[go: up one dir, main page]

JPH05342932A - Manufacture of compound superconductive wire - Google Patents

Manufacture of compound superconductive wire

Info

Publication number
JPH05342932A
JPH05342932A JP4152249A JP15224992A JPH05342932A JP H05342932 A JPH05342932 A JP H05342932A JP 4152249 A JP4152249 A JP 4152249A JP 15224992 A JP15224992 A JP 15224992A JP H05342932 A JPH05342932 A JP H05342932A
Authority
JP
Japan
Prior art keywords
alloy
cusn
tube
processing
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4152249A
Other languages
Japanese (ja)
Inventor
Takuya Suzuki
卓哉 鈴木
Kinya Ogawa
欽也 小川
Hideki Ii
秀樹 伊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4152249A priority Critical patent/JPH05342932A/en
Publication of JPH05342932A publication Critical patent/JPH05342932A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To prevent generation of troubles such as wire breakage caused by segregation of CuSn alloy in processing. CONSTITUTION:A manufacturing method is provided with a process of forming composite billets by applying hot hydrostatic press work after filling CuSn alloy powder 2 in a pipe 1 made of Cu or Cu alloy in which a core material 3 comprising Nb or Nb alloy is disposed, a process of applying extrusion work, and applying area reduction work to the composite billets, and a process of applying heat treatment to generate Nb3Sn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はNb3 Sn化合物超電導
線の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Nb 3 Sn compound superconducting wire.

【0002】[0002]

【従来の技術】ブロンズ法によるNb3 Sn化合物超電
導線の製造方法では、従来、CuSn合金の鋳塊から造
られたCuSn合金母材中にNb芯を埋め込む方法を取
る。ところで、CuSn合金の鋳塊は、CuSn合金が
逆偏析する合金であることから、表層と内部とのSn濃
度に著しく差が有り、特に表層にSn汗として知られる
高Sn濃度の滴状偏析が出る。
2. Description of the Related Art In the method of manufacturing a Nb 3 Sn compound superconducting wire by the bronze method, conventionally, a method of embedding an Nb core in a CuSn alloy base material made from a CuSn alloy ingot is used. By the way, since the CuSn alloy ingot is an alloy in which the CuSn alloy is inversely segregated, there is a significant difference in the Sn concentration between the surface layer and the inside, and in particular, the surface layer has a high Sn concentration drop-like segregation known as Sn sweat. Come out.

【0003】前記CuSn合金のSn濃度は、良好な超
電導特性を確保する観点から出来るだけ高くすることが
望まれるが、良好な加工性を確保する必要もあるため、
14重量%以下のα相固溶体限度内に留められている。
The Sn concentration of the CuSn alloy is desired to be as high as possible from the viewpoint of ensuring good superconducting properties, but it is also necessary to ensure good workability.
It remains within the α-phase solid solution limit of 14% by weight or less.

【0004】従来の製造方法では、CuSn合金鋳塊の
偏析のため、減面加工等の加工時にCuSn合金が該合
金中のCuSn化合物層から割れたり、熱間押出し加工
や焼鈍処理等の加熱時にCuSn合金のSnリッチ部と
Nbとの接触部でNbSn化合物が生成し、その後の加
工性に悪影響を与える等の問題点があった。即ち、Nb
表面に生成した化合物は以後の減面加工でも砕けながら
存在するため、Nb芯が実用域の直径10μm以下まで
加工された段階では該化合物粒がNb芯に象眼されてN
b芯の断線にまで至るという問題点があった。
In the conventional manufacturing method, since the CuSn alloy ingot is segregated, the CuSn alloy is cracked from the CuSn compound layer in the alloy at the time of processing such as surface reduction processing, or at the time of heating such as hot extrusion processing or annealing processing. There has been a problem that an NbSn compound is generated at the contact portion between the Sn-rich portion of the CuSn alloy and Nb, which adversely affects the subsequent workability. That is, Nb
Since the compound formed on the surface exists while breaking even in the subsequent surface reduction processing, when the Nb core is processed to a diameter of 10 μm or less in the practical range, the compound particles are inlaid on the Nb core and the Nb core is inlaid.
There is a problem that the wire breaks in the b core.

【0005】このように、従来の製造方法では、CuS
n合金鋳塊を用いているため、Snリッチ偏析部による
加工上のトラブルが多かった。
As described above, according to the conventional manufacturing method, CuS
Since the n alloy ingot was used, there were many processing problems due to the Sn rich segregation portion.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来の問題
点を解決するためになされたもので、CuSn合金の偏
析に起因する断線などの加工上のトラブルの発生を防止
したNb3 Sn化合物超電導線の製造方法を提供しよう
とするものである。
The present invention has been made in order to solve the conventional problems, and is an Nb 3 Sn compound which prevents the occurrence of processing troubles such as disconnection due to segregation of CuSn alloy. It is intended to provide a method for manufacturing a superconducting wire.

【0007】[0007]

【課題を解決するための手段】本発明は、Nb又はNb
合金からなる芯材が配置されたCu又はCu合金からな
る管内にCuSn合金粉末を充填した後、熱間静水圧プ
レス(以下、HIPと称す)加工を施して複合ビレット
を形成する工程と、前記複合ビレットに押出し加工を施
した後、減面加工を施す工程と、熱処理を施してNb3
Snを生成させる工程とを具備することを特徴とするN
3 Sn化合物超電導線の製造方法である。
The present invention is based on Nb or Nb.
Filling CuSn alloy powder in a tube made of Cu or a Cu alloy in which a core made of an alloy is arranged, and then subjecting it to hot isostatic pressing (hereinafter referred to as HIP) to form a composite billet; After the composite billet is extruded, it is subjected to surface-reduction processing and heat treatment is applied to Nb 3
And a step of generating Sn.
It is a method for producing a b 3 Sn compound superconducting wire.

【0008】前記CuSn合金粉末を形成する合金とし
ては、例えばCu−Sn合金、Cu−Sn−Ti合金が
挙げられる。
Examples of the alloy forming the CuSn alloy powder include Cu-Sn alloy and Cu-Sn-Ti alloy.

【0009】前記CuSn合金粉末としては、ガスアト
マイズ法によって製造されたものが望ましい。この理由
は、ガスアトマイズ法によって製造されたCuSn合金
粉末は、急冷効果により線材製造加工に不都合なマクロ
な偏析がなく、均質な組成である。また、前記CuSn
合金粉末は、CuSn合金鋳塊に塑性加工、切削加工等
を施して粉体化したものでもよい。かかる粉末でも鋳塊
中の巨大な偏析部を機械的に微細化して均質化を達成す
ることが可能である。
The CuSn alloy powder is preferably one produced by a gas atomizing method. The reason for this is that the CuSn alloy powder produced by the gas atomization method has a homogeneous composition without macrosegregation which is inconvenient for wire rod production processing due to the quenching effect. In addition, the CuSn
The alloy powder may be a powder obtained by subjecting a CuSn alloy ingot to plastic working, cutting, or the like. Even with such a powder, it is possible to mechanically miniaturize the huge segregated portion in the ingot and achieve homogenization.

【0010】また、前記CuSn合金粉末としては、粒
径が0.5〜3mmであるものが望ましい。この理由
は、その粒径を0.5mm未満にすると比表面積が大き
くなるため、粉末表面のガス吸着や酸化によって以後の
加工性やNb3 Sn生成反応に悪影響を及ぼす虞があ
る。一方、その粒径が3mmを越えると個々の粒子から
なる偏析部が大きくなるため、鋳塊に似た組成になる虞
がある。
The CuSn alloy powder preferably has a particle size of 0.5 to 3 mm. The reason for this is that if the particle size is less than 0.5 mm, the specific surface area increases, and gas adsorption or oxidation on the powder surface may adversely affect the subsequent processability and Nb 3 Sn formation reaction. On the other hand, if the particle size exceeds 3 mm, the segregation portion composed of individual particles becomes large, so that the composition may be similar to an ingot.

【0011】前記CuSn合金粉末中に配置される芯材
を形成するNb合金としては、例えばNb−Ta合金、
Nb−Ti合金が挙げられる。
As the Nb alloy forming the core material arranged in the CuSn alloy powder, for example, Nb-Ta alloy,
Nb-Ti alloy is mentioned.

【0012】本発明の方法は、例えば次のように行なう
ことができる。
The method of the present invention can be performed, for example, as follows.

【0013】まず、例えば図1に示すようにHIP加工
用のCu又はCu合金からなる管1内にNb又はNb合
金からなる複数本(或いは1本)の芯材2を図示しない
台座上に立てて配置した後、この管1内にCuSn合金
粉末3を充填する。ここで、前記台座は、後述する蓋を
兼用するものであってもよい。つづいて、前記管の両端
に蓋を真空中で電子ビーム溶接した後、HIP加工を施
し、更に必要に応じて前記管部分、台座部分及び蓋部分
を削って複合ビレットを形成する。なお、前記複合ビレ
ットのブロンズ比(CuSn合金と芯材との重量比)
は、前記管内の空間に占める芯材の割合を変えることに
より調整できる。
First, for example, as shown in FIG. 1, a plurality of (or one) core materials 2 made of Nb or Nb alloy are erected on a pedestal not shown in a tube 1 made of Cu or Cu alloy for HIP processing. Then, the tube 1 is filled with the CuSn alloy powder 3. Here, the pedestal may also serve as a lid described later. Subsequently, a lid is electron-beam welded to both ends of the tube in a vacuum, HIP processing is performed, and if necessary, the tube portion, the pedestal portion and the lid portion are shaved to form a composite billet. The bronze ratio of the composite billet (the weight ratio of CuSn alloy and core material)
Can be adjusted by changing the proportion of the core material in the space in the tube.

【0014】次いで、前記複合ビレットに熱間押出し加
工を施した後、焼鈍処理しながら減面加工を施して複合
素線を形成する。
Next, the composite billet is subjected to hot extrusion processing, and then subjected to surface reduction processing while being annealed to form a composite strand.

【0015】次いで、前記複合素線の複数本を安定化用
の無酸素銅管内に拡散バリアのNb管又はTa管などを
介在させて挿入する。つづいて、前記Cu管の両端に蓋
を真空中で電子ビーム溶接した後、HIP加工を施す。
ひきつづき、これに熱間押出し加工を施した後、焼鈍処
理しながら減面加工を施して線材を形成する。その後、
前記線材に熱処理を施してNb3 Snを生成させること
により、Nb3 Sn化合物超電導線を製造する。
Next, a plurality of the composite wires are inserted into a stabilizing oxygen-free copper tube with an Nb tube or Ta tube as a diffusion barrier interposed. Subsequently, lids are electron beam welded to both ends of the Cu tube in a vacuum, and then subjected to HIP processing.
After that, the wire is formed by subjecting it to hot extrusion and then surface-reducing while annealing. afterwards,
By forming a Nb 3 Sn by heat treatment in the wire, producing a Nb 3 Sn compound superconducting wire.

【0016】また、本発明に係る別の発明は、例えば図
2に示すようにCu又はCu合金からなる大径の管11
と該管11内に配置されたCu又はCu合金からなる小
径の管12との間に形成された管状の空間内にCuSn
合金粉末13を充填した後、HIP加工を施してCuS
n合金を主体とする管を形成する工程と、前記CuSn
合金を主体とする管内にNb又はNb合金からなる芯材
を挿入して複合ビレットを形成する工程と、前記複合ビ
レットに押出し加工を施し、更に減面加工を施す工程
と、熱処理を施してNb3 Snを生成させる工程とを具
備することを特徴とするNb3 Sn化合物超電導線の製
造方法である。
Another invention according to the present invention is, for example, as shown in FIG. 2, a large-diameter pipe 11 made of Cu or Cu alloy.
And CuSn in a tubular space formed between the small-diameter pipe 12 made of Cu or Cu alloy and arranged in the pipe 11.
After filling the alloy powder 13, HIP processing is performed to CuS
forming a tube mainly composed of an n-alloy;
A step of forming a composite billet by inserting a core material made of Nb or an Nb alloy into a tube mainly made of an alloy, a step of subjecting the composite billet to an extrusion process, a surface reduction process, and a heat treatment to form Nb. And a step of producing 3 Sn, which is a method for producing a Nb 3 Sn compound superconducting wire.

【0017】[0017]

【作用】本発明の方法によれば、Nb又はNb合金から
なる芯材が配置されたCu又はCu合金からなる管内に
CuSn合金粉末を充填した後、HIP加工を施して複
合ビレットを形成する。こうして得られた複合ビレット
中のCuSn合金は、前記CuSn合金粉末が接合一体
化されたものであるため、CuSn合金鋳塊のような偏
析を生じることなく、均質な組成にすることができる。
このため、前記複合ビレットに押出し加工を施した後、
減面加工を施す工程では、CuSn合金の偏析に起因す
る断線などの加工上のトラブルの発生を防止できる。ま
た、本発明の方法は、CuSn合金の粉体化コストが鋳
造コストよりも高いことから前記CuSn合金粉末が高
価なものとなっても、CuSn合金鋳塊を用いる従来法
におけるCuSn合金鋳塊のソーキング、HIP加工、
管状化加工、穿孔加工等の加工コストを勘案すると、従
来法よりも低コストでNb3 Sn化合物超電導線を製造
することが可能である。
According to the method of the present invention, a CuSn alloy powder is filled in a tube made of Cu or a Cu alloy in which a core made of Nb or an Nb alloy is arranged, and then HIP processing is performed to form a composite billet. Since the CuSn alloy in the composite billet thus obtained is one in which the CuSn alloy powders are joined and integrated, a homogeneous composition can be obtained without causing segregation like CuSn alloy ingots.
Therefore, after subjecting the composite billet to extrusion,
In the process of reducing the surface area, it is possible to prevent the occurrence of processing troubles such as disconnection due to segregation of the CuSn alloy. Further, according to the method of the present invention, since the powdering cost of CuSn alloy is higher than the casting cost, even if the CuSn alloy powder is expensive, the CuSn alloy ingot can be produced by the conventional method using the CuSn alloy ingot. Soaking, HIP processing,
Considering processing costs such as tubular processing and perforation processing, it is possible to manufacture the Nb 3 Sn compound superconducting wire at a lower cost than the conventional method.

【0018】一方、本発明に係る別の発明の方法によれ
ば、Cu又はCu合金からなる大径の管と該管内に配置
されたCu又はCu合金からなる小径の管との間に形成
された管状の空間内にCuSn合金粉末を充填した後、
HIP加工を施してCuSn合金を主体とする管を形成
する。つづいて、前記CuSn合金を主体とする管内に
Nb又はNb合金からなる芯材を挿入して複合ビレット
を形成する。こうして得られた複合ビレット中のCuS
n合金は、前記CuSn合金粉末が接合一体化されたも
のであるため、CuSn合金鋳塊のような偏析を生じる
ことなく、均質な組成にすることができる。このため、
前記複合ビレットに押出し加工を施した後、減面加工を
施す工程では、CuSn合金の偏析に起因する断線など
の加工上のトラブルの発生を防止できる。また、本発明
に係る別の発明の方法は、前述したのと同様な理由によ
って従来法よりも低コストでNb3 Sn化合物超電導線
を製造することが可能である。
On the other hand, according to another method of the present invention, it is formed between a large-diameter pipe made of Cu or Cu alloy and a small-diameter pipe made of Cu or Cu alloy arranged in the pipe. After filling the CuSn alloy powder into the tubular space,
HIP processing is performed to form a tube mainly composed of CuSn alloy. Subsequently, a core material made of Nb or an Nb alloy is inserted into the tube mainly composed of the CuSn alloy to form a composite billet. CuS in the composite billet thus obtained
Since the n-alloy is obtained by integrally bonding the CuSn alloy powders, a homogeneous composition can be obtained without causing segregation like CuSn alloy ingot. For this reason,
In the step of subjecting the composite billet to the extruding process and then the surface-reducing process, it is possible to prevent processing troubles such as disconnection due to segregation of the CuSn alloy. Further, the method of another invention according to the present invention can manufacture the Nb 3 Sn compound superconducting wire at a lower cost than the conventional method for the same reason as described above.

【0019】[0019]

【実施例】以下、本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0020】実施例1 まず、直径139mmφのCuからなる台座に直径1+
0〜0.05mmφの穴6000個を俵積み形状で等間
隔に穿孔した。この台座にNb芯としての直径1−0〜
0.05mmφ、長さ400mmの純Nb棒6000本
を林立させた後、これに肉厚2.3mmのTa管を嵌合
し、更に外径218mmφ、内径144mmφのCu管
を被せた。つづいて、Cu−17.3重量%Sn−0.
2重量%Ti合金粉末(50メッシュ〜200メッシ
ュ)を、林立するNb芯の間隙によく振動を加えながら
充填した。この複合体の両端にCu蓋を嵌合した後、C
u蓋とCu管との嵌合部を電子ビーム溶接することによ
り、複合材を形成した。この複合材に650℃、1時
間、1500気圧の条件下でHIP加工を施すことによ
り、Nb芯の周囲の粉末を焼結し、かつ各構成材相互を
金属接合した。ひきつづき、これを外削することによ
り、押出ビレットサイズの直径200mmφの複合ビレ
ットを形成した。
Example 1 First, a pedestal made of Cu having a diameter of 139 mmφ has a diameter of 1+
6000 holes of 0 to 0.05 mmφ were punched at equal intervals in a bales-stacked shape. This base has a diameter of 1 to 0 as the Nb core.
After 6000 pure Nb rods having a diameter of 0.05 mm and a length of 400 mm were forested, a Ta pipe having a thickness of 2.3 mm was fitted thereto, and a Cu pipe having an outer diameter of 218 mmφ and an inner diameter of 144 mmφ was further covered. Subsequently, Cu-17.3 wt% Sn-0.
2 wt% Ti alloy powder (50 mesh to 200 mesh) was filled into the gap between the forested Nb cores while vibrating well. After fitting Cu lids to both ends of this composite, C
A composite material was formed by electron beam welding the fitting portion between the u lid and the Cu tube. The composite material was subjected to HIP processing under the conditions of 650 ° C. for 1 hour and 1500 atm to sinter the powder around the Nb core and metal-bond each constituent material. Subsequently, this was externally cut to form a composite billet having an extrusion billet size of 200 mmφ in diameter.

【0021】次いで、前記複合ビレットに熱間押出し加
工を施して直径40mmφとした。つづいて、減面加工
及び焼鈍処理を交互に繰り返すことにより、断線を生じ
ることなく、直径0.93mmφの最終成形線材を形成
することができた。こうして得られた最終成形線材の断
面を調査したところ、Nb芯からなるフィラメント表面
がスムースで、かつフィラメント断面形状が比較的均一
で円形に近かった。
Next, the composite billet was hot extruded to have a diameter of 40 mmφ. Subsequently, the surface-reducing work and the annealing treatment were alternately repeated, whereby the final molded wire rod having a diameter of 0.93 mmφ could be formed without causing a wire breakage. Examination of the cross section of the final molded wire thus obtained revealed that the surface of the filament made of Nb core was smooth and the cross section of the filament was relatively uniform and nearly circular.

【0022】次いで、得られた最終成形線材に拡散熱処
理を施してNb3 Snを生成させることにより、直径
0.93mmφのCu安定化Nb3 Sn化合物超電導線
を製造した。
Next, the final molded wire thus obtained was subjected to a diffusion heat treatment to generate Nb 3 Sn, thereby producing a Cu-stabilized Nb 3 Sn compound superconducting wire having a diameter of 0.93 mmφ.

【0023】比較例1 まず、Cu−17.3重量%Sn−0.2重量%Ti合
金鋳塊から削り出した外径200mmφ、内径116m
mφの管内に直径115mmφのNb棒を挿入し、この
管の両端を電子ビーム溶接した後、熱間押出し加工を施
し、更に減面加工及び焼鈍処理を交互に繰り返すことに
より、直径1.5mmφの素線を形成した。つづいて、
この素線6000本を俵積みになるように組立てて束
ね、その外側に肉厚2.3mm、外径133mmφ、内
径128.4mmφのTa管を被せ、更にその外側に外
径210mmφ、内径134mmφのCu管を被せた。
ひきつづき、この両端にCu蓋を嵌合した後、電子ビー
ム溶接することにより、複合材を形成した。この複合材
に650℃、1時間、1500気圧の条件下でHIP加
工を施した後、外削することにより、直径200mmφ
の複合ビレットを形成した。
Comparative Example 1 First, an outer diameter of 200 mmφ and an inner diameter of 116 m cut out from a Cu-17.3 wt% Sn-0.2 wt% Ti alloy ingot.
A Nb rod with a diameter of 115 mmφ was inserted into a mφ pipe, and after both ends of this pipe were electron beam welded, hot extrusion processing was performed, and further surface-reduction processing and annealing treatment were repeated alternately to obtain a diameter of 1.5 mmφ. A strand was formed. Continuing,
The 6000 strands are assembled and bundled to form a bale stack, and a Ta tube having a wall thickness of 2.3 mm, an outer diameter of 133 mmφ and an inner diameter of 128.4 mmφ is covered on the outer side thereof, and further outer side thereof has an outer diameter of 210 mmφ and an inner diameter of 134 mmφ. A Cu tube was covered.
Subsequently, Cu lids were fitted to both ends of the two ends and electron beam welding was performed to form a composite material. The composite material is HIP processed under the condition of 650 ° C. for 1 hour and 1500 atm, and then externally cut to obtain a diameter of 200 mmφ.
To form a composite billet.

【0024】次いで、実施例1と同様に前記複合ビレッ
トに熱間押出し加工を施し、更に減面加工及び焼鈍処理
を交互に繰り返すことにより、直径0.93mmφの最
終成形線材を形成した。この工程では、減面加工途上で
断線が多発したため、最終成形線材は平均長さ300m
ごとに破断したものであった。こうして得られた最終成
形線材について、その断面を調査したところ、断面に粗
大なフィラメントがあり、これをSEM(走査型電子顕
微鏡)で調べた結果、Nb3 Snであった。また、押出
し加工を2回経ていること、及びフィラメント表面に1
回目の押出し加工で生成されたNb3 Snの影響がある
ことによって、フィラメント断面形状は扁平になってい
た。
Then, in the same manner as in Example 1, the composite billet was subjected to hot extrusion processing, and then surface-reducing processing and annealing processing were alternately repeated to form a final molded wire having a diameter of 0.93 mmφ. In this process, many wire breaks occurred during surface reduction processing, so the final molded wire rod had an average length of 300 m.
It was broken every time. When the cross section of the final molded wire thus obtained was examined, a coarse filament was found in the cross section, and it was Nb 3 Sn as a result of examining this with a SEM (scanning electron microscope). In addition, it has been extruded twice, and the filament surface has 1
The filament cross-sectional shape was flat due to the influence of Nb 3 Sn produced in the extrusion process of the third time.

【0025】次いで、得られた最終成形線材に拡散熱処
理を施してNb3 Snを生成させることにより、実施例
1と同様な断面構成を有する直径0.93mmφのCu
安定化Nb3 Sn化合物超電導線を製造した。
Then, the final molded wire thus obtained is subjected to a diffusion heat treatment to generate Nb 3 Sn, whereby Cu having a cross-sectional structure similar to that of Example 1 and having a diameter of 0.93 mmφ is formed.
A stabilized Nb 3 Sn compound superconducting wire was manufactured.

【0026】実施例1及び比較例1の化合物超電導線に
ついて、12Tの磁場下でのCu部分を除いた臨界電流
密度(Jc)をそれぞれ測定した。
With respect to the compound superconducting wires of Example 1 and Comparative Example 1, the critical current density (Jc) excluding the Cu portion was measured under a magnetic field of 12T.

【0027】その結果、実施例1の化合物超電導線は、
前記Jc値が850A/mm2 であり、極めて高いJc
値が得られることが確認された。
As a result, the compound superconducting wire of Example 1 was
The Jc value is 850 A / mm 2, which is an extremely high Jc.
It was confirmed that the value was obtained.

【0028】これに対し、比較例1の化合物超電導線
は、前記Jc値が450A/mm2 であり、Jc値が低
いことが確認された。これは、超電導フィラメントの局
所的な断線と長手方向の断面積変動によるものである。
On the other hand, the compound superconducting wire of Comparative Example 1 had a Jc value of 450 A / mm 2 , and it was confirmed that the Jc value was low. This is due to local disconnection of the superconducting filament and variation of the cross-sectional area in the longitudinal direction.

【0029】以上より、実施例1の化合物超電導線の製
造方法は、複合ビレット組立ての工数が多くなるもの
の、押出し加工を1回で済ませ得るという利点の他に、
高Sn濃度のCuSn合金の粉末使用による均質化によ
って、押出し加工の高温加熱時にNbとCuSn合金と
の界面に有害なNb3 Snを生成することが抑制され、
最終成形工程においてフィラメントの断線が発生する不
都合がないという利点を有する。更に、押出し加工が1
回でNb芯が比較的円形であることから長手方向に均質
なNb3 Snを形成できるため、超電導特性の優れた超
電導線が得られる等の利点を有することが確認された。
As described above, in the method for manufacturing the compound superconducting wire of Example 1, although the number of steps for assembling the composite billet is large, the extrusion process can be performed only once.
The homogenization of CuSn alloy powder having a high Sn concentration suppresses generation of harmful Nb 3 Sn at the interface between Nb and CuSn alloy during high temperature heating during extrusion,
This has the advantage that there is no inconvenience of filament breakage in the final molding step. Furthermore, extrusion processing is 1
It was confirmed that since the Nb core was relatively circular at the time of turning, uniform Nb 3 Sn could be formed in the longitudinal direction, so that it was possible to obtain a superconducting wire having excellent superconducting properties.

【0030】実施例2 まず、外径220mmφ、内径114mmφの大径のC
u管と、このCu管内の中心部に配置された外径94m
mφ、内径90mmφの小径のCu管との片端(下側)
にCu蓋を取付けた。つづいて、これら両Cu管の間に
形成された管状の空間内に100メッシュ(粒径0.1
49mmφ)以上、粒径3mmφ以下のCu−16.8
重量%Sn−0.2重量%Ti合金粉末を振動を加えな
がら充填した後、これら両Cu管の上側の片端にCu蓋
を取付け、更に両端を電子ビーム溶接することにより、
複合材を形成した。ひきつづき、前記複合材に650
℃、1時間、1500気圧の条件下でHIP加工を施し
た後、これを内削及び外削することにより、外径200
mmφ、内径116mmφのCuSn合金管を形成し
た。
Example 2 First, a large-diameter C having an outer diameter of 220 mmφ and an inner diameter of 114 mmφ
u tube and outer diameter 94m arranged in the center of this Cu tube
One end (lower side) with a small diameter Cu tube with mφ and inner diameter of 90 mmφ
A Cu lid was attached to. Subsequently, 100 meshes (particle size: 0.1) in the tubular space formed between these Cu tubes.
Cu-16.8 having a diameter of 49 mmφ or more and a grain size of 3 mmφ or less
After filling the weight% Sn-0.2 weight% Ti alloy powder while applying vibration, a Cu lid was attached to one upper end of both Cu tubes, and both ends were electron beam welded.
A composite material was formed. Continue to 650 for the composite material
After HIP processing under the condition of 1,500 atm for 1 hour, the inner diameter is reduced to 200
A CuSn alloy tube having a mmφ and an inner diameter of 116 mmφ was formed.

【0031】こうして得られたCuSn合金管の外周側
及び内周側のビッカース硬度をそれぞれ測定したとこ
ろ、外周側及び内周側が共にHv170であり、均質な
組成になっていることが確認された。
The CuSn alloy pipe thus obtained was measured for Vickers hardness on the outer and inner circumferences, respectively. As a result, it was confirmed that both the outer and inner circumferences had Hv170, indicating a homogeneous composition.

【0032】その後、得られたCuSn合金管を用いて
Nb芯等との複合加工、押出し加工、減面加工、及び拡
散熱処理などを施すことにより、加工時に断線を生じる
ことなく、Cu安定化Nb3 Sn化合物超電導線を製造
することができた。
Thereafter, the CuSn alloy tube thus obtained is subjected to composite processing with an Nb core, extrusion processing, surface-reduction processing, diffusion heat treatment and the like to prevent Cu-stabilized Nb from being broken during processing. A 3Sn compound superconducting wire could be manufactured.

【0033】比較例2 Cu−16.8重量%Sn−0.2重量%Ti合金鋳塊
を削り出すことにより、実施例2と同一組成のCuSn
合金からなる外径200mmφ、内径116mmφのC
uSn合金管を形成した。
Comparative Example 2 Cu-16.8 wt% Sn-0.2 wt% Ti alloy ingot was machined to form CuSn having the same composition as in Example 2.
C with alloy outer diameter 200 mmφ and inner diameter 116 mmφ
A uSn alloy tube was formed.

【0034】こうして得られたCuSn合金管の外周側
及び内周側のビッカース硬度をそれぞれ測定したとこ
ろ、外周側がHv180〜190であり、内周側がHv
150〜160であり、マクロな偏析が現れていること
が確認された。
The Vickers hardnesses of the outer and inner circumferences of the CuSn alloy pipe thus obtained were measured. The outer circumference was Hv 180 to 190, and the inner circumference was Hv.
It was 150 to 160, and it was confirmed that macroscopic segregation appeared.

【0035】その後、この偏析が加工時でのCuSn合
金の割れの原因となり、加工が困難となった。
Thereafter, this segregation causes cracking of the CuSn alloy during processing, which makes processing difficult.

【0036】[0036]

【発明の効果】以上詳述した如く、本発明によればCu
Sn合金の偏析に起因する断線などの加工上のトラブル
の発生を防止でき、ひいては優れた超電導特性を有する
Nb3Sn化合物超電導線を製造し得る方法を提供する
ことができる。
As described above in detail, according to the present invention, Cu
It is possible to provide a method capable of preventing the occurrence of processing troubles such as wire breakage due to segregation of Sn alloy, and eventually producing an Nb 3 Sn compound superconducting wire having excellent superconducting properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cu又はCu合金からなる管、CuSn合金粉
末、及びNb又はNb合金からなる芯材の配置状態を示
す断面図。
FIG. 1 is a cross-sectional view showing an arrangement state of a tube made of Cu or Cu alloy, CuSn alloy powder, and a core material made of Nb or Nb alloy.

【図2】Cu又はCu合金からなる大径の管、Cu又は
Cu合金からなる小径の管、及びCuSn合金粉末の配
置状態を示す断面図。
FIG. 2 is a cross-sectional view showing an arrangement state of a large diameter tube made of Cu or Cu alloy, a small diameter tube made of Cu or Cu alloy, and CuSn alloy powder.

【符号の説明】[Explanation of symbols]

1…Cu又はCu合金からなる管、2…Nb又はNb合
金からなる芯材、3…CuSn合金粉末、11…Cu又
はCu合金からなる大径の管、12…Cu又はCu合金
からなる小径の管、13…CuSn合金粉末。
1 ... Tube made of Cu or Cu alloy, 2 ... Core material made of Nb or Nb alloy, 3 ... CuSn alloy powder, 11 ... Large diameter tube made of Cu or Cu alloy, 12 ... Small diameter made of Cu or Cu alloy Tube, 13 ... CuSn alloy powder.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Nb又はNb合金からなる芯材が配置さ
れたCu又はCu合金からなる管内にCuSn合金粉末
を充填した後、熱間静水圧プレス加工を施して複合ビレ
ットを形成する工程と、前記複合ビレットに押出し加工
を施した後、減面加工を施す工程と、熱処理を施してN
3 Snを生成させる工程とを具備することを特徴とす
るNb3 Sn化合物超電導線の製造方法。
1. A step of forming a composite billet by filling CuSn alloy powder into a tube made of Cu or a Cu alloy in which a core made of Nb or an Nb alloy is arranged, and then performing hot isostatic pressing. After the composite billet is extruded, a surface-reducing process is performed and a heat treatment is performed to obtain N.
and a step of producing b 3 Sn, the method for producing a Nb 3 Sn compound superconducting wire.
【請求項2】 Cu又はCu合金からなる大径の管と該
管内に配置されたCu又はCu合金からなる小径の管と
の間に形成された管状の空間内にCuSn合金粉末を充
填した後、熱間静水圧プレス加工を施してCuSn合金
を主体とする管を形成する工程と、前記CuSn合金を
主体とする管内にNb又はNb合金からなる芯材を挿入
して複合ビレットを形成する工程と、前記複合ビレット
に押出し加工を施した後、減面加工を施す工程と、熱処
理を施してNb3 Snを生成させる工程とを具備するこ
とを特徴とするNb3 Sn化合物超電導線の製造方法。
2. After filling CuSn alloy powder into a tubular space formed between a large-diameter tube made of Cu or a Cu alloy and a small-diameter tube made of Cu or a Cu alloy arranged in the tube. A step of performing hot isostatic pressing to form a tube mainly composed of CuSn alloy, and a step of inserting a core material made of Nb or Nb alloy into the tube mainly composed of CuSn alloy to form a composite billet And a step of subjecting the composite billet to extrusion processing, then surface-reducing processing, and heat treatment to generate Nb 3 Sn, a method for producing a Nb 3 Sn compound superconducting wire. ..
JP4152249A 1992-06-11 1992-06-11 Manufacture of compound superconductive wire Pending JPH05342932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152249A JPH05342932A (en) 1992-06-11 1992-06-11 Manufacture of compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4152249A JPH05342932A (en) 1992-06-11 1992-06-11 Manufacture of compound superconductive wire

Publications (1)

Publication Number Publication Date
JPH05342932A true JPH05342932A (en) 1993-12-24

Family

ID=15536359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152249A Pending JPH05342932A (en) 1992-06-11 1992-06-11 Manufacture of compound superconductive wire

Country Status (1)

Country Link
JP (1) JPH05342932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422361C (en) * 2005-03-24 2008-10-01 株式会社神户制钢所 Method for manufacturing powder-metallurgy processed Nb3Sn superconducting wire, precursor to powder-metallurgy processed Nb3Sn superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422361C (en) * 2005-03-24 2008-10-01 株式会社神户制钢所 Method for manufacturing powder-metallurgy processed Nb3Sn superconducting wire, precursor to powder-metallurgy processed Nb3Sn superconducting wire
US7566414B2 (en) 2005-03-24 2009-07-28 Kabushiki Kaisha Kobe Seiko Sho Method for manufacturing power-metallurgy processed Nb3Sn superconducting wire, precursor to powder-metallurgy processed Nb3Sn superconducting wire

Similar Documents

Publication Publication Date Title
EP1705721B1 (en) Method for manufacturing powder-metallurgy processed Nb3Sn superconducting wire and precursor to powder-metallurgy processed Nb3Sn superconducting wire
JP4728245B2 (en) Method for manufacturing (Nb, Ti) 3Sn wire using Ti source rod
US4262412A (en) Composite construction process and superconductor produced thereby
CN109643593B (en) Diffusion barriers for metallic superconducting wires
GB2092043A (en) Reinforced wire
US4205119A (en) Wrapped tantalum diffusion barrier
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
US5127149A (en) Method of production for multifilament niobium-tin superconductors
EP0252119A1 (en) Tantalum capacitor lead wire
US4646197A (en) Tantalum capacitor lead wire
JPH05342932A (en) Manufacture of compound superconductive wire
US4285740A (en) Wrapped tantalum diffusion barrier
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
WO2002081192A1 (en) Nb3Al SUPERCONDUCTOR AND METHOD OF MANUFACTURE
US4860431A (en) Fabrication of multifilament intermetallic superconductor using strengthened tin
JP3757141B2 (en) Manufacturing method of Nb (3) Sn superconducting wire
EP1763091A2 (en) Method of manufacturing for Nb3Sn superconducting wire rod by means of powder method and precursor therefor
JP2868966B2 (en) Superconducting wire manufacturing method
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
JP3108496B2 (en) Superconducting wire manufacturing method
JP3080500B2 (en) Method for producing compound superconducting wire
JPH11111081A (en) Oxide superconducting wire
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH0896633A (en) Manufacture of nb3sn superconducting wire
JP3106278B2 (en) Method for producing Nb3 Sn-based superconducting wire