[go: up one dir, main page]

JPH053459B2 - - Google Patents

Info

Publication number
JPH053459B2
JPH053459B2 JP59070961A JP7096184A JPH053459B2 JP H053459 B2 JPH053459 B2 JP H053459B2 JP 59070961 A JP59070961 A JP 59070961A JP 7096184 A JP7096184 A JP 7096184A JP H053459 B2 JPH053459 B2 JP H053459B2
Authority
JP
Japan
Prior art keywords
diphenylamine
cyclohexanone
catalysts
substituted
triphenylamines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59070961A
Other languages
Japanese (ja)
Other versions
JPS60215653A (en
Inventor
Teruyuki Nagata
Akihiro Tamaoki
Nobuyuki Kajimoto
Masaru Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59070961A priority Critical patent/JPS60215653A/en
Publication of JPS60215653A publication Critical patent/JPS60215653A/en
Publication of JPH053459B2 publication Critical patent/JPH053459B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はトリフエニルアミンまたはその核置換
体(以下トリフエニルアミン類と略記)の新規な
製造方法に関する。さらに詳しくは、水素移動触
媒の存在下に、ジフエニルアミンまたはその核置
換体(以下ジフエニルアミン類と略記)とシクロ
ヘキサノンまたはその環置換体(以下シクロヘキ
サノン類と略記)を反応させ、縮合反応及び脱水
素反応によりトリフエニルアミン類を製造する方
法に関する。 トリフエニルアミン類は、一般化学工業中間
体、特に染料、農薬、ゴム薬等の中間体として有
用な化合物である。 従来、このトリフエニルアミン類はアニリン類
もしくはジフエニルアミン類のカリウム塩とブロ
ムベンゼンとを加熱反応させる方法、ジフエニル
アミンとアニリンとを塩酸存在下に反応させる方
法(USP2051123)、銅クロム酸化物触媒の存在
下にアニリンとフエノールを反応させる方法(特
公昭52−48969)等により製造されていた。 しかしながら、これらの方法では反応工程が煩
雑であつたり、多量の酸、塩基を必要とする等の
欠点があり、また、特公昭52−48969公報の方法
では極めて収率が低い等工業的に満足できるもの
ではなかつた。 本発明者等はこれらの点を改良すべく鋭意検討
の結果、ジフエニルアミン類とシクロヘキサノン
類とを水素移動触媒の存在下に加熱反応させるこ
とにより極めて高収率で高品質のトリフエニルア
ミン類が製造できることを見い出し本発明に到達
した。 即ち、本発明方法は、水素移動触媒の存在下
に、ジフエニルアミン類とシクロヘキサノン類と
を縮合反応及び脱水素反応によりトリフエニルア
ミン類を製造する新規な方法である。 本発明の方法に於いて原料として使用されるジ
フエニルアミン類としては公知のいかなるもので
も良いが、例えば、ジフエニルアミン、2−メチ
ル−ジフエニルアミン、3−メチル−ジフエニル
アミン、2,2′−ジメチルフエニルアミン等核が
アルキル基によつて置換されたジフエニルアミ
ン、同じくアルキコキシ基置換ジフエニルアミ
ン、ハロゲン基置換ジフエニルアミン、カルボン
酸基置換ジフエニルアミン、ニトリル基置換ジフ
エニルアミン等が挙げられる。また、2−メチル
−4′−クロル−ジフエニルアミン等核に置換され
ている官能基が異なつたジフエニルアミンでもよ
い。 また、シクロヘキサノン類としては、公知のい
かなるものでもよいが、例えば、シクロヘキサノ
ン、2−メチル−シクロヘキサノン、3,5−ジ
メチルシクロヘキサノン等アルキルシクロヘキサ
ノン、3−メトキシ−シクロヘキサノン、4−メ
トキシ−シクロヘキサノン等アルコキシシクロヘ
キサノン、4−ヒドロキシシクロヘキサノン等ヒ
ドロキシシクロヘキサノン等が挙げられる。その
使用量はジフエニルアミン類に対し等モル以上な
ら特に限定はない。 本発明の方法に於いて使用される触媒として
は、脱水素反応に使用される触媒ならいかなるも
のでも良いが、例えばラネーニツケル、還元ニツ
ケル、もしくはニツケル担体触媒、ラネーコバル
ト、還元コバルトもしくはコバルト担体触媒、ラ
ネー銅、還元銅もしくは銅担体触媒、周期律表第
8族の貴金属触媒もしくはその貴金属が担体とし
て、炭素、アルミナ、炭酸バリウム等に担持され
た触媒、レニウム−炭素等のレニウム触媒、銅−
クロム酸化物触媒等が挙げられる。これらの触媒
の内、好ましくはパラジウムであり、特にパラジ
ウム−炭素、パラジウム−アルミナ及びパラジウ
ム−酸化マグネシウム等の担体に担持されたパラ
ジウム触媒が好ましい。その使用量は前記アミン
類に対し金属原子として通常0.001〜0.2グラム原
子、好ましくは0.004〜0.1グラム原子が良い。 尚、本発明の方法に於いては、シクロヘキサノ
ン類を自溶媒として使用するのが有利であり、そ
の他の反応溶媒を使用する必要は無いが、勿論使
用しても何ら支障は無い。 反応の際の温度は通常100〜400℃で実施できる
が、好ましくは150〜350℃の範囲で選ばれる。 生成したトリフエニルアミン類は反応終了後の
混合物を蒸留、晶析等の常法に従つて処理するこ
とにより得られる。 次に、本発明の方法を実施例によつて具体的に
説明する。 実施例 1 内容積500mlのステンレス製オートクレーブに
ジフエニルアミン67.7g(0.4モル)、シクロヘキ
サノン117.8g(1.2モル)及び5%パラジウム−
炭素(日本エンゲルハルド社製)7.33gを仕込ん
だ。オートクレーブ内を窒素置換した後、260℃
に昇温した。攪拌下にその温度で12時間反応させ
た後、室温に冷却後反応混合液を過して触媒を
分離した。液の一部を採取し、ガスクロマトグ
ラフイーにより分析して未反応原料及び生成物を
定量した。その結果、未反応のジフエニルアミン
が11.5g(転化率82.9%)残存し、トリフエニル
アミンが72.8g(選択率89.3%)生成していた。
液を濃縮蒸留して未反応シクロヘキサノン及び
ジフエニルアミンを分離回収した後、濃縮物をn
−ヘキサンで再結晶し、融点125.8〜126.6℃、ガ
スクロマトグラフイーによる純度99.4%のトリフ
エニルアミン66.1gを得た。 実施例 2〜8 実施例1と同様にして、種々のジフエニルアミ
ン類及びシクロヘキサノン類を用いて反応を行つ
た。 結果は以下のとおりであつた。
The present invention relates to a novel method for producing triphenylamine or its nuclear substituted products (hereinafter abbreviated as triphenylamines). More specifically, in the presence of a hydrogen transfer catalyst, diphenylamine or its nuclear substituted product (hereinafter abbreviated as diphenylamines) and cyclohexanone or its ring substituted product (hereinafter abbreviated as cyclohexanones) are reacted, and a condensation reaction and a dehydrogenation reaction are performed. The present invention relates to a method for producing triphenylamines. Triphenylamines are compounds useful as general chemical industrial intermediates, particularly intermediates for dyes, agricultural chemicals, rubber drugs, and the like. Conventionally, triphenylamines have been produced by a method in which a potassium salt of aniline or diphenylamine is reacted with bromobenzene by heating, a method in which diphenylamine and aniline are reacted in the presence of hydrochloric acid (USP2051123), or a method in which a copper chromium oxide catalyst is reacted. It was produced by a method in which aniline and phenol were reacted (Japanese Patent Publication No. 52-48969). However, these methods have drawbacks such as complicated reaction steps and the need for large amounts of acids and bases, and the method disclosed in Japanese Patent Publication No. 52-48969 is not industrially satisfactory due to extremely low yields. It wasn't something I could do. As a result of intensive studies to improve these points, the present inventors have discovered that triphenylamines of extremely high yield and high quality can be produced by heating and reacting diphenylamines and cyclohexanones in the presence of a hydrogen transfer catalyst. We have discovered what can be done and arrived at the present invention. That is, the method of the present invention is a novel method for producing triphenylamines by a condensation reaction and a dehydrogenation reaction of diphenylamines and cyclohexanones in the presence of a hydrogen transfer catalyst. Any known diphenylamine may be used as a raw material in the method of the present invention, such as diphenylamine, 2-methyl-diphenylamine, 3-methyl-diphenylamine, 2,2'-dimethylphenylamine, etc. Examples include diphenylamine whose nucleus is substituted with an alkyl group, diphenylamine substituted with an alkoxy group, diphenylamine substituted with a halogen group, diphenylamine substituted with a carboxylic acid group, and diphenylamine substituted with a nitrile group. Further, diphenylamines having different functional groups substituted on the nucleus such as 2-methyl-4'-chloro-diphenylamine may be used. The cyclohexanones may be any known ones, such as alkylcyclohexanones such as cyclohexanone, 2-methyl-cyclohexanone, and 3,5-dimethylcyclohexanone; alkoxycyclohexanones such as 3-methoxy-cyclohexanone and 4-methoxy-cyclohexanone; Examples include hydroxycyclohexanone such as 4-hydroxycyclohexanone. The amount used is not particularly limited as long as it is equal mole or more to the diphenylamine. The catalyst used in the method of the present invention may be any catalyst used in dehydrogenation reactions, such as Raney nickel, reduced nickel, or nickel supported catalysts, Raney cobalt, reduced cobalt, or cobalt supported catalysts, Raney copper, reduced copper or copper supported catalysts, noble metal catalysts of group 8 of the periodic table or catalysts supported on carbon, alumina, barium carbonate, etc., rhenium catalysts such as rhenium-carbon, copper-
Examples include chromium oxide catalysts. Among these catalysts, palladium is preferred, and palladium catalysts supported on carriers such as palladium-carbon, palladium-alumina, and palladium-magnesium oxide are particularly preferred. The amount used is usually 0.001 to 0.2 gram atom, preferably 0.004 to 0.1 gram atom, based on the metal atom relative to the amine. In the method of the present invention, it is advantageous to use cyclohexanones as the self-solvent, and there is no need to use other reaction solvents, although there is of course no problem in using them. The temperature during the reaction can usually be carried out at 100 to 400°C, but is preferably selected in the range of 150 to 350°C. The produced triphenylamines can be obtained by treating the mixture after the completion of the reaction according to conventional methods such as distillation and crystallization. Next, the method of the present invention will be specifically explained using examples. Example 1 67.7 g (0.4 mol) of diphenylamine, 117.8 g (1.2 mol) of cyclohexanone, and 5% palladium were placed in a stainless steel autoclave with an internal volume of 500 ml.
7.33 g of carbon (manufactured by Nippon Engelhard) was charged. After replacing the inside of the autoclave with nitrogen, 260℃
The temperature rose to . After reacting at that temperature for 12 hours with stirring, the reaction mixture was cooled to room temperature and filtered to separate the catalyst. A portion of the liquid was collected and analyzed by gas chromatography to quantify unreacted raw materials and products. As a result, 11.5 g (conversion rate 82.9%) of unreacted diphenylamine remained, and 72.8 g (selectivity 89.3%) triphenylamine was produced.
After concentrating and distilling the liquid to separate and recover unreacted cyclohexanone and diphenylamine, the concentrate was
- Recrystallization from hexane gave 66.1 g of triphenylamine with a melting point of 125.8-126.6°C and a purity of 99.4% by gas chromatography. Examples 2 to 8 Reactions were carried out in the same manner as in Example 1 using various diphenylamines and cyclohexanones. The results were as follows.

【表】 ミン
[Table] Min

【表】 ン

8 2〓シアノ〓ジフエニルアミン
〃 〃 〃 90 92
[Table]

8 2〓Cyano〓Diphenylamine
〃 〃 〃 90 92

Claims (1)

【特許請求の範囲】[Claims] 1 ジフエニルアミンまたはその核置換体と、シ
クロヘキサノンまたはその環置換体とを、水素移
動触媒の存在下に加熱反応させることを特徴とす
るトリフエニルアミンまたはその核置換体の製造
方法。
1. A method for producing triphenylamine or a nuclear substituted product thereof, which comprises heating diphenylamine or a nuclear substituted product thereof and cyclohexanone or a ring substituted product thereof in the presence of a hydrogen transfer catalyst.
JP59070961A 1984-04-11 1984-04-11 Preparation of triphenylamine or nuclear substitution product thereof Granted JPS60215653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070961A JPS60215653A (en) 1984-04-11 1984-04-11 Preparation of triphenylamine or nuclear substitution product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070961A JPS60215653A (en) 1984-04-11 1984-04-11 Preparation of triphenylamine or nuclear substitution product thereof

Publications (2)

Publication Number Publication Date
JPS60215653A JPS60215653A (en) 1985-10-29
JPH053459B2 true JPH053459B2 (en) 1993-01-14

Family

ID=13446617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070961A Granted JPS60215653A (en) 1984-04-11 1984-04-11 Preparation of triphenylamine or nuclear substitution product thereof

Country Status (1)

Country Link
JP (1) JPS60215653A (en)

Also Published As

Publication number Publication date
JPS60215653A (en) 1985-10-29

Similar Documents

Publication Publication Date Title
US4871875A (en) Process for producing diphenylamines or N,N'-diphenylphenylenediamines
JP4412449B2 (en) Method for producing diaminoresorcinol compound
US6706924B2 (en) Process for the production of 1,5-naphthalenediamine
JPH053459B2 (en)
JP2516232B2 (en) Method for producing 4,4 "-dihydroxytaphenyl
JP3213502B2 (en) Method for producing triphenylamines
JP2002053540A (en) Method for producing aliphatic tricarbonitrile
JPS60193949A (en) Production of diphenylamine or its nucleus-substituted derivative
JPS61183250A (en) Production of triphenylamine or nuclear substitution product thereof
JPH034053B2 (en)
JP3177351B2 (en) Method for producing tris (diarylamino) benzenes
KR950004043B1 (en) 2- (1-alkylaminoalkyl) -3-hydroxy-1, 4-naphthoquinone, preparation method thereof, and 2- (1-alkenyl) -3-hydroxy-1, 4-naphtho using the same Method for preparing quinone and 2-alkyl-3-acyloxy-1,4-naphthoquinone
JP3177350B2 (en) Method for producing dinonyldiphenylamine
JP3234655B2 (en) Process for producing diphenylamine or its nuclear substituted product
EP0803496B1 (en) Process for the preparation of diphenlyamine or nucleus-substituted derivative thereof
JPS63238046A (en) Production of diphenylamine
JP3135436B2 (en) Method for producing diphenylamine or its nuclear-substituted product
JP3012399B2 (en) Method for producing dicyclohexylamines
JPH0770003A (en) Production of diphenylamines
JPH0528216B2 (en)
JP3154598B2 (en) N- (4'-nonylcyclohexyl) -4-nonylaniline and method for producing the same
JP4553192B2 (en) Method for producing 1,5-diaminonaphthalene
JPH01100152A (en) Production of diphenylamine nucleus-substituted compound
JP2503022B2 (en) 4. Method for producing <->-hydroxybiphenyl-3-carboxylic acid
JP3176185B2 (en) N-cyclohexyl-N-phenyl-alkoxyaniline and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term