約45度の角度をなすように円形導波管2に取り付
けている。
FIG. 10 (A) is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, showing another embodiment of the present invention, and FIG. 10 (B) is a front view of the same. It is a figure. Figure 1
Further, instead of the rectangular waveguide 9 and the rectangular waveguide 10 shown in FIG. 2, the excitation probes 17 and 18 are used as signal extracting means. The probes 17 and 18 are similar to those in the case where the rectangular waveguide 9 and the rectangular waveguide 10 are used.
It is attached to the side surface of the circular waveguide 2 between the phase circuit and the termination surface 5, and as shown in FIG. 10B, the tube axes of the metal lumps 3 and 4 seen from the opening 1 of the circular waveguide 2. Center line (not shown) directed to each direction, and each center line (not shown) directed to the tube axis direction of the circular waveguide 2 of the probes 17 and 18.
Are attached to the circular waveguide 2 so that and form an angle of about 45 degrees.

【0031】プローブ17の円形導波管2の管軸方向に
向かう中心線は、−X軸とY軸を2分する向きとしてお
り、−X軸とY軸を2分する向きに平行な電界を有する
直線偏波を電気信号に変換して出力することができ、プ
ローブ18の円形導波管2の管軸方向に向かう中心線
は、X軸とY軸を2分する向きとしており、X軸とY軸
を2分する向きに平行な電界を有する直線偏波を電気信
号に変換して出力することができ、方形導波管9及び方
形導波管10を用いた場合と同様に、円形導波管2に導
入された電磁波から信号を取り出すことができる。
The center line of the probe 17 in the direction of the tube axis of the circular waveguide 2 is oriented so as to divide the −X axis and the Y axis into two, and the electric field parallel to the direction dividing the −X axis and the Y axis into two. Can be converted into an electric signal and output. The center line of the probe 18 in the direction of the tube axis of the circular waveguide 2 has a direction that bisects the X axis and the Y axis. A linearly polarized wave having an electric field parallel to the direction that bisects the axis and the Y axis can be converted into an electric signal and output, and as in the case of using the rectangular waveguide 9 and the rectangular waveguide 10, A signal can be taken out from the electromagnetic wave introduced into the circular waveguide 2.

【0032】図11(A)は、本発明のその他の実施例
を示す円偏波及び直線偏波共用一次放射器の一部切欠き
斜視図であり、図1において位相回路として使用してい
る金属塊3及び4の代わりに、他の位相回路を使用する
ようにしたものであり、(A)図では略長方形の金属板
19及び20を使用しており、円形導波管2の内部表面
の上部と下部の対向する円弧の中心に取り付け、金属板
19及び20の短辺方向が円形導波管2の管軸に向かう
ようにし、円形導波管2の管軸方向に沿った金属板19
及び20の長手方向の長さを、円形導波管2の内部を伝
播する電磁波のTE11モードの直交する2つの偏波成
分間の位相差を90度とすることができる長さとしてい
る。図11(B)は、図(A)の正面図であり、円形導
波管2の開口部1からみた金属板19及び20の管軸方
向に向かう中心線(図示せず)と、方形導波管9及び方
形導波管10の円形導波管2の管軸方向に向かう中心線
(図示せず)とが約45度の角度をなすように配置し、
方形導波管9と方形導波管10の各々の円形導波管2の
管軸方向に向かう中心線同士が直角となるように配置し
ている。 金属板19及び20の短辺方向の端面の形状
は、段差を中間に設けた形状としているが、位相器とし
て整合がとれるようであれば他の形状としても良い。ま
た、前記金属板19及び20は、どちらか一方のみを使
用するようにしても良いが、この場合は、位相差を90
度とするため前記金属板の長辺方向の長さを長くする必
要がある。
FIG. 11A is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, showing another embodiment of the present invention, which is used as a phase circuit in FIG. Instead of the metal blocks 3 and 4, another phase circuit is used. In FIG. (A), substantially rectangular metal plates 19 and 20 are used, and the inner surface of the circular waveguide 2 is used. Of the metal plates 19 and 20 so that the shorter sides of the metal plates 19 and 20 are oriented toward the tube axis of the circular waveguide 2, and the metal plates along the tube axis direction of the circular waveguide 2 are attached. 19
The lengths of 20 and 20 in the longitudinal direction are set so that the phase difference between two orthogonal polarization components of the TE11 mode of the electromagnetic wave propagating inside the circular waveguide 2 can be 90 degrees. FIG. 11 (B) is a front view of FIG. 11 (A), which shows center lines (not shown) of the metal plates 19 and 20 as viewed from the opening 1 of the circular waveguide 2 in the tube axis direction and a rectangular guide. The wave guide 9 and the rectangular wave guide 10 are arranged so that the center line (not shown) of the circular wave guide 2 toward the tube axis direction forms an angle of about 45 degrees,
The rectangular waveguides 9 and 10 are arranged such that the center lines of the circular waveguides 2 of the circular waveguides 2 in the tube axis direction are at right angles. The shape of the end faces of the metal plates 19 and 20 in the short side direction is a shape in which a step is provided in the middle, but any other shape may be used as long as matching can be achieved as a phase shifter. Further, although only one of the metal plates 19 and 20 may be used, in this case, the phase difference is 90%.
In order to adjust the degree, it is necessary to increase the length of the metal plate in the long side direction.

【0033】図12(A)は、本発明のその他の実施例
を示す円偏波及び直線偏波共用一次放射器の一部切欠き
斜視図であり、図1において位相回路として使用してい
る金属塊3及び4の代わりに、他の位相回路を使用する
ようにしたものであり、(A)図では金属製ビス21及
び22を複数個使用しており、円形導波管2の内部表面
の上部と下部の対向する円弧の中心に、管軸方向に沿っ
て並べて取り付け、各々の金属製ビスの先端が円形導波
管2の管軸に向かうようにし、円形導波管2の管軸方向
に沿って並べて取り付けた長さを、円形導波管2の内部
を伝播する電磁波のTE11モードの直交する2つの偏
波成分間の位相差を90度とすることができる長さとし
ている。
FIG. 12A is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, showing another embodiment of the present invention, which is used as a phase circuit in FIG. Instead of the metal blocks 3 and 4, another phase circuit is used. In FIG. (A), a plurality of metal screws 21 and 22 are used, and the inner surface of the circular waveguide 2 is used. Are mounted side by side along the tube axis direction at the centers of the arcs of the upper and lower parts of the circular waveguide 2 facing each other so that the tips of the metal screws face the tube axis of the circular waveguide 2. The lengths arranged side by side along the direction are set so that the phase difference between two orthogonal polarization components of the TE11 mode of the electromagnetic wave propagating inside the circular waveguide 2 can be 90 degrees.

【0034】図12(B)は図(A)の正面図であり、
円形導波管2の開口部1からみた前記金属製ビスの管軸
方向に向かう中心線(図示せず)と、方形導波管9及び
方形導波管10の円形導波管2の管軸方向に向かう中心
線(図示せず)とが約45度の角度をなすように配置
し、方形導波管9と方形導波管10の各々の円形導波管
2の管軸方向に向かう中心線同士が直角となるように配
置している。前記金属製ビスの列を円形導波管2の内部
表面の上部と下部の2列としているが、どちらか一方の
列のみを使用するようにしても良いが、この場合は、位
相差を90度とするため前記金属製ビスの列の長さを長
くする必要がある。図11及び図12に示す位相回路を
使用しても、図1に使用した金属塊3及び4と同様の効
果を得ることができる。なお、図1、図8、図10〜図
12における30及び31、図3(A)における30及
び32、並びに図9における33、34、35、36及
び37は、切欠き線を示す。
FIG. 12B is a front view of FIG.
The center line (not shown) of the metal screw in the direction of the tube axis as viewed from the opening 1 of the circular waveguide 2 and the tube axes of the rectangular waveguide 2 of the rectangular waveguide 9 and the rectangular waveguide 10. The center of the circular waveguide 2 of each of the rectangular waveguide 9 and the rectangular waveguide 10 is arranged so as to form an angle of about 45 degrees with a center line (not shown) directed in the direction. The lines are arranged so that they are at right angles. Although the rows of the metal screws are the two rows of the upper portion and the lower portion of the inner surface of the circular waveguide 2, it is possible to use only one of the rows, but in this case, the phase difference is 90 degrees. The length of the row of metal screws must be increased in order to adjust the degree. Even if the phase circuits shown in FIGS. 11 and 12 are used, the same effect as that of the metal ingots 3 and 4 used in FIG. 1 can be obtained. In addition, 30 and 31 in FIGS. 1, 8, and 10 to 12, 30 and 32 in FIG. 3A, and 33, 34, 35, 36, and 37 in FIG. 9 represent cutout lines.

【0035】[0035]

【発明の効果】以上説明したように、本発明によればB
S用及びCS用に共用とした円偏波及び直線偏波共用一
次放射器を使用して、同一次放射器をリフレクタの焦点
に配置し、リフレクタの向きをBS受信のときは放送衛
星の方向にし、CS受信のときは通信衛星の方向にし
て、BS及びCSを受信可能としており、従来のように
同一リフレクタにBS用の一次放射器とCS用の一次放
射器を並べて取り付け、リフレクタの焦点をずらせて、
リフレクタの一端の焦点にBS用の一次放射器を配置
し、リフレクタの他端の焦点にCS用の一次放射器を配
置して、リフレクタの向きを各々の衛星の向きにして、
BSの電波及びCSの電波を受信するようにしたものよ
り、構造が簡単で価格の安い、経済的な受信システムを
提供することができる。
As described above, according to the present invention, B
The primary radiators for both circular polarization and linear polarization that are shared for S and CS are used, and the same primary radiator is placed at the focal point of the reflector, and the direction of the reflector is the direction of the broadcasting satellite when receiving BS. In the case of CS reception, BS and CS can be received in the direction of the communication satellite. As in the conventional case, the BS primary radiator and the CS primary radiator are mounted side by side on the same reflector, and the focus of the reflector is adjusted. Shift
The BS primary radiator is arranged at the focal point of one end of the reflector, the CS primary radiator is arranged at the focal point of the other end of the reflector, and the orientation of the reflector is set to the direction of each satellite.
It is possible to provide an economical receiving system having a simple structure and a low price, as compared with a device that receives BS radio waves and CS radio waves.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す円偏波及び直線偏波共
用一次放射器の一部切欠き斜視図である。
FIG. 1 is a partially cutaway perspective view of a circularly-polarized and linearly-polarized primary radiator according to an embodiment of the present invention.

【図2】図1の正面図である。FIG. 2 is a front view of FIG.

【図3】(A)図は、本発明のその他の実施例を示す円
偏波及び直線偏波共用一次放射器の一部切欠き斜視図で
あり、(B)図は、正面図である。
FIG. 3 (A) is a partially cutaway perspective view of a circularly-polarized and linearly-polarized primary radiator showing another embodiment of the present invention, and FIG. 3 (B) is a front view. ..

【図4】円形導波管2に導入された、水平偏波と垂直偏
波の電界分布を示す説明図である。
FIG. 4 is an explanatory diagram showing electric field distributions of horizontal polarization and vertical polarization introduced into the circular waveguide 2.

【図5】(A)〜(D)図は位相器の入出力端における
水平偏波Ehと、垂直偏波Evの電界ベクトルの分解図であ
る。
5A to 5D are exploded views of electric field vectors of a horizontal polarization Eh and a vertical polarization Ev at an input / output end of a phase shifter.

【図6】(A)〜(D)図は直線偏波に対する位相器の
作用についての説明図である。
6A to 6D are explanatory views of the action of the phase shifter for linearly polarized waves.

【図7】(A)〜(E)図は、円偏波に対する位相器の
作用についての説明図である。
FIGS. 7A to 7E are explanatory views of the action of the phase shifter on circularly polarized waves.

【図8】本発明のその他の実施例を示す円偏波及び直線
偏波共用一次放射器の一部切欠き斜視図である。
FIG. 8 is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, showing another embodiment of the present invention.

【図9】(A)図は、図8の要部拡大図であり、(B)
図は、(A)の正面図である。
FIG. 9 (A) is an enlarged view of a main part of FIG. 8 (B).
The figure is a front view of (A).

【図10】(A)図は、本発明のその他の実施例を示す
円偏波及び直線偏波共用一次放射器の一部切欠き斜視図
であり、図1の方形導波管を使用する代わりに励振用プ
ローブを使用した例であり、(B)図は、(A)図の正
面図である。
10A is a partially cutaway perspective view of a primary radiator for both circularly polarized light and linearly polarized light, showing another embodiment of the present invention, which uses the rectangular waveguide of FIG. 1. FIG. This is an example in which an excitation probe is used instead, and (B) is a front view of (A).

【図11】(A)図は、本発明のその他の実施例を示す
円偏波及び直線偏波共用一次放射器の一部切欠き斜視図
であり、図1の金属塊を使用する代わりに金属板を使用
した例であり、(B)図は、(A)図の正面図である。
11 (A) is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, showing another embodiment of the present invention. Instead of using the metal block of FIG. This is an example in which a metal plate is used, and (B) is a front view of (A).

【図12】(A)図は、本発明のその他の実施例を示す
円偏波及び直線偏波共用一次放射器の一部切欠き斜視図
であり、図1の金属塊を使用する代わりに金属製ビスを
使用した例であり、(B)図は、(A)図の正面図であ
る。
12 (A) is a partially cutaway perspective view of a primary radiator for both circularly polarized light and linearly polarized light, showing another embodiment of the present invention. Instead of using the metal block of FIG. 1, FIG. This is an example in which a metal screw is used, and (B) is a front view of (A).

【図13】リフレクタと一次放射器の配置を示す説明図
であり、(A)図は、従来例を示し、(B)図は、本発
明の実施例を示す。
13A and 13B are explanatory views showing an arrangement of a reflector and a primary radiator, FIG. 13A shows a conventional example, and FIG. 13B shows an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 開口部 2 円形導波管 3 金属塊 4 金属塊 5 終端面 6 駆動部 7 誘電体板 8 回転軸 9 方形導波管 10 方形導波管 11 金属塊 12 金属塊 13 プローブ 14 方形導波管 15 金属板 16 スリット 17 プローブ 18 プローブ 19 金属板 20 金属板 21 金属製ビス 22 金属製ビス 23 一次放射器 24 一次放射器 25 リフレクタ 26 リフレクタ 27 一次放射器 30 切欠き線 31 切欠き線 32 切欠き線 33 切欠き線 34 切欠き線 35 切欠き線 36 切欠き線 37 切欠き線 1 Opening 2 Circular Waveguide 3 Metal Lump 4 Metal Lump 5 End Surface 6 Driving Part 7 Dielectric Plate 8 Rotation Axis 9 Square Waveguide 10 Square Waveguide 11 Metal Lump 12 Metal Lump 13 Probe 14 Square Waveguide 15 Metal Plate 16 Slit 17 Probe 18 Probe 19 Metal Plate 20 Metal Plate 21 Metal Screw 22 Metal Screw 23 Primary Radiator 24 Primary Radiator 25 Reflector 26 Reflector 27 Primary Radiator 30 Notch Line 31 Notch Line 32 Notch Line 33 Notch line 34 Notch line 35 Notch line 36 Notch line 37 Notch line

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一端を電磁波が導入し得る開口部とし、
他端に終端面を設けた円形導波管において、同円形導波
管の内部に開口部側から終端面に向かって順に、固定式
の第1位相回路と、回転式の第2位相回路とを設け、前
記第2位相回路と前記終端面の間に、円形導波管の内部
を伝播する電磁波のTE11モードの垂直方向及び水平
方向成分に各々結合せしめる2つの出力手段を設けて、
円偏波の電磁波が導入された場合は、前記第1位相回路
で直線偏波に変換し、前記第2位相回路を回転させて前
記直線偏波の直交する2つの偏波成分間の位相が変化し
ない向きとして、前記出力手段の一方から信号を取り出
し、直線偏波が導入された場合は、水平及び垂直偏波の
内どちらか一方に対しては、同直線偏波の直交する2つ
の偏波成分間に対して前記第1位相回路で発生させた位
相差を、前記第2位相回路を回転させて同相となる向き
として、前記出力手段の他方から信号を取り出し、直線
偏波の他方に対しては、前記位相差が、前記第1位相回
路と前記第2位相回路とで約180度となるように、前
記第2位相回路を回転させて、前記出力手段の他方から
信号を取り出すことを特徴とする円偏波及び直線偏波共
用一次放射器。
1. An opening at one end of which electromagnetic waves can be introduced,
In a circular waveguide having a terminating surface at the other end, a fixed first phase circuit and a rotating second phase circuit are sequentially arranged inside the circular waveguide from the opening side toward the terminating surface. Is provided between the second phase circuit and the terminal surface, and two output means for respectively coupling the vertical and horizontal components of the TE11 mode of the electromagnetic wave propagating inside the circular waveguide are provided,
When a circularly polarized electromagnetic wave is introduced, the first phase circuit converts the electromagnetic wave into a linearly polarized wave, and the second phase circuit is rotated to cause a phase difference between two orthogonal polarization components of the linearly polarized wave. When a signal is taken out from one of the output means and a linearly polarized wave is introduced as a direction that does not change, for either one of the horizontal and vertical polarized waves, two orthogonal polarized waves of the same linearly polarized wave are used. The phase difference generated in the first phase circuit between the wave components is set as the direction in which the second phase circuit is rotated to be in phase, and a signal is taken out from the other of the output means to the other of the linearly polarized waves. On the other hand, the second phase circuit is rotated so that the phase difference is about 180 degrees between the first phase circuit and the second phase circuit, and a signal is taken out from the other of the output means. Primary radiator for both circularly polarized and linearly polarized waves.
【請求項2】 前記2つの出力手段が前記円形導波管の
側面に設けた2つの方形導波管、又は励振用プローブ、
あるいは両者を組合せたものからなることを特徴とする
請求項1記載の円偏波及び直線偏波共用一次放射器。
2. Two rectangular waveguides, wherein the two output means are provided on the side surface of the circular waveguide, or an excitation probe,
Alternatively, the primary radiator for both circularly polarized waves and linearly polarized waves according to claim 1, wherein the primary radiator is a combination of both.
【請求項3】 前記第1位相回路が金属塊で構成された
90度位相器からなり、前記円形導波管の内部の円形表
面の少なくとも一方の円弧が平面になるように前記金属
塊を取り付け、円形導波管の管軸方向に沿った前記金属
塊の長さを、円形導波管の内部を伝播する電磁波のTE
11モードの直交する2つの偏波成分間の位相差を90
度とすることができる長さとし、円形導波管の開口部か
らみた前記金属塊の円形導波管の管軸方向に向かう中心
線と、前記出力手段の円形導波管の管軸方向に向かう中
心線とが、約45度の角度をなすように配置したことを
特徴とする請求項1記載の円偏波及び直線偏波共用一次
放射器。
3. The first phase circuit comprises a 90-degree phaser made of a metal block, and the metal block is attached such that at least one circular arc of a circular surface inside the circular waveguide is a flat surface. The length of the metal mass along the tube axis direction of the circular waveguide is set to TE of the electromagnetic wave propagating inside the circular waveguide.
The phase difference between two orthogonal polarization components of 11 modes is 90
The center line of the metal block in the direction of the tube axis of the circular waveguide as viewed from the opening of the circular waveguide, and the direction of the center of the output means in the tube axis direction of the circular waveguide. The primary radiator for dual use of circular polarization and linear polarization according to claim 1, wherein the primary radiator is arranged so as to form an angle of about 45 degrees with the center line.
【請求項4】 前記第1位相回路が少なくとも1枚の略
長方形の金属板で構成された90度位相器からなり、前
記円形導波管の内壁に前記金属板の短辺方向が円形導波
管の管軸に向かうようにして取り付け、円形導波管の管
軸方向に沿った前記金属板の長さを、円形導波管の内部
を伝播する電磁波のTE11モードの直交する2つの偏
波成分間の位相差を90度とすることができる長さと
し、円形導波管の開口部からみた前記金属板の円形導波
管の管軸方向に向かう中心線と、前記出力手段の円形導
波管の管軸方向に向かう中心線とが、約45度の角度を
なすように配置したことを特徴とする請求項1記載の円
偏波及び直線偏波共用一次放射器。
4. The first phase circuit comprises a 90-degree phaser composed of at least one substantially rectangular metal plate, and a circular waveguide is formed on an inner wall of the circular waveguide in a direction of a short side of the metal plate. Two polarized waves of TE11 mode of electromagnetic waves propagating inside the circular waveguide are orthogonal to each other, and the length of the metal plate along the tube axis direction of the circular waveguide is attached so as to face the tube axis. The phase difference between the components is set to 90 degrees, the center line of the circular waveguide of the metal plate in the axial direction of the circular waveguide seen from the opening of the circular waveguide, and the circular waveguide of the output means. The primary radiator for dual circular polarization and linear polarization according to claim 1, wherein the primary radiator is arranged so that the center line of the tube extending in the axial direction of the tube forms an angle of about 45 degrees.
【請求項5】 前記第1位相回路が複数の金属製ビスで
構成された90度位相器からなり、前記円形導波管の内
壁の少なくとも一方に円形導波管の管軸方向に沿って並
べて取り付け、各々の金属製ビスの先端が円形導波管の
管軸に向かうようにし、円形導波管の管軸方向に沿って
並べて取り付けた前記金属製ビスの列の長さを、円形導
波管の内部を伝播する電磁波のTE11モードの直交す
る2つの偏波成分間の位相差を約90度とすることがで
きる長さとし、円形導波管の開口部からみた前記金属製
ビスの円形導波管の管軸方向に向かう中心線と、前記出
力手段の円形導波管の管軸方向に向かう中心線とが、約
45度の角度をなすように配置したことを特徴とする請
求項1記載の円偏波及び直線偏波共用一次放射器。
5. The first phase circuit comprises a 90-degree phaser composed of a plurality of metal screws, and is arranged on at least one of the inner walls of the circular waveguide along the tube axial direction of the circular waveguide. Each of the metal screws is attached so that the tip of each metal screw is directed toward the tube axis of the circular waveguide, and the length of the row of the metal screws that are installed side by side along the tube axis direction of the circular waveguide is the circular waveguide. The length of the electromagnetic wave propagating in the inside of the tube between the two orthogonal polarization components of the TE11 mode is set to about 90 degrees, and the circular guide of the metal screw viewed from the opening of the circular waveguide is used. The center line of the wave guide in the tube axis direction and the center line of the circular waveguide of the output means in the tube axis direction are arranged at an angle of about 45 degrees. Primary radiator for both circular polarization and linear polarization described.
【請求項6】 前記第2位相回路が誘電体板で構成され
た90度位相器からなり、前記円形導波管の管軸を中心
として回転可能とし、同誘電体板の円形導波管の管軸方
向に沿った長さを、円形導波管の内部を伝播する電磁波
のTE11モードの直交する2つの偏波成分間の位相差
を約90度とすることができる長さとしたことを特徴と
する請求項1記載の円偏波及び直線偏波共用一次放射
器。
6. The second phase circuit is composed of a 90-degree phaser composed of a dielectric plate, is rotatable about the tube axis of the circular waveguide, and the circular waveguide of the same dielectric plate is used. The length along the tube axis direction is set so that the phase difference between two orthogonal polarization components of the TE11 mode of the electromagnetic wave propagating inside the circular waveguide can be set to about 90 degrees. The primary radiator for both circularly polarized waves and linearly polarized waves according to claim 1.
JP19647791A 1991-08-06 1991-08-06 Primary radiator in common use with circularly polarized wave and linearly polarized wave Pending JPH0541603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19647791A JPH0541603A (en) 1991-08-06 1991-08-06 Primary radiator in common use with circularly polarized wave and linearly polarized wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19647791A JPH0541603A (en) 1991-08-06 1991-08-06 Primary radiator in common use with circularly polarized wave and linearly polarized wave

Publications (1)

Publication Number Publication Date
JPH0541603A true JPH0541603A (en) 1993-02-19

Family

ID=16358450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19647791A Pending JPH0541603A (en) 1991-08-06 1991-08-06 Primary radiator in common use with circularly polarized wave and linearly polarized wave

Country Status (1)

Country Link
JP (1) JPH0541603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094666A (en) * 2012-12-21 2013-05-08 西安电子工程研究所 Millimeter wave omnidirectional circularly polarized antenna based on circularly polarized loudspeaker
CN103943918A (en) * 2014-02-28 2014-07-23 上海无线电设备研究所 Circular polarizer and circular-polarized-wave outputting method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094666A (en) * 2012-12-21 2013-05-08 西安电子工程研究所 Millimeter wave omnidirectional circularly polarized antenna based on circularly polarized loudspeaker
CN103094666B (en) * 2012-12-21 2015-04-08 西安电子工程研究所 Millimeter wave omnidirectional circularly polarized antenna based on circularly polarized loudspeaker
CN103943918A (en) * 2014-02-28 2014-07-23 上海无线电设备研究所 Circular polarizer and circular-polarized-wave outputting method thereof
CN103943918B (en) * 2014-02-28 2016-04-06 上海无线电设备研究所 A kind of method of circular polarizer and output circularly polarised wave thereof

Similar Documents

Publication Publication Date Title
JP3195923B2 (en) Circularly polarized dielectric antenna
US6417742B1 (en) Circular polarizer having two waveguides formed with coaxial structure
JPH0541602A (en) Primary radiator in common use with circularly polarized wave and linearly polarized wave
JPH0541603A (en) Primary radiator in common use with circularly polarized wave and linearly polarized wave
JPH0583004A (en) Primary radiator in common use for circularly polarized wave and linearly polarized wave
JPH0555807A (en) Primary radiator to be shared with circularly polarized wave and linearly polarized wave
JP3472822B2 (en) Variable polarization system, polarization diversity system, and polarization modulation system
JPH0555805A (en) Primary radiator to be shared with circularly polarized wave and linearly polarized wave
JPH0555806A (en) Primary radiator to be shared with circulariy polarized wave and linearly polarized wave
JPH0529801A (en) Circularly polarized wave and linear polarized wave and shared primary radiator
JPH05102702A (en) Primary radiator in common use of circularly polarized wave and linearly polarized wave
JPH07321502A (en) Primary radiator for linearly polarized wave
JPH0964637A (en) Waveguide slop antenna
JPH05206720A (en) Primary radiator in common use for circularly and linearly polarized waves
JPH0690101A (en) Circularly polarized wave and linearly polarized wave shared primary radiator multicoupling
JPH05235603A (en) Horizontally and vertically polarized wave changeover feed horn
US10403982B2 (en) Dual-mode antenna array system
JP2000349535A (en) Primary radiator
JPH04373201A (en) Primary radiator in common use for circularly polarized wave and linearly polarized wave
JP2001196850A (en) Waveguide slot antenna
JPH07263903A (en) Antenna shared between right-handed and left-handed circular polarized wave
JPH0555808A (en) Primary radiator to be shared with left-handed and right-handed circularly polarized waves
JPH06216638A (en) Feed horn shared by circularly polarized wave and linear polarized wave
JPH06232602A (en) Primary radiator
JPH0583006A (en) Primary radiator in common use for leftward and rightward circular polarized wave