JPH05343222A - Contactless control circuit for lifting magnet - Google Patents
Contactless control circuit for lifting magnetInfo
- Publication number
- JPH05343222A JPH05343222A JP19262292A JP19262292A JPH05343222A JP H05343222 A JPH05343222 A JP H05343222A JP 19262292 A JP19262292 A JP 19262292A JP 19262292 A JP19262292 A JP 19262292A JP H05343222 A JPH05343222 A JP H05343222A
- Authority
- JP
- Japan
- Prior art keywords
- control circuit
- circuit
- signal
- parallel
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 23
- 238000009499 grossing Methods 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 2
- 230000005284 excitation Effects 0.000 abstract description 12
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Load-Engaging Elements For Cranes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、鉄屑などのスクラップ
を吸着し、これを移送する荷役作業に用いるリフティン
グマグネットの無接点制御回路、とくにリフティングマ
グネットを使用するに当り、スクラップの吸着時および
釈放時に生ずる微細に変化する磁気特性を該回路内で自
動的に無接点制御する回路構成に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact control circuit for a lifting magnet used for cargo handling work for adsorbing scrap such as iron scrap and transferring it, and particularly when using the lifting magnet, when adsorbing scrap. The present invention relates to a circuit configuration for automatically controlling contactlessly controlling a magnetic characteristic that changes minutely when released.
【0002】[0002]
【従来の技術】一般に、この種、リフティングマグネッ
トの磁気制御回路を大別すると、リレーによる有接点制
御回路方式とサイリスタによる無接点制御回路方式とに
分けられるが、有接点制御回路方式は、リレーを使用す
る関係で制御機器自体が大型化し、重量が嵩むだけでな
く、接点損傷や騒音発生ならびに制御器自体が短寿命に
なると言った点で無接点制御回路方式を採用する機運に
なっている。そして、無接点制御とは言え、その使用素
子として具体的にはサイリスタが普及している現状にあ
る。2. Description of the Related Art Generally, magnetic control circuits for lifting magnets of this type can be roughly classified into a contact control circuit system using a relay and a contactless control circuit system using a thyristor. In addition to the fact that the control equipment itself becomes larger and heavier due to the use of, the contactless control circuit method has become a momentum in that it not only causes contact damage and noise generation but also shortens the life of the controller itself. . Although it is a non-contact control, a thyristor is in widespread use as an element to be used.
【0003】[0003]
【発明が解決しようとする課題】然るに、サイリスタな
るものは、自己保持型の素子であるため、一度ゲート信
号を入れて点弧すると、主電流を保持電流値以下に下げ
なければ該主電流を遮断できないので、別途に消弧回路
を設け、該回路から前記主電流を遮断するための逆方向
電流を流さねばならず、そのエネルギー源としてコンデ
ンサに蓄えられた電荷を利用し、これを瞬時に放電させ
て該サイリスタの消弧を行っているが、リフティングマ
グネットの制御回路にサイリスタを用いると、以下述べ
るような不都合が生ずる。即ち、 イ: リフティングマグネットの制御回路には、通常、
磁性体を吸引するための正励磁回路と、釈放を確実に行
うための逆励磁回路とを具備させ、釈放のために正励磁
から逆励磁に移行する際、正励磁回路が確実に切れない
中に逆励磁回路が動作すると、電源電圧が倍となり電源
回路が一種の短絡状態になって過電流が流れて事故につ
ながる。そして、このような事故は、消弧用コンデンサ
に充分な電荷が充電されていない時期に釈放信号が送ら
れるので、正励磁側のサイリスタを消弧するに充分なエ
ネルギーが得られないため、吸引信号を入れた直後に釈
放信号を入れた場合に発生する。 ロ: 従来型式のものでは、スクラップなどの吸引材料
によって、高電圧供給から定格電圧への切替をタイマー
等による時間設定に頼っていたため、該吸引材料によっ
て該時間設定を変更せねばならない不便さがある。 ハ: 吸引材料を釈放する際、マグネットコイルへの印
加電圧を逆極性にして定格電流の数分の一の逆電流を僅
小時間流して該マクネットの残留磁気を零にし、吸引材
料(磁性体)が確実に切離される工夫が従来から行われ
ているが、該材料に適切な印加電圧切替時期が設定され
ておらず、要するに吸引時、釈放時、の操作性が共に充
分に満足するものとは言い難い。本発明は、敍上の欠点
を解消せんとするもので、その目的とするところは、自
己消弧能力のあるパワートランジスタを使用し、吸引時
と釈放時に励磁特性(切替時期)を自動的に適正に補正
して、該リフティングマグネットの操作性を向上せしめ
んとすることにある。However, since a thyristor is a self-holding type element, once the gate signal is input and ignited, the main current must be reduced below the holding current value. Since it cannot be cut off, a separate arc extinguishing circuit must be provided, and a reverse current for cutting off the main current must be supplied from this circuit, and the charge stored in the capacitor is used as its energy source, which can be instantaneously used. Although the arc of the thyristor is extinguished by discharging, if the thyristor is used in the control circuit of the lifting magnet, the following inconvenience occurs. That is, a: In the lifting magnet control circuit,
A positive excitation circuit for attracting a magnetic substance and a reverse excitation circuit for surely releasing the magnetic body are provided, and the positive excitation circuit cannot be surely cut off when shifting from positive excitation to reverse excitation for release. If the reverse excitation circuit operates, the power supply voltage will be doubled and the power supply circuit will become a kind of short-circuit state, causing an overcurrent and an accident. In such an accident, a release signal is sent at a time when the arc-extinguishing capacitor is not sufficiently charged, so sufficient energy to extinguish the thyristor on the positive excitation side cannot be obtained. It occurs when the release signal is input immediately after the signal is input. B: In the conventional type, since the switching of the high voltage supply to the rated voltage is dependent on the time setting by a timer or the like due to the suction material such as scrap, there is an inconvenience that the time setting must be changed depending on the suction material. is there. C: When releasing the attracting material, the voltage applied to the magnet coil is reversed in polarity and a reverse current of a fraction of the rated current is passed for a short time to reduce the residual magnetism of the McNette to zero, and the attracting material (magnetic Although the body has been devised so that it can be reliably separated, the appropriate applied voltage switching timing has not been set for the material, and in short, the operability during suction and release is both satisfactory. Hard to say. The present invention is intended to solve the drawbacks of deficiency, and its purpose is to use a power transistor having a self-extinguishing ability, and to automatically set the excitation characteristic (switching time) at the time of attraction and release. The purpose of this is to properly correct and improve the operability of the lifting magnet.
【0004】[0004]
【課題を解決するための手段】本発明は、整流電源Re
cと、これに並列接続された平滑コンデンサC2と、こ
れらからなる直流電源に直列接続されたパルス幅変調回
路PWMを備えるドロツパー回路Drcと、前記直流電
源に並列接続されたコンデンサC1を備えるブリッジ接
続されたダイオードD1,D2,D3,D4に夫々並列
接続されたパワートランジスタTr1,Tr2,T
r3,Tr4からなるブリッジ制御回路BCCと、前記
直流電源に並列的に逆方向に接続された環流ダイオード
D6と、該ダイオードD6と前記コンデンサC1との間
に前記ドロッパー回路に直列接続された平滑用リアクト
ルCHと、前記制御回路BCCの中点に電流検出器CT
を介して結ばれたリフティングマグネットLMと、前記
電流検出器より信号を受け操作スイッチSwによって作
動し前記各パワートランジスタの各ベースB1,B2,
B3,B4に信号を送るドライブ回路DCCと前記パル
ス幅変調回路とを制御する主制御回路MCCと、からな
る構成、および整流電源Recに並列接続された平滑コ
ンデンサC1を備える直流電源と、該直流電源に並列接
続されてブリッジ接続されたダイオードD1,D2,D
3,D4に夫々並列接続されたパワートランジスタTr
1,Tr2,Tr3,Tr4からなるブリッジ制御回路
BCCと、該制御回路の中点に電流検出器CTを介して
結ばれたリフティングマグネットLMと、前記電流検出
器より信号を受け操作スイッチによって作動し前記各パ
ワートランジスタの各ベースB1,B2,B3,B4に
信号を送るドライブ回路DCCと、前記電流検出器の検
出値により前記ドライブ回路を制御する前記操作スイッ
チSwを備える主制御回路MCCと、該主制御回路から
の信号を受け該主制御回路の吸引側に挿入されたパルス
幅変調回路PWMと、からなる構成、によって解決され
る。SUMMARY OF THE INVENTION The present invention is a rectifying power supply Re.
c, a smoothing capacitor C 2 connected in parallel thereto, a dropper circuit Drc including a pulse width modulation circuit PWM connected in series to a DC power supply, and a capacitor C 1 connected in parallel to the DC power supply. Power transistors Tr 1 , Tr 2 , T connected in parallel to bridge-connected diodes D 1 , D 2 , D 3 , D 4 , respectively.
A bridge control circuit BCC composed of r 3 and Tr 4 , a free-wheeling diode D 6 connected in parallel to the DC power source in the reverse direction, and a series connection to the dropper circuit between the diode D 6 and the capacitor C 1. The connected smoothing reactor CH and the current detector CT at the midpoint of the control circuit BCC.
And a lifting magnet LM connected via a switch and a signal from the current detector to actuate by an operation switch Sw so that each base B 1 , B 2 ,
A drive circuit DCC for sending signals to B 3 and B 4 , and a main control circuit MCC for controlling the pulse width modulation circuit, and a DC power supply having a smoothing capacitor C 1 connected in parallel to a rectification power supply Rec. , Diodes D 1 , D 2 , D connected in parallel to the DC power source and bridge-connected
Power transistors Tr connected in parallel to 3 and D 4 , respectively
1. A bridge control circuit BCC composed of 1 , Tr 2 , Tr 3 , Tr 4; a lifting magnet LM connected to a midpoint of the control circuit via a current detector CT; and an operation switch receiving a signal from the current detector. And a drive circuit DCC which is operated by the above-mentioned power transistor and sends a signal to each base B 1 , B 2 , B 3 , and B 4 of each power transistor, and the operation switch Sw which controls the drive circuit according to the detection value of the current detector. This is solved by a configuration including a main control circuit MCC and a pulse width modulation circuit PWM which receives a signal from the main control circuit and is inserted on the suction side of the main control circuit.
【0005】[0005]
【実施例1】以下、図面を参照し乍ら、本発明の実施例
につき、その具体的構成を詳述する。図1は本発明によ
るもののリフティングマグネットを作動させる無接点制
御回路の電気的結線図、図2は前記マグネットの操作ス
イッチを吸引側にしたときの励磁特性を、図3は同じく
釈放側にしたときの励磁特性を、夫々示すが、図1にお
いて、Recは三相交流を各整流器により全波整流して
直流電圧V2を得る整流電源、C2は該電源Recに並
列接続された平滑コンデンサ、Drcは、後記するトラ
ンジスタTr5への逆電圧を阻止し、これをコンデンサ
C2に戻す保護用ダイオードD5と該トランジスタTr
5とよりなるドロッパー回路、PWMは、パルス幅変調
回路で、前記トランジスタTr5によるチヨッパー回路
を備え、前記電圧V2を低下させている。D6は、後記
する平滑用リアクトルCHからの逆電流を阻止する環流
ダイオード、C1は、後記するリフティングマグネット
の釈放時に生ずる電圧を吸収するためのコンデンサ、B
CCは、パワートランジスタTr又はパワーMOSFE
T(MOS形電界効果型トランジスタ)又はIGBT
(絶縁ゲートバイポーラトランジスタ)などに夫々並列
接続されたダイオードD1,D2,D3,およびD4の
ブリッジ接続されたブリッジ制御回路で、B1,B2,
B3およびB4は前記各パワートランジスタのベース、
LMは、リフティングマグネットで前記ブリッジ制御回
路BCCの中点に電流検出器CTを介して接続されてお
り、その検出値を、電流信号として後記する主制御回路
に、出力している。MCCは、前記電流検出器CTから
の電流信号により前記パルス幅変調回路PWMに電圧切
替信号を発すると共に、前記パワートランジスタの各ゲ
ートB1,B2,B3およびB4に信号を与えるドライ
ブ回路DCCをも制御する主制御回路、Swは主制御回
路MCCの操作スイッチで、1はリフティングマグネッ
トLMの吸引時に、2はその釈放時に、夫々操作する位
置を示す。Embodiment 1 Hereinafter, with reference to the drawings, the specific construction of an embodiment of the present invention will be described in detail. FIG. 1 is an electrical connection diagram of a contactless control circuit for operating a lifting magnet according to the present invention, FIG. 2 is an excitation characteristic when the operation switch of the magnet is on the attraction side, and FIG. 3 is the same when it is on the release side. In FIG. 1, Rec is a rectifying power source for full-wave rectifying three-phase alternating current by each rectifier to obtain a DC voltage V 2 , C 2 is a smoothing capacitor connected in parallel to the power source Rec, Drc blocks a reverse voltage to a transistor Tr 5 described later and returns it to a capacitor C 2 and a protection diode D 5 and the transistor Tr 5.
5 , PWM is a pulse width modulation circuit, which includes a checker circuit formed by the transistor Tr 5 to reduce the voltage V 2 . D 6 is a free-wheeling diode that blocks a reverse current from a smoothing reactor CH described later, C 1 is a capacitor that absorbs a voltage generated when the lifting magnet is released, which will be described later, and B
CC is a power transistor Tr or power MOSFE
T (MOS type field effect transistor) or IGBT
(Insulated gate bipolar transistor) is a bridge control circuit in which diodes D 1 , D 2 , D 3 and D 4 are connected in parallel, and B 1 , B 2 ,
B 3 and B 4 are bases of the power transistors,
The LM is connected to the middle point of the bridge control circuit BCC via a current detector CT by a lifting magnet, and outputs the detected value as a current signal to a main control circuit described later. The MCC issues a voltage switching signal to the pulse width modulation circuit PWM according to a current signal from the current detector CT, and a drive circuit for giving a signal to each gate B 1 , B 2 , B 3 and B 4 of the power transistor. A main control circuit that also controls the DCC, Sw is an operation switch of the main control circuit MCC, and 1 indicates a position to be operated when the lifting magnet LM is attracted and 2 when it is released.
【0006】[0006]
【実施例2】この回路構成のものは、既述の図1に示す
回路構成の一部を省略したもので、図1図示のものと同
一箇所には同一符号を付け、重複する説明を避け構成上
の特徴について図4を参照し乍ら述べると、図1におけ
る平滑コンデンサC2、ドロッパー回路Drc、還流ダ
イオードD6および平滑用リアクトルCHを除去し、整
流電源Recの出力をコンデンサC1に直接々続した
点、およびパルス幅変調回路PWMを主制御回路MCC
の吸引信号側aに接続した点、で図1図示のものと差異
を有する。[Embodiment 2] This circuit configuration is obtained by omitting a part of the circuit configuration shown in FIG. 1 described above. The same portions as those shown in FIG. The structural features will be described with reference to FIG. 4. The smoothing capacitor C 2 , the dropper circuit Drc, the freewheeling diode D 6 and the smoothing reactor CH in FIG. 1 are removed, and the output of the rectified power supply Rec is converted to the capacitor C 1 . Directly connected points and the pulse width modulation circuit PWM to the main control circuit MCC
1 in that it is connected to the suction signal side a of FIG.
【0007】[0007]
【発明の効果】本発明は、敍上の構成よりなり、次いで
構成に基ずく作用効果について各図を参照し乍ら述べる
と、図1において、三相交流電源を整流電源Recによ
り整流して直流電源を得ており、先ず、操作スイッチS
wが同図々示のように投入前は、チヨッパ用トランジス
タTr5はパルス幅変調回路PWMによって略100%
の導通角に制御されていて、こゝでの電圧降下は無くV
2=V1となっている。次に、操作スイッチSwを1に
入れて吸引側とすると、主制御回路MCCからドライブ
回路DCCに信号が発せられ、B1,B4にベース信号
が送られるので、ブリッジ制御回路BCCのパワートラ
ンジスタTr1,Tr4が導通し、よってパワートラン
ジスタTr1→電流検出器CT→リフティングマグネッ
トLM→パワートランジスタTr4の方向に電流I1が
流れこのとき図2において、該電流I1がP点まで立上
ってくると、該電流I1は電流検出器CTにより電流信
号として検出され、主制御回路MCCによって電圧切替
信号をパルス幅変調回路PWMに送りトランジスタTr
5の導通角を低下させて、コンデンサC1に蓄えられた
直流電圧V1がリフティングマグネットLMのコイル定
格電流Isに等しくなるように制御する。The present invention has a ridge structure, and the operation and effect based on the structure will be described with reference to the drawings. In FIG. 1, the three-phase AC power supply is rectified by the rectification power supply Rec. We have a DC power supply, and first, the operation switch S
Before w is turned on as shown in the figures, the transistor Tr 5 for the chipper is approximately 100% by the pulse width modulation circuit PWM.
It is controlled by the conduction angle of V and there is no voltage drop at this point.
2 = V 1 . Next, when the operation switch Sw is set to 1 and set to the suction side, a signal is issued from the main control circuit MCC to the drive circuit DCC and a base signal is sent to B 1 and B 4 , so that the power transistor of the bridge control circuit BCC is supplied. Tr 1 and Tr 4 become conductive, so that the current I 1 flows in the direction of power transistor Tr 1 → current detector CT → lifting magnet LM → power transistor Tr 4 at this time, in FIG. 2, the current I 1 reaches point P. When it rises, the current I 1 is detected as a current signal by the current detector CT, and the main control circuit MCC sends a voltage switching signal to the pulse width modulation circuit PWM and the transistor Tr
The conduction angle of 5 is reduced to control the DC voltage V 1 stored in the capacitor C 1 to be equal to the coil rated current Is of the lifting magnet LM.
【0008】更に、吸引が終え、操作スイッチSwを2
に切替えて釈放側とすると、前記ベース信号B1,B4
がオフとなり、この際、リフティングマグネットLMの
コイルに溜ってたエネルギーが、図1における点線で示
すようI2となって電源側に放出され、よってダイオー
ドD3→コンデンサC1→ダイオードD2→電流検出器
CT→リフティングマグネットLMのコイル…の流路を
経る電流I2によってコンデンサC1が充電され、直流
電圧V1が一時的に上昇する。この釈放時の電圧上昇値
は、該コンデンサC1の静電容量の選択によって所望電
圧を得ることができる。そして釈放時の電流I2が、略
零になったら、残留磁気を消去(打消し)するため、吸
引時と逆向きの電流I3(図1)を少し流す目的で、パ
ワートランジスタTr2,Tr3にベース信号B2,B
3を送って該各トランジスタをオンとし、この電流がI
3の値(図3)となったことを電流検出器CTからの信
号電流によって主制御回路MCCで判断し、前記パワー
トランジスタTr2,Tr3のベース信号B2,B3を
オフとする。このように作動するので、次回の吸引時に
は、釈放時のエネルギー吸収によって電圧上昇したV0
max(図3)なる高電圧が該コイルに印加されるの
で、電流の立上りが迅速となる。Further, after the suction is completed, the operation switch Sw is set to 2
And the release side, the base signals B 1 , B 4
Is turned off, and at this time, the energy accumulated in the coil of the lifting magnet LM becomes I 2 as shown by the dotted line in FIG. 1 and is released to the power supply side, so that the diode D 3 → the capacitor C 1 → the diode D 2 → The capacitor C 1 is charged by the current I 2 passing through the flow path of the current detector CT → the coil of the lifting magnet LM, and the DC voltage V 1 temporarily rises. With respect to the voltage increase value at the time of release, a desired voltage can be obtained by selecting the electrostatic capacitance of the capacitor C 1 . The current I 2 at the time of release, when becomes substantially zero, in order to erase the residual magnetism (cancellation), during suction and reverse current I 3 (FIG. 1) in the bit flow purposes, the power transistor Tr 2, The base signals B 2 and B are applied to Tr 3.
3 is turned on to turn on each transistor, and this current is I
Judged by the main control circuit MCC that a third value (Fig. 3) by a signal current from the current detector CT, to turn off the base signal B 2, B 3 of the power transistor Tr 2, Tr 3. Since it operates like this, at the time of the next suction, the voltage V 0 increased due to the energy absorption at the time of release.
Since a high voltage of max (FIG. 3) is applied to the coil, the current rises quickly.
【0009】以上を要約すると、吸引時には、パワート
ランジスタTr1,Tr4をオンにし、その時の電流I
1が電流値Pに達したことを電流検出器CTで検出し、
主制御回路MCCによって電圧切替信号を送り、パルス
幅変調回路PWMを作動させてトランジスタTr5によ
るチヨッパー回路で電圧低下させ、リフティングマグネ
ットLMのコイルの定格電流になるように、回路電圧V
1を制御して電源電圧V2=V1とする。この時の電流
値が上昇してP点に達すると、該トランジスタTr5の
導通角を絞って回路電圧V1が前記コイルの定格電圧に
低下するようパルス幅変調回路PMWを作動させて制御
するもので、一方、釈放時には、前記コイルに電流をオ
フとした際に生ずる逆起電力によって逆の電流I2が流
れ、コンデンサC1がそのエネルギーを吸収して該電圧
が上昇、この電圧V0maxが次回の前記コイル吸引時
まで高電圧を保ち、該吸引時の電流I1を上昇加速、斯
くして釈放時に蓄えられたエネルギーを次回の吸引時に
有効利用して電流立上りを加速できるので、リフティン
グマグネットLMの操作性を改善でき、本発明所期の目
的を充分達成し得る優れた効果が期待できる。In summary, the power transistors Tr 1 and Tr 4 are turned on at the time of suction, and the current I at that time is
The current detector CT detects that 1 has reached the current value P,
The main control circuit MCC sends a voltage switching signal to operate the pulse width modulation circuit PWM to lower the voltage in the checker circuit by the transistor Tr 5 so that the rated voltage of the coil of the lifting magnet LM becomes the circuit voltage V.
1 to control the power supply voltage V 2 = V 1 . When the current value at this time rises and reaches point P, the conduction angle of the transistor Tr 5 is narrowed down and the pulse width modulation circuit PMW is operated and controlled so that the circuit voltage V 1 drops to the rated voltage of the coil. On the other hand, at the time of release, the reverse current I 2 flows due to the counter electromotive force generated when the current is turned off in the coil, the capacitor C 1 absorbs the energy and the voltage rises, and this voltage V 0 max keeps a high voltage until the next coil suction, and accelerates the current I 1 at the time of suction so that the energy stored at the time of release can be effectively used at the next suction to accelerate the current rise. The operability of the lifting magnet LM can be improved, and an excellent effect capable of sufficiently achieving the intended purpose of the present invention can be expected.
【0010】次に、実施例2として述べた図4図示の構
成に基ずく作用効果について、リフティングマグネット
LMの吸引時の動作特性を示す図5と共に述べると、図
4図示のものは、図1図示のものにおけるドロッパー回
路DrcなるパワートランジスタTr5によるチョッパ
回路を廃止し、ブリッジ制御回路BCCによる吸引時の
信号をパルス幅変調信号にして導通角を制御することに
より、直流電源V1に対するリフティングマグネットL
Mの両端電圧V0の値を任意に調整できるようにしてい
る。Next, the function and effect based on the configuration shown in FIG. 4 described as the second embodiment will be described with reference to FIG. 5 showing the operating characteristics when the lifting magnet LM is attracted. The lifting magnet for the DC power supply V 1 is eliminated by eliminating the chopper circuit by the power transistor Tr 5 that is the dropper circuit Drc in the illustrated one and using the signal at the time of attraction by the bridge control circuit BCC as a pulse width modulation signal to control the conduction angle. L
The value of the voltage V 0 across M is adjustable.
【0011】即ち、吸引時の初期(図5参照)は、パル
ス幅変調回路PWMを作動させず、導通角を100
[%]として、前記各電圧をV1=V0の関係を作り、
吸引時の立上り電流I1に迅速性をもたせ、該電流I1
がP点に達すると、主制御回路MCCからパルス幅変調
回路PWMに信号を送って該吸引信号をパルス幅変調
し、例えばオン時間T1を80%、オフ時間T2を20
%の信号とすると、リフティングマグネットLMの両端
電圧V0は直流電圧V1の約0.8倍、即ちV0≒0.
8V1となるので、定格電流を維持しコイルの焼損を防
止することができる。要するにパルス幅変調での導通角
T1,T2の比率を定め、リティンマグネットLMの定
格電流Isとなるように電流制御している。又、パルス
幅変調回路PWMの都合上、主制御回路MCCからの信
号が無い場合は、V0≒0.95V1、信号を受けると
V0≒V1のように設定しても同じ効果が得られる。因
に、パルス幅変調回路PWMの信号周波数は、数十サイ
クルから数百サイクルの低い周波数でもコイルのインダ
クタンスが大きいので、電流のリップルは大とならず実
用上全く支障を来さない。That is, in the initial stage of suction (see FIG. 5), the pulse width modulation circuit PWM is not operated and the conduction angle is set to 100.
[%], The above voltages are related to each other by V 1 = V 0 ,
The rising current I 1 at the time of suction is made swift so that the current I 1
When the point P reaches the point P, the main control circuit MCC sends a signal to the pulse width modulation circuit PWM to pulse-width modulate the suction signal. For example, the ON time T 1 is 80% and the OFF time T 2 is 20%.
% Signal, the voltage V 0 across the lifting magnet LM is about 0.8 times the DC voltage V 1 , that is, V 0 ≈0.
Since the voltage is 8V 1 , the rated current can be maintained and the coil can be prevented from being burnt. In short, the ratio between the conduction angles T 1 and T 2 in the pulse width modulation is determined and the current is controlled so that the rated current Is of the retin magnet LM is obtained. Further, for the convenience of the pulse width modulation circuit PWM, when there is no signal from the main control circuit MCC, the same effect can be obtained by setting V 0 ≈0.95V 1 and receiving a signal such that V 0 ≈V 1. can get. Incidentally, the signal frequency of the pulse width modulation circuit PWM has a large inductance of the coil even at a low frequency of tens to hundreds of cycles, so that the ripple of the current does not become large and causes no practical problem.
【0012】以上述べた図4図示の構成とすることによ
り、図1図示のものに比べて イ: チヨッパー回路を設けると装置が大型化し、且
つ、コスト高となる。 ロ: 回路構成が複雑となる。 ハ: チヨッパー回路から雑音電波の発生があり、これ
がラジオなど各種通信機材に誘導妨害を与える悪影響が
ある。 の難点が解消でき、経済的に理想とするリフティングマ
グネットの無接点制御回路が提供でき、本発明意図する
狙いを充分達成し得る優れた効果が期待できる。By adopting the configuration shown in FIG. 4 described above, a: If a chipper circuit is provided, the device becomes larger and the cost becomes higher than that shown in FIG. B: The circuit configuration becomes complicated. C: Noise and radio waves are generated from the chipper circuit, which adversely affects various communication equipment such as radios. The above problems can be solved, an economically ideal contactless control circuit for a lifting magnet can be provided, and an excellent effect capable of sufficiently achieving the intended purpose of the present invention can be expected.
【図1】本発明による一実施例を示す無接点制御回路の
電気的結線図FIG. 1 is an electrical connection diagram of a contactless control circuit showing an embodiment according to the present invention.
【図2】図1の操作スイッチを吸引側にしたときの励磁
電流特性図FIG. 2 is an excitation current characteristic diagram when the operation switch of FIG. 1 is set to the attraction side.
【図3】図1の操作スイッチを釈放側にしたときの励磁
電流特性図FIG. 3 is an exciting current characteristic diagram when the operation switch of FIG. 1 is set to the release side.
【図4】本発明による異なる実施例を示す無接点制御回
路の電気的結線図FIG. 4 is an electrical connection diagram of a contactless control circuit showing a different embodiment according to the present invention.
【図5】図4の操作スイッチを吸引側にしたときのパル
ス幅変調信号の周期を拡大して示す励磁電流特性図FIG. 5 is an excitation current characteristic diagram showing an enlarged period of a pulse width modulation signal when the operation switch of FIG. 4 is set to the attraction side.
B1,B2,B3,B4 ベース(ゲート) BCC ブリッジ制御回路 C1 コンデンサ C2 平滑用コンデンサ CH 平滑用リアクトル CT 電流検出器 D1,D2,D3,D4 ダイオード D5 保護用ダイオード D6 環流ダイオード Drc ドロッパー回路 DCC ドライブ回路 LM リフティングマグネット MCC 主制御回路 PWM パルス幅変調回路 Rec 整流電源 Sw 操作スイッチ Tr1,Tr2,Tr3,Tr4 パワートランジスタ
またはパワーMOSFETまたはIGBT V1 直流電圧(回路電圧) V2 電源電圧(直流電圧) V0 リフティングマグネットの両端電圧 Is リフティングマグネットの定格電流B 1 , B 2 , B 3 , B 4 Base (gate) BCC bridge control circuit C 1 capacitor C 2 smoothing capacitor CH smoothing reactor CT current detector D 1 , D 2 , D 3 , D 4 diode D 5 protection Diode D 6 freewheeling diode Drc dropper circuit DCC drive circuit LM lifting magnet MCC main control circuit PWM pulse width modulation circuit Rec rectification power supply Sw operation switch Tr 1 , Tr 2 , Tr 3 , Tr 4 power transistor or power MOSFET or IGBT V 1 DC voltage (circuit voltage) V 2 Power supply voltage (DC voltage) V 0 Voltage across lifting magnet Is Rated current of lifting magnet
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年7月31日[Submission date] July 31, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0011[Correction target item name] 0011
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0011】即ち、吸引時の初期(図5参照)は、パル
ス幅変調回路PWMを作動させず、導通角を100
[%]として、前記各電圧をV1=V0の関係を作り、
吸引時の立上り電流I1に迅速性をもたせ、該電流I1
がP点に達すると、主制御回路MCCからパルス幅変調
回路PWMに信号を送って該吸引信号をパルス幅変調
し、例えばオン時間T1を80%、オフ時間T2を20
%の信号とすると、リフティングマグネットLMの両端
電圧V0は直流電圧V1の約0.8倍、即ちV0≒0.
8V1となるので、定格電流を維持しコイルの焼損を防
止することができる。要するにパルス幅変調での導通角
T1,T2の比率を定め、リティンマグネットLMの定
格電流Isとなるように電流制御している。又、パルス
幅変調回路PWMの都合上、一例を挙げると、主制御回
路MCCからの信号が無い場合は、発信回路上100%
にすることが困難である場合、V0≒0.95V1、信
号を受けるとV0≒(0.95×0.8)V1のように
設定しても同じ効果が得られる。因に、パルス幅変調回
路PWMの信号周波数は、数十サイクルから数百サイク
ルの低い周波数でもコイルのインダクタンスが大きいの
で、電流のリップルは大とならず実用上全く支障を来さ
ない。That is, in the initial stage of suction (see FIG. 5), the pulse width modulation circuit PWM is not operated and the conduction angle is set to 100.
[%], The above voltages are related to each other by V 1 = V 0 ,
The rising current I 1 at the time of suction is made swift so that the current I 1
When the point P reaches the point P, the main control circuit MCC sends a signal to the pulse width modulation circuit PWM to pulse-width modulate the suction signal. For example, the ON time T 1 is 80% and the OFF time T 2 is 20%.
% Signal, the voltage V 0 across the lifting magnet LM is about 0.8 times the DC voltage V 1 , that is, V 0 ≈0.
Since the voltage is 8V 1 , the rated current can be maintained and the coil can be prevented from being burnt. In short, the ratio between the conduction angles T 1 and T 2 in the pulse width modulation is determined and the current is controlled so that the rated current Is of the retin magnet LM is obtained. For the convenience of the pulse width modulation circuit PWM, if an example is given, if there is no signal from the main control circuit MCC , 100% on the transmission circuit.
If it is difficult to set, it is possible to obtain the same effect by setting V 0 ≈0.95V 1 and setting V 0 ≈ (0.95 × 0.8) V 1 when receiving a signal. Incidentally, the signal frequency of the pulse width modulation circuit PWM has a large inductance of the coil even at a low frequency of tens to hundreds of cycles, so that the ripple of the current does not become large and causes no practical problem.
Claims (2)
ンデンサC2を備える直流電源と、該直流電源に直列接
続されたパルス幅変調回路PWMを備えるドロッパー回
路Drcと、前記直流電源に並列接続されたコンデンサ
C1を備えるブリッジ接続されたダイオードD1,
D2,D3,D4に夫々並列接続されたパワートランジ
スタTr1,Tr2,Tr3,Tr4からなるブリッジ
制御回路BCCと、前記直流電源に並列的に逆方向に接
続された環流ダイオードD6と、該ダイオードD6と前
記コンデンサC1との間に前記ドロッパー回路に直列接
続された平滑用リアクトルCHと、前記制御回路BCC
の中点に電流検出器CTを介して結ばれたリフティング
マグネットLMと、前記電流検出器より信号を受け操作
スイッチによって作動し前記各パワートランジスタの各
ベースB1,B2,B3,B4に信号を送るドライブ回
路DCCと前記パルス幅変調回路とを制御する前記操作
スイッチSwを備える主制御回路MCCと、から構成さ
れていることを特徴とするリフティングマグネットの無
接点制御回路。1. A DC power supply including a smoothing capacitor C 2 connected in parallel to a rectifying power supply Rec, a dropper circuit Drc including a pulse width modulation circuit PWM connected in series to the DC power supply, and a DC power supply connected in parallel to the DC power supply. bridge-connected diodes D 1 comprises a capacitor C 1 has,
A bridge control circuit BCC including power transistors Tr 1 , Tr 2 , Tr 3 , Tr 4 connected in parallel to D 2 , D 3 , and D 4 , respectively, and a freewheeling diode connected in parallel to the DC power source in a reverse direction. D 6 , a smoothing reactor CH connected in series with the dropper circuit between the diode D 6 and the capacitor C 1, and the control circuit BCC.
A lifting magnet LM tied through the current detector CT at the midpoint of each base B 1 of each of power transistors operated by the operation switch receives a signal from the current detector, B 2, B 3, B 4 And a main control circuit MCC including the operation switch Sw for controlling the pulse width modulation circuit and a drive circuit DCC for sending a signal to the contactless control circuit of the lifting magnet.
ンデンサC1を備える直流電源と、該直流電源に並列接
続されてブリッジ接続されたダイオードD1,D2,D
3,D4に夫々並列接続されたパワートランジスタTr
1,Tr2,Tr3,Tr4からなるブリッジ制御回路
BCCと、該制御回路の中点に電流検出器CTを介して
結ばれたリフティングマグネットLMと、前記電流検出
器より信号を受け操作スイッチによって作動し前記各パ
ワートランジスタの各ベースB1,B2,B3,B4に
信号を送るドライブ回路DCCと、前記電流検出器の検
出値により前記ドライブ回路を制御する前記操作スイッ
チSwを備える主制御回路MCCと、該主制御回路から
の信号を受け該主制御回路の吸引側に挿入されたパルス
幅変調回路PWMと、から構成されていることを特徴と
するリフティングマグネットの無接点制御回路。2. A DC power supply having a smoothing capacitor C 1 connected in parallel with a rectification power supply Rec, and diodes D 1 , D 2 , D connected in parallel with the DC power supply and bridge-connected.
Power transistors Tr connected in parallel to 3 and D 4 , respectively
1. A bridge control circuit BCC composed of 1 , Tr 2 , Tr 3 , Tr 4; a lifting magnet LM connected to a midpoint of the control circuit via a current detector CT; and an operation switch receiving a signal from the current detector. And a drive circuit DCC which is operated by the above-mentioned power transistor and sends a signal to each base B 1 , B 2 , B 3 , and B 4 of each power transistor, and the operation switch Sw which controls the drive circuit according to the detection value of the current detector. A contactless control circuit for a lifting magnet, comprising a main control circuit MCC and a pulse width modulation circuit PWM which receives a signal from the main control circuit and is inserted on the suction side of the main control circuit. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19262292A JP2602759B2 (en) | 1992-06-10 | 1992-06-10 | Contactless control circuit for lifting magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19262292A JP2602759B2 (en) | 1992-06-10 | 1992-06-10 | Contactless control circuit for lifting magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05343222A true JPH05343222A (en) | 1993-12-24 |
JP2602759B2 JP2602759B2 (en) | 1997-04-23 |
Family
ID=16294321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19262292A Expired - Fee Related JP2602759B2 (en) | 1992-06-10 | 1992-06-10 | Contactless control circuit for lifting magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2602759B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008175227A (en) * | 2007-01-16 | 2008-07-31 | Shimadzu Corp | Two-quadrant drive circuit and magnetic levitation control device |
US7495879B2 (en) * | 2005-02-04 | 2009-02-24 | Thexton Andrew S | Solid-state magnet control |
US7697253B1 (en) * | 2007-06-01 | 2010-04-13 | The Electric Controller and Manufacturing Company, LLC | Method and apparatus for controlling a lifting magnet of a materials handling machine |
US8000078B2 (en) | 2007-12-19 | 2011-08-16 | The Electric Controller & Manufacturing Company, Llc | Method and apparatus for controlling a lifting magnet supplied with an AC source |
US8004814B2 (en) | 2007-12-19 | 2011-08-23 | The Electric Controller & Manufacturing Company, Llc | Method and apparatus for controlling a lifting magnet supplied with an AC source |
FR2957287A1 (en) * | 2010-03-11 | 2011-09-16 | Realisation Des Prehenseurs Ind Prehenso Soc D Et | Electromagnetic device controlling method for gripping electromagnetic sucker in industrial manipulation, involves releasing piece in alternating current by gradual decline in value of current intensity |
JP2019121723A (en) * | 2018-01-10 | 2019-07-22 | ニチコン株式会社 | Power supply device for electromagnet |
US20220068535A1 (en) * | 2020-08-28 | 2022-03-03 | Hubbell Incorported | Magnet control units |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4103352B2 (en) * | 2001-07-09 | 2008-06-18 | 宇部興産機械株式会社 | Solenoid valve drive circuit |
-
1992
- 1992-06-10 JP JP19262292A patent/JP2602759B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7495879B2 (en) * | 2005-02-04 | 2009-02-24 | Thexton Andrew S | Solid-state magnet control |
JP2008175227A (en) * | 2007-01-16 | 2008-07-31 | Shimadzu Corp | Two-quadrant drive circuit and magnetic levitation control device |
US7697253B1 (en) * | 2007-06-01 | 2010-04-13 | The Electric Controller and Manufacturing Company, LLC | Method and apparatus for controlling a lifting magnet of a materials handling machine |
US8059381B2 (en) * | 2007-06-01 | 2011-11-15 | The Electric Controller & Manufacturing Company, Llc | Method and apparatus for controlling a lifting magnet of a materials handling machine |
US20120120540A1 (en) * | 2007-06-01 | 2012-05-17 | The Electric Controller and Manufacturing Company, LLC | Method and apparatus for controlling a lifting magnet of a materials handling machine |
US8000078B2 (en) | 2007-12-19 | 2011-08-16 | The Electric Controller & Manufacturing Company, Llc | Method and apparatus for controlling a lifting magnet supplied with an AC source |
US8004814B2 (en) | 2007-12-19 | 2011-08-23 | The Electric Controller & Manufacturing Company, Llc | Method and apparatus for controlling a lifting magnet supplied with an AC source |
FR2957287A1 (en) * | 2010-03-11 | 2011-09-16 | Realisation Des Prehenseurs Ind Prehenso Soc D Et | Electromagnetic device controlling method for gripping electromagnetic sucker in industrial manipulation, involves releasing piece in alternating current by gradual decline in value of current intensity |
JP2019121723A (en) * | 2018-01-10 | 2019-07-22 | ニチコン株式会社 | Power supply device for electromagnet |
US20220068535A1 (en) * | 2020-08-28 | 2022-03-03 | Hubbell Incorported | Magnet control units |
US11521774B2 (en) | 2020-08-28 | 2022-12-06 | Hubbell Incorporated | Magnet control units |
Also Published As
Publication number | Publication date |
---|---|
JP2602759B2 (en) | 1997-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5310992A (en) | Arc welder | |
JPH05343222A (en) | Contactless control circuit for lifting magnet | |
JPH05175044A (en) | Noncontact control circuit of lifting magnet | |
JPH0799931B2 (en) | Switching element drive circuit | |
JPH04368469A (en) | Switching power source | |
JP3385235B2 (en) | Synchronous rectifier converter | |
JP3175205B2 (en) | Inrush current suppression circuit for switching power supply | |
JP3263751B2 (en) | Switching power supply | |
JP3419134B2 (en) | Self-excited converter | |
JPH1066336A (en) | Driving circuit of synchronous rectifier | |
JP3756353B2 (en) | Semiconductor device drive circuit | |
JPH0257376B2 (en) | ||
JP2608467B2 (en) | Electric vehicle drive control device | |
JP3113710B2 (en) | Switching regulator | |
JPH0615457A (en) | Plasma arc power source equipment | |
JPS639234Y2 (en) | ||
JPH0226262A (en) | Dc power device | |
JP2001293564A (en) | Arc welding machine or plasma cutting machine | |
JPH0227633Y2 (en) | ||
JP2948368B2 (en) | Electric shock prevention circuit | |
JP3759300B2 (en) | Switching power supply | |
JPS605983Y2 (en) | DC TIG welding machine | |
JP2629585B2 (en) | Inrush current suppression circuit | |
JPS595028Y2 (en) | Control device for lifting electromagnet | |
JPH04140062A (en) | Power unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19961029 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080129 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090129 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090129 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100129 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110129 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120129 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |