[go: up one dir, main page]

JPH0538432A - Catalyst for exhaust gas recombiner - Google Patents

Catalyst for exhaust gas recombiner

Info

Publication number
JPH0538432A
JPH0538432A JP3197786A JP19778691A JPH0538432A JP H0538432 A JPH0538432 A JP H0538432A JP 3197786 A JP3197786 A JP 3197786A JP 19778691 A JP19778691 A JP 19778691A JP H0538432 A JPH0538432 A JP H0538432A
Authority
JP
Japan
Prior art keywords
catalyst
alumina
exhaust gas
carrier
recombiner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3197786A
Other languages
Japanese (ja)
Other versions
JP2680489B2 (en
Inventor
Kazuo Murakami
一男 村上
Yoshiyuki Yuasa
嘉之 湯浅
Masaaki Ehata
政明 江畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3197786A priority Critical patent/JP2680489B2/en
Publication of JPH0538432A publication Critical patent/JPH0538432A/en
Application granted granted Critical
Publication of JP2680489B2 publication Critical patent/JP2680489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prevent the lowering of the strength of a carrier and the deterioration of the capacity of a catalyst caused by the phase transition of gamma-alumina carrier due to operation temp, an operation time or the mixing of impurity in the catalyst wherein palladium is supported on the gamma-alumina carrier for an exhaust gas recombiner. CONSTITUTION:alpha-alumina most stable among aluminas is used as the carrier of a catalyst for a recombiner. By the use of alpha-alumina, the carrier itself generates no phase change and the deterioration of the capacity of the catalyst related to that of the strength of the carrier is not generated and the catalyst keeps stable capacity over a long period of time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば沸騰水型原子力発
電所の放射性気体廃棄物処理施設に設置されている排ガ
ス再結合器用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for an exhaust gas recombiner installed in a radioactive gas waste treatment facility of a boiling water nuclear power plant, for example.

【0002】[0002]

【従来の技術】沸騰水型原子力発電所の放射性気体廃棄
物処理設備のフローは図2に示したとおりとなってい
る。原子炉1内の炉水の放射線分解によって生じた水素
と酸素ガスは主復水器2の漏洩空気と共に空気抽出器3
により主復水器2から抽気され、空気抽出器3の駆動蒸
気により爆鳴気限界以下に希釈される。その後、排ガス
予熱器4で温度調節され排ガス再結合器5内の触媒によ
り水素と酸素ガスは水蒸気となる。水蒸気は排ガス復水
器6により駆動蒸気と共に凝縮され除去される。水素、
酸素および水蒸気を除去した放射性排ガスは活性炭吸着
塔7により減衰された後、排気筒8により大気放出され
る。ここで、排ガス再結合器5について簡単に説明す
る。この排ガス再結合器5は水の放射線分解などで生じ
た水素を酸素と化合させて水に変える装置で、排ガス再
結合器5内に充填される触媒はアルミナの中でも比表面
積の大きいγ族アルミナ担体にパラジウムを 0.5wt%担
持したものである。
2. Description of the Related Art The flow of a radioactive gas waste treatment facility of a boiling water nuclear power plant is as shown in FIG. Hydrogen and oxygen gas generated by radiolysis of reactor water in the nuclear reactor 1 together with leaked air from the main condenser 2 and an air extractor 3
Is extracted from the main condenser 2 and diluted by the driving steam of the air extractor 3 to below the explosion noise limit. After that, the temperature of the exhaust gas preheater 4 is adjusted and the hydrogen and oxygen gas become steam by the catalyst in the exhaust gas recombiner 5. The steam is condensed and removed together with the driving steam by the exhaust gas condenser 6. hydrogen,
The radioactive exhaust gas from which oxygen and water vapor have been removed is attenuated by the activated carbon adsorption tower 7 and then released into the atmosphere by the exhaust stack 8. Here, the exhaust gas recombiner 5 will be briefly described. The exhaust gas recombiner 5 is a device that combines hydrogen generated by radiolysis of water with oxygen to convert it into water. The catalyst packed in the exhaust gas recombiner 5 is a γ-group alumina having a large specific surface area among alumina. This is a carrier in which 0.5 wt% of palladium is supported.

【0003】また、排ガス再結合器5に充填される触媒
にはハニカム状触媒や金属触媒も使用される。ハニカム
状触媒は触媒成分となるパラジウムを担持するために、
コージライト等のハニカム状セラミックス製を使用し、
そのセラミックスにアルミナの中でも比較的活性で、比
表面積の大きなγ族アルミナを用い、パラジウムを 0.5
wt%担持したものである。
A honeycomb catalyst or a metal catalyst is also used as the catalyst to be filled in the exhaust gas recombiner 5. Since the honeycomb-shaped catalyst supports palladium as a catalyst component,
Made of honeycomb ceramics such as cordierite,
Γ-group alumina, which is relatively active among alumina and has a large specific surface area, is used as the ceramic and 0.5% palladium is used.
wt% is carried.

【0004】金属触媒は触媒成分のパラジウムを担持す
る構造になっているが、担体である金属に直接パラジウ
ムを担持することが難しい。そのため、比較的活性で比
表面積の大きなγ族アルミナをコーティングし、そのア
ルミナにパラジウムを 0.5wt%担持したものである。
The metal catalyst has a structure in which palladium as a catalyst component is supported, but it is difficult to directly support palladium on a metal as a carrier. Therefore, γ-group alumina, which is relatively active and has a large specific surface area, is coated, and 0.5 wt% of palladium is supported on the alumina.

【0005】[0005]

【発明が解決しようとする課題】一般的に排ガス再結合
器用触媒のパラジウム担体として使用されるγ族アルミ
ナ(ρ,χ,γ,η,δ,κ,θ)は比較的不安定な結
晶性をしており、担体自身を加熱すると結晶構造の安定
なα−アルミナに相転移する。ただし、γ族アルミナが
α−アルミナに転移する温度は千数百度(短時間の場
合)であり、排ガス再結合器5の仕様(運転温度 300〜
400℃)を考えた場合には相転移する可能性はない。し
かし、本発明者らは図3に示すように、再結合器の運転
期間によりγ族アルミナがα−アルミナに相転移する確
率は高くなり、かつ触媒自身の強度も低下していること
を見出した。これは触媒以外の不純物が混入した場合に
はγ族アルミナがα−アルミナに転移する温度は低くな
る。また、再結合器の仕様を考えると触媒に加わる負荷
として水蒸気があり、運転時間により相転移する可能性
もある。さらにアルミナ担体の相転移に伴う担体の強度
低下について考えると、γ−アルミナの立方最密充填構
造から六方最密充填構造への相のα転移を伴う焼結現象
がある。そこで、細孔容積、比表面積が減少しているこ
とを考えれば、アルミナ微粒子の焼結、増大によりアル
ミナ担体は粗雑な構造となり、微粒子接触点の数あるい
は接点結合力の低下によって担体の機械的強度が減少す
る。このアルミナ強度の低下は最終的に粉体化へと進行
するため、触媒性能の低下はもとより、粉体化したアル
ミナによる下流側での閉鎖、脱落したパラジウムによる
配管・機器の損傷を伴う可能性があり、プラント停止に
も関わる問題となる。これらのことから、触媒担体にγ
族アルミナを使用することは長時間の使用に耐えられな
い課題がある。
The γ-group alumina (ρ, χ, γ, η, δ, κ, θ) which is generally used as a palladium carrier for an exhaust gas recombiner catalyst has relatively unstable crystallinity. When the carrier itself is heated, it undergoes a phase transition to α-alumina having a stable crystal structure. However, the temperature at which the γ-group alumina transforms into α-alumina is a few thousand degrees (for a short time), and the specifications of the exhaust gas recombiner 5 (operating temperature 300 to
When considering 400 ℃), there is no possibility of phase transition. However, the present inventors have found that, as shown in FIG. 3, the probability that the γ-group alumina undergoes a phase transition to α-alumina increases depending on the operation period of the recombiner, and the strength of the catalyst itself decreases. It was This is because when impurities other than the catalyst are mixed, the temperature at which the γ-group alumina transforms into α-alumina becomes low. Also, considering the specifications of the recombiner, steam is added to the catalyst as a load, and there is a possibility that phase transition will occur depending on the operating time. Further, considering the decrease in the strength of the carrier due to the phase transition of the alumina carrier, there is a sintering phenomenon involving the α transition of the phase of γ-alumina from the cubic close-packed structure to the hexagonal close-packed structure. Therefore, considering that the pore volume and the specific surface area are decreasing, the alumina carrier has a rough structure due to the sintering and increase of the alumina fine particles, and the mechanical strength of the carrier is decreased due to the decrease of the number of fine particle contact points or the contact bonding force. Strength is reduced. Since this decrease in alumina strength eventually progresses to pulverization, there is a possibility that not only the catalyst performance will decrease, but also the pulverized alumina will close the downstream side, and palladium that has fallen off will damage pipes and equipment. There is also a problem related to plant shutdown. From these facts, γ
The use of Group Alumina has a problem that it cannot withstand long-term use.

【0006】本発明は上記課題を解決するためになされ
たもので、アルミナ自身の相変化を起こすことなく、か
つ強度劣化による触媒の性能劣化がなく、しかも長期間
安定した性能を維持することができる排ガス再結合器用
触媒を提供することにある。
The present invention has been made to solve the above-mentioned problems, and it is possible to maintain stable performance for a long period of time without causing a phase change of alumina itself, without deterioration of catalyst performance due to strength deterioration. An object of the present invention is to provide a catalyst for exhaust gas recombiners.

【0007】[0007]

【課題を解決するための手段】第1の発明は排ガス中の
水素と酸素を再結合させる粒状担体にパラジウムを担持
させてなる排ガス再結合器用触媒において、前記担体は
α−アルミナからなることを特徴とする。
A first invention is an exhaust gas recombiner catalyst comprising palladium supported on a granular carrier for recombining hydrogen and oxygen in exhaust gas, wherein the carrier is composed of α-alumina. Characterize.

【0008】第2の発明は排ガス中の水素と酸素を再結
合させるハニカム状担体にパラジウムを担持させてなる
排ガス再結合器用触媒において、前記ハニカム状担体は
コージライト等のセラミックス面にα−アルミナを備え
てなることを特徴とする。
A second invention is a catalyst for an exhaust gas recombiner in which palladium is supported on a honeycomb carrier for recombining hydrogen and oxygen in exhaust gas, wherein the honeycomb carrier is α-alumina on a ceramic surface such as cordierite. It is characterized by comprising.

【0009】第3の発明は排ガス中の水素と酸素を再結
合させる金属担体にパラジウムを担持させてなる排ガス
再結合器用触媒において、前記金属担体面にα−アルミ
ナを備えてなることを特徴とする。
A third invention is an exhaust gas recombiner catalyst comprising palladium supported on a metal carrier for recombining hydrogen and oxygen in exhaust gas, wherein the metal carrier surface is provided with α-alumina. To do.

【0010】[0010]

【作用】本発明においては触媒の担持にアルミナ中、最
も安定したα−アルミナを使用する。α−アルミナを使
用する場合、γ−アルミナとの最大の相違点である比表
面積の違い(γ: 150m2 /g,α:10〜20m2 /g)
がある。しかし、γ−アルミナを担体として用いる場合
でも再結合器用触媒に使用されるパラジウムの担持量
0.5wt%を担持できる能力は十分に存在する。α−アル
ミナを使用することによって担体自身の相変化を起こす
ことはない。また、強度劣化による触媒の性能劣化がな
いため、長時間安定した性能を維持できる。さらに水
素,酸素結合能力は十分にあるため、金属触媒を用いた
場合の交換コストと、本発明での結合能力に対する触媒
量の増量コストを考え合わせても、プラント寿命で考え
た場合には有利となる。
In the present invention, the most stable α-alumina among alumina is used for supporting the catalyst. When using α-alumina, the difference in specific surface area, which is the biggest difference from γ-alumina (γ: 150 m 2 / g, α: 10-20 m 2 / g)
There is. However, even when γ-alumina is used as a carrier, the amount of palladium supported on the catalyst for the recombiner is reduced.
The ability to carry 0.5 wt% is sufficient. The use of α-alumina does not cause a phase change of the carrier itself. Further, since the performance of the catalyst does not deteriorate due to strength deterioration, stable performance can be maintained for a long time. Furthermore, since hydrogen and oxygen binding capacity is sufficient, even considering the replacement cost when using a metal catalyst and the cost of increasing the amount of catalyst relative to the binding capacity in the present invention, it is advantageous when considering the life of the plant. Becomes

【0011】[0011]

【実施例】図1を参照しながら本発明に係る排ガス再結
合器用触媒の実施例を説明する。原子力発電所の放射性
気体廃棄物処理設備の排ガス再結合器については従来例
で説明したので省略し、その触媒についてのみ説明す
る。この触媒の種類としては粒状触媒,ハニカム触媒,
金属触媒がある。まず、それぞれの触媒の製法を述べ
る。
EXAMPLES Examples of the exhaust gas recombiner catalyst according to the present invention will be described with reference to FIG. Since the exhaust gas recombiner of the radioactive gas waste treatment facility of the nuclear power plant has been described in the conventional example, it will be omitted and only the catalyst thereof will be described. The types of this catalyst are granular catalyst, honeycomb catalyst,
There is a metal catalyst. First, the manufacturing method of each catalyst will be described.

【0012】粒状触媒については担体となるアルミナ原
料(ベーマタイト等の水和物)を押出し成形したのち、
使用するアルミナ形態(γからα等)に焼成し、触媒と
なるパラジウム溶液にどぶ漬けしたのち乾燥する。ハニ
カム状触媒についてはコージェライト(Mg,Al,S
i等の混合物)等を押出し成形したのち焼成し、ハニカ
ム構造に形成したものの表面にγ−アルミナ等をコーテ
ィングし、加熱してα−アルミナに相転移させ、次いで
パラジウム溶液にどぶ漬けし、乾燥したものである。金
属触媒についてはニッケルとクロムのスポンジ状(多孔
体)の合金を使用目的に合わせて成形し、γ−アルミナ
等を表面にコーティングしたのち、加熱してα−アルミ
ナに相転移させ、次いでパラジウム溶液にどぶ漬け、乾
燥したものである。これらの触媒について、図1に示し
た装置を使用して蒸気流量、H2 ,O2 ,N2 濃度を調
整して所定の温度に保温したのち、触媒を収容する反応
管前後のH2 およびO2 濃度をガスクロマトクラフィー
で測定することにより触媒の性能を確認した。
Regarding the granular catalyst, after extruding an alumina raw material (hydrate such as boehmite) as a carrier,
It is baked into the alumina form (γ to α etc.) to be used, soaked in a palladium solution serving as a catalyst, and then dried. For the honeycomb catalyst, cordierite (Mg, Al, S
(a mixture such as i) is extruded and then fired to form a honeycomb structure, the surface of which is coated with γ-alumina or the like, which is heated to cause a phase transition to α-alumina, and then dipped in a palladium solution and dried. It was done. As for the metal catalyst, a sponge-like alloy of nickel and chromium (porous material) is molded according to the purpose of use, γ-alumina or the like is coated on the surface, then heated to cause a phase transition to α-alumina, and then a palladium solution. It is pickled and dried. These catalysts, steam flow rate using the apparatus shown in FIG. 1, H 2, O 2, N 2 After kept at a predetermined temperature by adjusting the concentration, H 2 before and after the reaction tube for accommodating the catalyst and The performance of the catalyst was confirmed by measuring the O 2 concentration by gas chromatography.

【0013】すなわち、図1中符号11は触媒を収容する
反応管で、この反応管11の上流側には予熱ヒータ12、流
量調整されたガス供給系13、蒸気供給ライン14およびボ
イラ15が順次接続されている。又、反応管11の下流側に
は冷却器16が接続されている。
That is, reference numeral 11 in FIG. 1 denotes a reaction tube for accommodating a catalyst, and a preheating heater 12, a flow rate-adjusted gas supply system 13, a steam supply line 14 and a boiler 15 are sequentially provided on the upstream side of the reaction tube 11. It is connected. A cooler 16 is connected to the downstream side of the reaction tube 11.

【0014】[0014]

【表1】 [Table 1]

【0015】表1は上記図1の装置によって触媒に使用
されるパラジウムの担持性能を表したものである。表1
から明らかなように水素および酸素の再結合能力にかな
りの差はあるものの、水素・酸素再結合能力はある。
Table 1 shows the loading performance of palladium used as a catalyst by the apparatus shown in FIG. Table 1
As is clear from the above, there is a considerable difference in the recombination ability of hydrogen and oxygen, but there is a hydrogen / oxygen recombination ability.

【0016】表1の値はアルミナ形態であるγとαを使
用した場合の相対値であり、粒状触媒,ハニカム状触媒
および金属触媒については容器内での流体との接触面積
がかなり異なるため、同一の容積であれば性能を表2の
ようになり、形状等からの性能差は生じる。
The values in Table 1 are relative values when γ and α, which are in the form of alumina, are used. Since the contact areas of the granular catalyst, the honeycomb catalyst and the metal catalyst with the fluid in the container are considerably different, If the volume is the same, the performance is as shown in Table 2, and there is a difference in performance depending on the shape and the like.

【0017】[0017]

【表2】 [Table 2]

【0018】次に、上記各触媒について作用効果上の差
異を説明する。粒状触媒は〜8mm程度のものを反応部の
容器の充填して使用するものであり、ハニカム状触媒お
よび金属触媒に比較して反応部の形状に対する制約が少
なく使用状況に合わせた設計が可能となる。
Next, the difference in action and effect between the above catalysts will be described. The granular catalyst has a size of ~ 8 mm and is used by filling the container in the reaction part. Compared with the honeycomb catalyst and the metal catalyst, there are few restrictions on the shape of the reaction part and it is possible to design according to the usage situation. Become.

【0019】ハニカム触媒は見掛けの表面積が一番大き
く性能も一番高い。反応部が同一容器の場合、流入気体
との接触面積が他に比較して大きく取れる。したがっ
て、処理能力が高く取れ、かつ処理流体に対する流動抵
抗も低く抑えることができる。金属触媒は多孔体である
スポンジ状のものを使用するため、粒状触媒に対して表
面積が大きく取れるため、反応部が同一容器の場合、粒
状触媒に比較して性能が優れる。また、触媒担体が金属
であるため、振動等に対する強度に優れている。
The honeycomb catalyst has the largest apparent surface area and the highest performance. When the reaction part is the same container, the contact area with the inflowing gas can be made larger than other areas. Therefore, it is possible to obtain a high processing capacity and also to suppress the flow resistance to the processing fluid to be low. Since a sponge-like metal catalyst is used as the metal catalyst, a large surface area can be obtained with respect to the granular catalyst. Therefore, when the reaction portion is the same, the performance is superior to that of the granular catalyst. Further, since the catalyst carrier is a metal, it has excellent strength against vibration and the like.

【0020】以上説明したように各触媒は使用状況,目
的に応じて種々選択される。一般にアルミナ原料を非常
に高い温度(1300℃以上)で一気に焼成させたα−アル
ミナはルビー,サファイア等で代表されるように非常に
硬いものになる。しかしながら、γ−アルミナが原子力
発電所の排ガス再結合器の温度条件で絶えず水蒸気に曝
されながら長い年月を経てα化していくとその強度は非
常に弱くなる。したがって、担体の強度劣化から粉化
し、アルミナ強度劣化に伴う金属またはセラミックス等
からの剥離が生じ、再結合器を制御するパラジウムも同
時に剥離して触媒性能を低下させる。
As described above, each catalyst is variously selected according to the usage situation and purpose. Generally, α-alumina obtained by firing alumina raw material at a very high temperature (1300 ° C or higher) at once becomes very hard as represented by ruby and sapphire. However, the strength of γ-alumina becomes extremely weak when it is converted to α over a long period of time while being continuously exposed to water vapor under the temperature condition of the exhaust gas recombiner of a nuclear power plant. Therefore, the deterioration of the strength of the carrier causes pulverization, and the deterioration of the strength of the alumina causes the exfoliation from the metal, the ceramics, or the like, and the palladium that controls the recombiner also exfoliates at the same time to deteriorate the catalytic performance.

【0021】これに対して本発明によれば、いずれの形
態であろうともγ−アルミナを使用しておれば原子力発
電所の排ガス再結合器で使用するかぎりアルミナ形態の
α化は進行し、これに平行してアルミナ部分の強度が低
下するという課題を解決するものである。
On the other hand, according to the present invention, if γ-alumina is used in any form, as long as the γ-alumina is used in the exhaust gas recombiner of the nuclear power plant, the α-formation of the alumina form proceeds, In parallel with this, the problem of decreasing the strength of the alumina portion is solved.

【0022】[0022]

【発明の効果】本発明によれば、排ガス再結合器用触媒
のパラジウム担持用アルミナにα−アルミナを使用する
ことによって担体自身の相変化を起こすことがなく、か
つ強度劣化に伴う触媒の性能劣化がない。したがって、
長期間安定した性能を維持できる。
According to the present invention, the use of α-alumina in the alumina for supporting palladium of the catalyst for the exhaust gas recombiner does not cause a phase change of the carrier itself, and the performance of the catalyst is deteriorated due to the strength deterioration. There is no. Therefore,
Can maintain stable performance for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る触媒の性能試験を行うための配管
系統図。
FIG. 1 is a piping system diagram for performing a performance test of a catalyst according to the present invention.

【図2】従来例および本発明を説明するための放射性気
体廃棄物処理施設を示す流れ線図。
FIG. 2 is a flow diagram showing a radioactive gas waste treatment facility for explaining a conventional example and the present invention.

【図3】図3における排ガス再結合器内の触媒の劣化傾
向を示す特性図。
3 is a characteristic diagram showing a deterioration tendency of a catalyst in the exhaust gas recombiner in FIG.

【符号の説明】[Explanation of symbols]

1…原子炉、2…主復水器、3…空気抽出器、4…排ガ
ス予熱器、5…排ガス再結合器、6…排ガス復水器、7
…活性炭吸着塔、8…排気筒、9,10…バルブ、11…反
応管、12…予熱ヒータ、13…ガス供給管、14…蒸気供給
ライン、15…ボイラ、16…冷却器。
1 ... Reactor, 2 ... Main condenser, 3 ... Air extractor, 4 ... Exhaust gas preheater, 5 ... Exhaust gas recombiner, 6 ... Exhaust gas condenser, 7
... activated carbon adsorption tower, 8 ... exhaust stack, 9, 10 ... valve, 11 ... reaction tube, 12 ... preheat heater, 13 ... gas supply tube, 14 ... steam supply line, 15 ... boiler, 16 ... cooler.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中の水素と酸素を再結合させる粒
状担体にパラジウムを担持させてなる排ガス再結合器用
触媒において、前記担体はα−アルミナからなることを
特徴とする排ガス再結合器用触媒。
1. A catalyst for an exhaust gas recombiner comprising palladium supported on a granular carrier for recombining hydrogen and oxygen in the exhaust gas, wherein the carrier comprises α-alumina.
【請求項2】 排ガス中の水素と酸素を再結合させるハ
ニカム状担体にパラジウムを担持させてなる排ガス再結
合器用触媒において、前記ハニカム状担体はコージライ
ト等のセラミックス面にα−アルミナを備えてなること
を特徴とする排ガス再結合器用触媒。
2. A catalyst for an exhaust gas recombiner comprising palladium supported on a honeycomb carrier for recombining hydrogen and oxygen in exhaust gas, wherein the honeycomb carrier comprises α-alumina on a ceramic surface such as cordierite. A catalyst for an exhaust gas recombiner, which is characterized in that
【請求項3】 排ガス中の水素と酸素を再結合させる金
属担体にパラジウムを担持させてなる排ガス再結合器用
触媒において、前記金属担体面にα−アルミナを備えて
なることを特徴とする排ガス再結合器用触媒。
3. An exhaust gas recombiner catalyst comprising palladium supported on a metal carrier for recombining hydrogen and oxygen in the exhaust gas, wherein the metal carrier surface is provided with α-alumina. Catalyst for combiner.
JP3197786A 1991-08-07 1991-08-07 Catalyst for recombiners of radioactive gas waste treatment facilities Expired - Lifetime JP2680489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197786A JP2680489B2 (en) 1991-08-07 1991-08-07 Catalyst for recombiners of radioactive gas waste treatment facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197786A JP2680489B2 (en) 1991-08-07 1991-08-07 Catalyst for recombiners of radioactive gas waste treatment facilities

Publications (2)

Publication Number Publication Date
JPH0538432A true JPH0538432A (en) 1993-02-19
JP2680489B2 JP2680489B2 (en) 1997-11-19

Family

ID=16380332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197786A Expired - Lifetime JP2680489B2 (en) 1991-08-07 1991-08-07 Catalyst for recombiners of radioactive gas waste treatment facilities

Country Status (1)

Country Link
JP (1) JP2680489B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083833A1 (en) * 2010-01-07 2011-07-14 独立行政法人 日本原子力研究開発機構 Hydrogen combustion catalyst and process for production thereof, and hydrogen combustion method
WO2012029714A1 (en) * 2010-08-31 2012-03-08 日立Geニュークリア・エナジー株式会社 Recombination catalyst for exhaust gas from nuclear reactor and recombination device
CN103383867A (en) * 2012-05-04 2013-11-06 Ceracomb株式会社 Passive autocatalytic recombiner for controlling hydrogen in nuclear reactor, and application method thereof
JP5607742B2 (en) * 2010-08-31 2014-10-15 日立Geニュークリア・エナジー株式会社 Nuclear exhaust gas recombination catalyst and recombiner
JP2019037936A (en) * 2017-08-25 2019-03-14 アドバンエンジ株式会社 Hydrogen recombination catalyst
CN113517175A (en) * 2021-06-07 2021-10-19 西安电子科技大学 beta-Ga based on heterogeneous substrate2O3Film and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410363B2 (en) 2010-04-28 2014-02-05 日立Geニュークリア・エナジー株式会社 Hydrogen and oxygen recombination catalyst, recombination equipment and nuclear power plant
JP2012108000A (en) * 2010-11-17 2012-06-07 Toshiba Corp Catalyst for recombiner of radioactive gaseous waste treatment facility and manufacturing method thereof
KR101312857B1 (en) * 2012-02-08 2013-09-30 (주) 세라컴 Passive auto-catalytic recombiner for controlling hydrogen in nuclear reactor and control method hydrogen in nuclear reactor using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252193A (en) * 1975-10-23 1977-04-26 Toyota Motor Corp Catalyst for purifying exhaust gas from cars

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252193A (en) * 1975-10-23 1977-04-26 Toyota Motor Corp Catalyst for purifying exhaust gas from cars

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083833A1 (en) * 2010-01-07 2011-07-14 独立行政法人 日本原子力研究開発機構 Hydrogen combustion catalyst and process for production thereof, and hydrogen combustion method
JP2011139991A (en) * 2010-01-07 2011-07-21 Japan Atomic Energy Agency Hydrogen combustion catalyst, method for producing the same and hydrogen combustion method
RU2494811C1 (en) * 2010-01-07 2013-10-10 Джэпан Этомик Энерджи Эйдженси Catalysat of hydrogen burning, method of its obtaining and method of hydrogen burning
US8889582B2 (en) 2010-01-07 2014-11-18 Tanaka Kikinzoku Kogyo K.K. Hydrogen combustion catalyst and method for producing thereof, and method for combusting hydrogen
WO2012029714A1 (en) * 2010-08-31 2012-03-08 日立Geニュークリア・エナジー株式会社 Recombination catalyst for exhaust gas from nuclear reactor and recombination device
WO2012029090A1 (en) * 2010-08-31 2012-03-08 日立Geニュークリア・エナジー株式会社 Nuclear waste gas recombination catalyst and recombiner
JP5607742B2 (en) * 2010-08-31 2014-10-15 日立Geニュークリア・エナジー株式会社 Nuclear exhaust gas recombination catalyst and recombiner
CN103383867A (en) * 2012-05-04 2013-11-06 Ceracomb株式会社 Passive autocatalytic recombiner for controlling hydrogen in nuclear reactor, and application method thereof
JP2019037936A (en) * 2017-08-25 2019-03-14 アドバンエンジ株式会社 Hydrogen recombination catalyst
CN113517175A (en) * 2021-06-07 2021-10-19 西安电子科技大学 beta-Ga based on heterogeneous substrate2O3Film and preparation method thereof

Also Published As

Publication number Publication date
JP2680489B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
EP0424966A1 (en) Exhaust gas purification device in variable combination of absorbent and catalyst according to gas temperature
WO2000054879A1 (en) Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
WO2002026356A2 (en) Process for reduction of gaseous sulfur compounds
JPH0538432A (en) Catalyst for exhaust gas recombiner
CN111871069B (en) Application of an integrated filter material
JPH09187649A (en) Catalytic combustion method including consecutive plural catalytic zone
JP2005230809A (en) Composition and method for hydrogen storage and recovery
CN105451878A (en) Ceria-zirconia-based composite oxide and method for producing same, and exhaust gas purification catalyst including ceria-zirconia-based composite oxide
KR20060093102A (en) Catalytic Diesel Dust Filter with Improved Thermal Stability
JPH09509881A (en) Copper catalyst
CN108479844A (en) A kind of CO cryogenic selectives methanation nickel-base catalyst and its preparation method and application
JP5126762B2 (en) Honeycomb catalyst for carbon monoxide methanation, method for producing the catalyst, and method for methanation of carbon monoxide using the catalyst
CN116139917A (en) Auxiliary agent doped integral VOCs catalyst and preparation method and application thereof
JP2002018288A (en) Noble metal catalyst-supporting boron nitride and method for manufacturing the same
JP3396642B2 (en) Carbon dioxide absorber, carbon dioxide separation method, and carbon dioxide separator
JPH06304449A (en) Nitrogen oxide removal device
JPH01270699A (en) Off gas recombiner
CN112473683B (en) Powder sintering filtering catalytic material based on gradient pore structure and preparation method thereof
JPH07267602A (en) Fuel cell fuel reformer
JP4522512B2 (en) Low concentration hydrocarbon oxidation catalyst in exhaust gas and method for producing the same
JP4730947B2 (en) Method for regenerating exhaust gas purification catalyst
EP2255077B1 (en) A method of conditioning an exhaust gas treatment device
CN104826486A (en) Double layer flue gas filtering element and making method thereof
CN110639570A (en) Monolithic catalyst, preparation method and application thereof, and methanol steam reforming hydrogen production method using monolithic catalyst
JP2005046669A (en) Base material for supporting catalyst and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 15