JPH0535582B2 - - Google Patents
Info
- Publication number
- JPH0535582B2 JPH0535582B2 JP61049184A JP4918486A JPH0535582B2 JP H0535582 B2 JPH0535582 B2 JP H0535582B2 JP 61049184 A JP61049184 A JP 61049184A JP 4918486 A JP4918486 A JP 4918486A JP H0535582 B2 JPH0535582 B2 JP H0535582B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- solar cell
- thin film
- cutting
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/30—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
- H10F19/31—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
本発明は、一枚の透光性絶縁基板上に一列に配
置された複数の透明電極上に半導体薄膜および金
属電極層を積層し、それぞれを平行な切断部によ
り分割して直列接続された複数個のユニツトセル
よりなる薄膜太陽電池を製造する方法に関する。
The present invention involves laminating a semiconductor thin film and a metal electrode layer on a plurality of transparent electrodes arranged in a row on a single translucent insulating substrate, dividing each layer by parallel cut parts, and connecting a plurality of transparent electrodes in series. The present invention relates to a method for manufacturing a thin film solar cell consisting of individual unit cells.
原料ガスのグロー放電分解や光CVDにより形
成されるアモルフアス半導体膜は気相成長である
ため、原理的に大面積化が容易であり、低コスト
太陽電池材料として期待されている。こうしたア
モルフアス太陽電池から発電した電力を効率よく
取り出すためには、太陽電池の装置を、例えば第
3図に示すような形状とし、ユニツトセルが直列
接続されるような構造にすることが望ましい。こ
の構造は、ガラス基板等の透明絶縁基板1上に透
明電極21,22,23,24……を短冊状に形
成し、その上に光起電力発生部であるアモルフア
ス半導体層31,32,33,34……、次いで
金属電極41,42,43,44……の順に形成
する。そして一つのユニツトセルの透明電極が隣
接するユニツトセルの金属電極と一部接触する構
造となるように両電極およびアモルフアス層のパ
ターンを構成する。
こうしたパターンの形成には、レーザスクライ
ブ技術が最近用いられるようになつてきた。これ
により従来のフオトエツチングを用いる場合に比
べてパターニングの工程数が減り、コストの低減
が図れるという利点が生ずる。
レーザスクライブを用いたパターニングでは、
まず基板1の全面に形成された透明導電膜上に通
常YAGレーザを用いるレーザからの光を集光し
たビームを掃引し、短冊状の透明電極21,2
2,23……を形成する。その上にアモルフアス
層を全面に形成し、そののち同様に集光されたレ
ーザビームを掃引することにより分割して短冊状
のアモルフアス層領域31,32,33……を形
成する。
第4図は、パターニングされた透明電極21,
22,23上にアモルフアス層3を全面に被着し
たのち、切断部8を形成した状態を示す。しかし
この場合、レーザ出力が小さくてA部に示すよう
にアモルフアス層3を完全に切断しきれないと、
その上に設けられる金属電極42が透明電極23
と接続されず、ユニツトセルの直列接続が遮断さ
れるため太陽電池の出力が生じない。また、レー
ザ出力が大きすぎるとB部に示すように透明電極
24を切断してしまい、このあと形成される金属
電極43と透明電極24との接触面積が小さくな
つて低抵抗の接続ができない。一方、第5図に示
すようにパターニングされた透明電極及びアモル
フアス層に金属層4を全面に形成し、YAGレー
ザを用いて金属層を分割する場合、レーザビーム
出力の調整はアモルフアス層切断の場合よりもさ
らに困難である。すなわち、レーザ出力が小さい
と金属層4は完全には切断されずにC部に示すよ
うに隣合つたユニツトセルが短絡されてしまい、
また出力が大き過ぎるとD部に示すように透明電
極23まで同時に切断され、そこでユニツトセル
間の接続が遮断されるという問題が生じるので、
金属層4のみが切断されるレーザ出力の最適条件
を捜し出さねばならないが、これが大変困難であ
る。また量産を目的とする場合には、各太陽電池
装置ごとに異なるレーザ出力の最適条件を見出し
ながら加工を行わなければならないということは
大きな欠点となる。さらに金属層の厚さや反射率
にばらつきがあると、一定の出力のレーザで掃引
した場合にも切断できない部分、あるいは透明電
極まで切断してしまう部分が生ずる。
Amorphous semiconductor films formed by glow discharge decomposition of raw material gas or photo-CVD are vapor-phase grown, so in principle they can be easily grown to a large area, and are expected to be used as low-cost solar cell materials. In order to efficiently extract the electric power generated from such an amorphous solar cell, it is desirable that the solar cell device be shaped as shown in FIG. 3, for example, and have a structure in which unit cells are connected in series. In this structure, transparent electrodes 21, 22, 23, 24, . , 34..., and then metal electrodes 41, 42, 43, 44... are formed in this order. Then, the patterns of both electrodes and the amorphous layer are constructed so that the transparent electrode of one unit cell partially contacts the metal electrode of the adjacent unit cell. Laser scribing technology has recently come to be used to form such patterns. This has the advantage that the number of patterning steps is reduced compared to when conventional photoetching is used, and costs can be reduced. In patterning using laser scribe,
First, a beam condensed from a laser, usually a YAG laser, is swept over a transparent conductive film formed on the entire surface of the substrate 1, and the rectangular transparent electrodes 21, 2 are swept.
2, 23... are formed. An amorphous layer is formed on the entire surface, and then similarly divided by sweeping a focused laser beam to form strip-shaped amorphous layer regions 31, 32, 33, . . . . FIG. 4 shows a patterned transparent electrode 21,
A state in which the amorphous layer 3 is deposited on the entire surface of the amorphous amorphous layer 22 and 23, and then the cut portion 8 is formed is shown. However, in this case, if the laser output is too small to completely cut the amorphous layer 3 as shown in part A,
The metal electrode 42 provided thereon is the transparent electrode 23
Since the unit cells are not connected to each other and the series connection of the unit cells is interrupted, no output is generated from the solar cells. Furthermore, if the laser output is too large, the transparent electrode 24 will be cut as shown in part B, and the contact area between the metal electrode 43 and the transparent electrode 24, which will be formed subsequently, will become small, making it impossible to establish a low-resistance connection. On the other hand, when the metal layer 4 is formed on the entire surface of the patterned transparent electrode and amorphous layer as shown in FIG. 5, and the metal layer is divided using a YAG laser, the laser beam output is adjusted when cutting the amorphous layer. It is even more difficult than That is, if the laser output is small, the metal layer 4 will not be completely cut and adjacent unit cells will be short-circuited as shown in section C.
Furthermore, if the output is too large, the problem arises that the transparent electrode 23 is also cut off at the same time, as shown in section D, and the connection between the unit cells is cut off.
It is necessary to find the optimum conditions for the laser output so that only the metal layer 4 is cut, but this is very difficult. Moreover, when mass production is aimed at, it is a major drawback that processing must be performed while finding the optimum conditions for the laser output, which differs for each solar cell device. Furthermore, if there are variations in the thickness or reflectance of the metal layer, there will be parts that cannot be cut even when swept with a laser of a constant output, or parts that will cut even the transparent electrode.
本発明は、上述の問題を解決して金属電極層あ
るいは半導体薄膜の分割のための切断加工条件の
選定が容易で、高速で確実にしかも低い費用で行
うことのできる薄膜太陽電池の製造方法を提供す
ることを目的とする。
The present invention solves the above-mentioned problems and provides a method for manufacturing thin-film solar cells that allows easy selection of cutting conditions for dividing metal electrode layers or semiconductor thin films, and that can be performed quickly, reliably, and at low cost. The purpose is to provide.
本発明は、複数の透明電極の上に積層される半
導体薄膜および金属層の少なくとも一方を、超音
波振動子に連結された超音波加工工具先端部を被
加工層に接触させ、被加工層に対して相対的に移
動させることにより切断するもので、超音波エネ
ルギーにより被加工層を下層に影響を与えること
なく確実に切断することができるので、上述の目
的が達成される。複数の超音波加工工具を一列に
配置して同時に被加工層に接触させて切断するこ
とは、より高速に短冊状パターンを形成する上に
有効である。
In the present invention, at least one of a semiconductor thin film and a metal layer laminated on a plurality of transparent electrodes is attached to a to-be-processed layer by bringing a tip of an ultrasonic machining tool connected to an ultrasonic transducer into contact with the to-be-processed layer. The above-mentioned objective is achieved because the cutting is performed by moving the cutting layer relative to the cutting edge, and the layer to be processed can be reliably cut using ultrasonic energy without affecting the underlying layer. Arranging a plurality of ultrasonic machining tools in a line and simultaneously contacting and cutting the layer to be processed is effective in forming a strip pattern at a higher speed.
第1図は本発明の一実施例を示すもので、支持
体7に取付られたチタン酸バリウムなどの圧電素
子からなる超音波振動子51で発生した超音波
は、ホーン52を介して切断工具6の先端部に集
束される。切断工具53は円錐状をしており、そ
の先端に接触する太陽電池基板1上の被加工層1
0、アモルフアス層あるいは金属電極層が超音波
のエネルギーにより破砕、剥離される。従つて支
持体7あるいは基板1を掃引することによりアモ
ルフアス層あるいは金属電極層の条件パターンが
形成される。
超音波振動子の周波数が数十kHz〜百kHz、出
力が数十Wのものを使用することにより、数十μ
m〜数百μm幅のパターンを十〜数十cm/秒の高
速で切断することができる。アモルフアス太陽電
池では第3図に示したようにガラス基板1上に
SnO2などからなる透明電極が21〜24形成さ
れる。そのパターニングはYAGレーザなどを用
いたレーザスクライブ技術により容易に行うこと
ができる。しかし、その上に形成されたアモルフ
アス半導体層を第4図に示したように切断する場
合には、透明電極に損傷を与えず、しかも半導体
層が残らないようにしなければならない。レーザ
を用いる場合にはレーザ出力の調整が難しいが、
本発明によれば、例えば周波数20kHz、出力10W
の超音波振動子を用いて100μmの幅のアモルフ
アス層を30cm/秒の速さで容易に破砕、剥離し
て、分割されたアモルフアス層41〜44が形成
でき、しかもガラス基板1上に形成されたSnO2
膜などからなる透明電極21〜24は超音波エネ
ルギーにより損傷を受けないことがわかつた。こ
のため、アモルフアス層のみを選択性よく切断す
ることが容易に行える。
第5図に示すようにアモルフアス半導体層上に
全面に形成された金属層4のパターニングにおい
ても、本発明に基づき、超音波振動子の出力およ
び基板に対する掃引速度をアモルフアス層の加工
と同様の条件に調整することにより、Al、Ag、
Cu等の金属層が下のアモルフアス層に損傷を与
えることなく選択性よく切断されることがわかつ
た。超音波振動子の出力が大き過ぎたり、掃引速
度が遅過ぎる場合には、下のアモルフアス層も同
時に切断されることになるが、この場合でも上述
のように透明電極までは損傷を受けないため、太
陽電池特性の劣化を引起こす原因とはならない。
第2図は別の実施例で、第1図に示されるよう
な超音波切断工具61,62,63……を支持体
7を介して枠体9に取付け、分割パターン線の数
だけ一列に配置し、一回の掃引で分割線81,8
2,83……のパターニングを同時に行う方法を
示したものである。
FIG. 1 shows an embodiment of the present invention, in which ultrasonic waves generated by an ultrasonic vibrator 51 made of a piezoelectric element such as barium titanate attached to a support 7 are transmitted to the cutting tool via a horn 52. It is focused at the tip of 6. The cutting tool 53 has a conical shape, and the tip of the cutting tool 53 contacts the layer 1 to be processed on the solar cell substrate 1.
0. The amorphous layer or metal electrode layer is crushed and peeled off by ultrasonic energy. Therefore, by sweeping the support 7 or the substrate 1, a conditional pattern of an amorphous layer or a metal electrode layer is formed. By using an ultrasonic transducer with a frequency of several tens of kHz to 100 kHz and an output of several tens of W, it is possible to
Patterns with a width of m to several hundred μm can be cut at a high speed of ten to several tens of cm/sec. In an amorphous solar cell, as shown in Figure 3,
Transparent electrodes 21 to 24 made of SnO 2 or the like are formed. The patterning can be easily performed by laser scribing technology using a YAG laser or the like. However, when cutting the amorphous semiconductor layer formed thereon as shown in FIG. 4, it is necessary to avoid damaging the transparent electrode and leaving no semiconductor layer. When using a laser, it is difficult to adjust the laser output, but
According to the invention, for example, the frequency is 20kHz, the output is 10W
An amorphous amorphous layer with a width of 100 μm can be easily crushed and peeled off at a speed of 30 cm/sec using an ultrasonic vibrator of 1, to form divided amorphous layers 41 to 44, and moreover, it can be formed on a glass substrate 1. SnO2
It has been found that the transparent electrodes 21 to 24 made of films or the like are not damaged by ultrasonic energy. Therefore, it is easy to selectively cut only the amorphous layer. As shown in FIG. 5, in the patterning of the metal layer 4 formed on the entire surface of the amorphous semiconductor layer, the output of the ultrasonic transducer and the sweep speed with respect to the substrate are set under the same conditions as in the processing of the amorphous layer, based on the present invention. Al, Ag,
It was found that metal layers such as Cu can be cut with good selectivity without damaging the underlying amorphous layer. If the output of the ultrasonic transducer is too large or the sweep speed is too slow, the underlying amorphous layer will also be cut at the same time, but even in this case, the transparent electrode will not be damaged as described above. , does not cause deterioration of solar cell characteristics. FIG. 2 shows another embodiment in which ultrasonic cutting tools 61, 62, 63, etc. as shown in FIG. Place the dividing lines 81, 8 in one sweep.
This shows a method for simultaneously performing patterning of 2, 83, . . . .
本発明によれば、直列接続型の薄膜太陽電池の
半導体薄膜および金属電極層のパターニングにお
いて、超音波加工工具を用いることにより、透明
導電膜に比べて半導体薄膜や金属層が容易に切断
されることから従来より採用されているレーザス
クライブ法に比べて選択性のよい加工が可能とな
り、ユニツトセルの接続の遮断が起こるおそれが
なくなつた。切断速度も数十cm/秒が容易に実現
され、レーザ法に比べて遜色のないものである。
また、超音波加工工具そのものはそれ程高価な
ものではなく、それを複数個一列に配置すること
により、一回の掃引でパターニングを可能とする
方法を用いても低コストの加工が現実されるとい
う利点が得られる。
According to the present invention, when patterning the semiconductor thin film and metal electrode layer of a series-connected thin film solar cell, by using an ultrasonic processing tool, the semiconductor thin film and metal layer can be easily cut compared to a transparent conductive film. This makes it possible to process with better selectivity than the conventional laser scribing method, and eliminates the risk of disconnection of unit cells. Cutting speeds of several tens of centimeters per second can be easily achieved, which is comparable to laser methods. In addition, the ultrasonic machining tools themselves are not very expensive, and by arranging multiple ultrasonic machining tools in a row, low-cost machining can be realized even if a method that enables patterning with a single sweep is used. Benefits can be obtained.
第1図は本発明の一実施例を示す断面図、第2
図は別の実施例を示す斜視図、第3図はアモルフ
アス太陽電池の断面図、第4図、第5図はその製
造工程の中間段階を示す断面図である。
1:太陽電池基板、51:超音波振動子、5
2:ホーン、6,61,62,63:超音波切断
工具、81,82,83:分割線、10:被加工
層。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and FIG.
The figure is a perspective view showing another embodiment, FIG. 3 is a sectional view of an amorphous solar cell, and FIGS. 4 and 5 are sectional views showing an intermediate stage of the manufacturing process. 1: Solar cell substrate, 51: Ultrasonic vibrator, 5
2: Horn, 6, 61, 62, 63: Ultrasonic cutting tool, 81, 82, 83: Parting line, 10: Layer to be processed.
Claims (1)
複数の透明電極上に半導体薄膜および金属電極層
を積層し、それぞれを平行な切断部により分割し
て直列接続の複数ユニツトセルよりなる太陽電池
を製造する方法において、半導体薄膜および金属
電極層の少なくとも一方を、超音波加工工具の先
端部を該被加工層に接触させ、被加工層に対して
相対的移動させることにより切断することを特徴
とする薄膜太陽電池の製造方法。 2 特許請求の範囲第1項記載の方法において、
複数の超音波加工工具を一列に配置して被加工層
に同時に接触させて切断することを特徴とする薄
膜太陽電池の製造方法。[Claims] 1. A semiconductor thin film and a metal electrode layer are stacked on a plurality of transparent electrodes arranged in a row on a single transparent insulating substrate, and each is divided by parallel cutting parts and connected in series. In the method of manufacturing a solar cell consisting of multiple unit cells, at least one of a semiconductor thin film and a metal electrode layer is moved relative to the processed layer by bringing the tip of an ultrasonic processing tool into contact with the processed layer. A method for producing a thin film solar cell, the method comprising: cutting a thin film solar cell; 2. In the method described in claim 1,
A method for manufacturing a thin-film solar cell, which comprises arranging a plurality of ultrasonic processing tools in a row and simultaneously contacting and cutting a layer to be processed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61049184A JPS62205669A (en) | 1986-03-06 | 1986-03-06 | Manufacture of thin film solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61049184A JPS62205669A (en) | 1986-03-06 | 1986-03-06 | Manufacture of thin film solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62205669A JPS62205669A (en) | 1987-09-10 |
JPH0535582B2 true JPH0535582B2 (en) | 1993-05-26 |
Family
ID=12823950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61049184A Granted JPS62205669A (en) | 1986-03-06 | 1986-03-06 | Manufacture of thin film solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62205669A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6949400B2 (en) * | 2002-01-25 | 2005-09-27 | Konarka Technologies, Inc. | Ultrasonic slitting of photovoltaic cells and modules |
US6900382B2 (en) | 2002-01-25 | 2005-05-31 | Konarka Technologies, Inc. | Gel electrolytes for dye sensitized solar cells |
US7205473B2 (en) | 2002-01-25 | 2007-04-17 | Konarka Technologies, Inc. | Photovoltaic powered multimedia greeting cards and smart cards |
US7186911B2 (en) | 2002-01-25 | 2007-03-06 | Konarka Technologies, Inc. | Methods of scoring for fabricating interconnected photovoltaic cells |
US6913713B2 (en) | 2002-01-25 | 2005-07-05 | Konarka Technologies, Inc. | Photovoltaic fibers |
US7414188B2 (en) | 2002-01-25 | 2008-08-19 | Konarka Technologies, Inc. | Co-sensitizers for dye sensitized solar cells |
WO2003065394A2 (en) | 2002-01-25 | 2003-08-07 | Konarka Technologies, Inc. | Photovoltaic cell components and materials |
WO2003065393A2 (en) | 2002-01-25 | 2003-08-07 | Konarka Technologies, Inc. | Displays with integrated photovoltaic cells |
WO2003065472A2 (en) | 2002-01-25 | 2003-08-07 | Konarka Technologies, Inc. | Structures and materials for dye sensitized solar cells |
JP2009187981A (en) * | 2008-02-01 | 2009-08-20 | Shiraitekku:Kk | Scribing tool for solar cell panel |
-
1986
- 1986-03-06 JP JP61049184A patent/JPS62205669A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62205669A (en) | 1987-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4594471A (en) | Photoelectric conversion device | |
US4589194A (en) | Ultrasonic scribing of thin film solar cells | |
EP1583155A1 (en) | Transparent thin-film solar cell module and its manufacturing method | |
JPH0535582B2 (en) | ||
JPH0851229A (en) | Integrated solar battery and its manufacture | |
JP4222736B2 (en) | Photovoltaic device and manufacturing method thereof | |
JPH08116078A (en) | Method of manufacturing thin film solar cell | |
JP2002033498A (en) | Manufacturing method and patterning apparatus for integrated thin-film solar cell | |
JPH1079522A (en) | Thin-film photoelectric conversion device and its manufacturing method | |
JPH0582993B2 (en) | ||
JP3393842B2 (en) | Method for manufacturing photoelectric conversion device | |
JP3111820B2 (en) | Manufacturing method of thin film solar cell | |
JPH11126916A (en) | Integrated thin-film solar cell and method of manufacturing the same | |
JPS63274186A (en) | Method for manufacturing thin film solar cells | |
JP2586654B2 (en) | Manufacturing method of thin film solar cell | |
JPH09260704A (en) | Manufacture of solar battery | |
JP2001119048A (en) | Method for manufacturing integrated thin-film solar cell | |
JPH0758351A (en) | Method of manufacturing thin film solar cell | |
JPH11298017A (en) | Manufacture of integrated thin-film photoelectric converter | |
JPH0243776A (en) | Method for manufacturing thin film solar cells | |
JP2808005B2 (en) | Manufacturing method of amorphous solar cell | |
JP3521268B2 (en) | Method for manufacturing photovoltaic device | |
JPS6362254A (en) | Cutting of thin film layer of composite photocell | |
JP2000208794A (en) | Laser patterning method and apparatus for patterned thin film layers of thin film solar cells and the like | |
JP3655027B2 (en) | Integrated thin film photoelectric converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |